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Abstract.In this work, we investigate inequalities of singular values and unitarily invariant norms for sums
and products of matrices. First, we give an another more concise and clear proof to inequality obtained by
Chen and Zhang [6, Theorem 5]. Then, we establish an inequality for singular values. In addition, we also
give a singular values inequality for sums and products of matrices. As applications of this inequality, we
present some unitarily invariant norms inequalities.

1. Introduction

Throughout, let Mn(C) be the space of n × n complex matrices. In ∈ Mn(C) is the identity matrix. For
A ∈ Mn(C), let λ j(A) be the eigenvalues of A. let s j(A)( j = 1, 2, · · · ,n) be the singular values of A (i.e., the
eigenvalues of the positive semidefinite matrix |A| = (A∗A)

1
2 , where A∗ is the transpose conjugate of A),

arranged in decreasing order and repeated according to multiplicity. The notation A ≤ B, as usual, means
that both A and B are two Hermitian matrices in Mn(C) and B − A is a positive semidefinite matrix. The
relation ≤ is a partial order on Mn(C).

A norm ‖ · ‖, defined on Mn(C), is called a unitarily invariant norm if ‖UAV‖ = ‖A‖ for A, U, V ∈ Mn(C)
with U, V are unitary matrices. Examples in these classes are the operator norm defined by ‖A‖∞ = s1(A)

and the Schatten p−norms (p ≥ 1) defined by ‖A‖p =
( n∑

i=1
sp

i (A)
) 1

p for all A ∈Mn(A).

The m × m block matrix


A11 A12 · · · A1m
A21 A22 · · · A2m
...

...
. . .

...
Am1 Am2 · · · Amm

 is a matrix in Mm(Mn(C)), where Ai j ∈ Mn(C)(i, j =

1, 2, · · · ,m). When Ai j = 0(i , j), the m × m block matrix


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

 is just the direct sum of
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Email address: jgzhao_dj@163.com (Jianguo Zhao)



J. Zhao / Filomat 36:1 (2022), 31–38 32

matrices Ai ∈Mn(C)(i = 1, 2, · · · ,m), denoted by
m⊕

i=1
Ai. When m = 2, we write A1 ⊕ A2 instead of

2⊕
i=1

Ai.

The famous inequality between the real part and the singular values of A ∈Mn(C) is

λ j(ReA) ≤ s j(A)

obtained by Fan and Hoffman [7], j = 1, 2, · · · ,n.

Recently, Chen and Zhang [6] studied some singular values inequalities among the real and imaginary
parts of matrices and themselves. The authors [6, Theorem 5] obtained:

s j(ReA) ≤
1
4

s j

(
(|A| + |A∗| + A + A∗) ⊕ (|A| + |A∗| − (A + A∗))

)
(1)

and

s j(ImA) ≤
1
4

s j

(
(|A| + |A∗| + i(A∗ − A)) ⊕ (|A| + |A∗| − i(A∗ − A))

)
(2)

for j = 1, 2, · · · n, where A ∈Mn(C) and i2 = −1. As results of the above inequalities, they [6, Theorem 6] also
got:

s j(ReA) ≤
1
2

s j

(
(|A| + |A∗|) ⊕ (|A| + |A∗|)

)
and

s j(ImA) ≤
1
2

s j

(
(|A| + |A∗|) ⊕ (|A| + |A∗|)

)
for j = 1, 2, · · · n.

In this work, we investigate singular values and unitarily invariant norms inequalities for sums and
products of matrices. First, we give an another more concise and clear proof to inequality (1). Then, we
establish an inequality for singular values, which is a generalization of inequality (1). In addition, we also
give a singular values inequality for sums and products of matrices. As applications of this inequality, we
present some unitarily invariant norms inequalities.

2. Main results

In this section, we mainly study inequalities of singular values and unitarily invariant norms for sums
and products of matrices. To achieve our goal, we need the following lemmas. The first lemma is the
Corollary 1.3.7 and the second one is the Proposition 1.3.2 in [3].

Lemma 2.1. If A ∈Mn(C), then the block matrix
[
|A| A∗

A |A∗|

]
in M2n(C) is a positive semidefinite matrix.

Lemma 2.2. Let A, B ∈ Mn(C) with A ≥ 0 and B ≥ 0. Then the block matrix
[

A X
X∗ B

]
≥ 0 if and only if

X = A
1
2 WB

1
2 for some contraction W.

The next lemma was obtained by Tao [9].

Lemma 2.3. If A, B and X ∈Mn(C) with
[

A X
X∗ B

]
≥ 0, then

2s j(X) ≤ s j

[
A X
X∗ B

]
for j = 1, 2, · · · ,n.
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The fourth lemma was given by Kittaneh [8].

Lemma 2.4. Let A, B and X ∈ Mn(C) with A ≥ 0, B ≥ 0 and BX = XA and f , 1 be two nonnegative continuous

functions on [0,+∞) with f (t)1(t) = t for t ∈ [0,+∞). If
[

A X∗

X B

]
≥ 0, then so is

[
f 2(A) X∗

X 12(B)

]
≥ 0.

The geometric mean of A and B ∈ Mn(C), defined by A]B = A
1
2 (A−

1
2 BA−

1
2 )

1
2 A

1
2 , has the following extremal

property[3, Theorem 4.1.3], where A ≥ 0 and B ≥ 0.

Lemma 2.5.

A]B = max
{
X
∣∣∣∣X∗ = X,

[
A X
X B

]
≥ 0

}
.

The following two Lemmas were deduced by Audeh and Kittaneh [2, Theorems 2.1, 2.4].

Lemma 2.6. Let A, B and X ∈Mn(C) with
[

A X
X∗ B

]
≥ 0, then

s j(X) ≤ s j(A ⊕ B)

for j = 1, 2, · · · ,n.

Lemma 2.7. Let A, B ∈Mn(C), where A is a Hermitian, B ≥ 0 and ±A ≤ B, Then

s j(A) ≤ s j((A + B) ⊕ (B − A)),

for j = 1, 2, · · · ,n.

The last lemma was due to Bourin and Uchiyama [5, Theorem 1.1].

Lemma 2.8. Let Ai ∈ Mn (i = 1, 2) with Ai ≥ 0 and f : [0,+∞) → [0,+∞) be concave function. Then, for all
unitarily invariant norms ‖ · ‖,

‖ f (A1 + A2)‖ ≤ ‖ f (A1) + f (A2)‖.

First, we present a more concise and clear proof to inequality (1). In fact, since[
|A| A∗

A |A∗|

]
≥ 0 and

[
|A∗| A
A∗ |A|

]
≥ 0,

then [
|A| + |A∗| A + A∗

A + A∗ |A| + |A∗|

]
≥ 0. (3)

Putting J = 1
√

2

[
In −In
In In

]
, then J is a unitary matrix. Using the unitarily invariance property for singular

values of matrices and Lemma 2.3 for inequality (3), we have

2s j(A + A∗) ≤ s j

( [ |A| + |A∗| A + A∗

A + A∗ |A| + |A∗|

] )
= s j

(
J∗

[
|A| + |A∗| A + A∗

A + A∗ |A| + |A∗|

]
J
)

= s j

( ( |A| + |A∗| + A + A∗ 0
0 |A| + |A∗| − (A + A∗)

) )
,
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or equivalently,

s j

(A + A∗

2

)
≤

1
4

s j

(
(|A| + |A∗| + A + A∗) ⊕ (|A| + |A∗| − (A + A∗))

)
.

Next, we give a generalization of inequality (1).

Theorem 2.9. Let A, B, X ∈Mn(C). Then

2s j(V) ≤ s j((U]W + V) ⊕ (U]W − V)), (4)

for j = 1, 2, · · · ,n, where U = A f 2(|X|)A∗ + B f 2(|X∗|)B∗, V = AX∗B∗ + BXA∗ and W = B12(|X∗|)B∗ + A12(|X|)A∗.

Proof. Let X = U|X| be the polar decomposition of X ∈Mn(C), where U is a unitary matrix. Then |X| = U∗X,

|X∗| = U|X|U∗ and ±|X∗|X = ±U|X|2 = ±X|X|. By Lemma 2.1, we know
[
|X| ±X∗

±X |X∗|

]
≥ 0. Thus, Lemma 2.4

gives
[

f 2(|X|) ±X∗

±X 12(|X∗|)

]
≥ 0, then so is[

A f 2(|X|)A∗ ±AX∗B∗

±BXA∗ B12(|X∗|)B∗

]
=

[
A 0
0 B

] [
f 2(|X|) ±X∗

±X 12(|X∗|)

] [
A∗ 0
0 B∗

]
≥ 0. (5)

Similarly, since[
|X∗| ±X
±X∗ |X|

]
≥ 0,

then

0 ≤
[

B 0
0 A

] [
f 2(|X∗|) ±X
±X∗ 12(|X|)

] [
B∗ 0
0 A∗

]
=

[
B f 2(|X∗|) ±BX
±AX∗ A12(|X|)

] [
B∗ 0
0 A∗

]
=

[
B f 2(|X∗|)B∗ ±BXA∗

±AX∗B∗ A12(|X|)A∗

]
. (6)

Inequalities (5)and (6) give

0 ≤
[

A f 2(|X|)A∗ + B f 2(|X∗|)B∗ ±(AX∗B∗ + BXA∗)
±(BXA∗ + AX∗B∗) B12(|X∗|)B∗ + A12(|X|)A∗

]
=

[
U ±V
±V W

]
. (7)

Applying Lemma 2.5 to inequality (7), we have

±V ≤ U]W.

Thus, the desired inequality (4) follows from Lemma 2.7. This completes the proof.

Remark 2.10. Putting f (t) = 1(t) = t
1
2 in inequality (4), we get

2s j(V) ≤ s j((U1 + V) ⊕ (U1 − V)), (8)

for j = 1, 2, · · · ,n, where U1 = A|X|A∗ + B|X∗|B∗ and V = AX∗B∗ + BXA∗. It should be mentioned that inequality
(8) was obtained by Audeh and Kittaneh [2, Theorem 2.7]. Thus, inequality (4) is a generalization of inequality (8).

Remark 2.11. Let A ∈Mn(C) and A = UΣV∗ be the singular values decomposition of A, where Σ = dia1(s1(A),
s2(A), · · · , sn(A)), U and V are unitary matrices. Then by inequality (8), we get

4s j

(A + A∗

2

)
= 2s j(UΣV∗ + VΣU∗)

≤ s j

((
UΣU∗ + VΣV∗ + UΣV∗ + VΣU∗

)
⊕

(
UΣU∗ + VΣV∗ − (UΣV∗ + VΣU∗)

))
= s j

((
|A| + |A∗| + A + A∗

)
⊕

(
|A| + |A∗| − (A + A∗)

))
.

This is just inequality (1). In this sense, inequality (4) is also a generalization of inequality (1).
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Remark 2.12. Putting f (t) = 1(t) = t
1
2 in inequality (7), we can easily get

±(AX∗B∗ + BXA∗) ≤ A|X|A∗ + B|X∗|B∗,

then by (4), we obtain

s j(AX∗B∗ + BXA∗) ≤ s j((A|X|A∗ + B|X∗|B∗) ⊕ (A|X|A∗ + B|X∗|B∗)) (9)

for j = 1, 2, · · · ,n. Thus, inequality (4) can be considered as a refinement of s j(AB∗ + B∗A) ≤ s j

(
(AA∗ + BB∗)

⊕ (AA∗ + BB∗)
)

obtained by Bhatia and Kittaneh [4].

Replacing X by −iX in inequality (4), we obtain the following corollary.

Corollary 2.13. Let A, B, X ∈Mn(C). Then

2s j(V1) ≤ s j((U]W + iV1) ⊕ (U]W − iV1)), (10)

for j = 1, 2, · · · ,n, where U = A f 2(|X|)A∗ + B f 2(|X∗|)B∗, V1 = AX∗B∗ − BXA∗, W = B12(|X∗|)B∗ + A12(|X|)A∗

and i2 = −1.

Remark 2.14. Let A ∈Mn(C) and A = UΣV∗ be the singular values decomposition of A, where Σ = dia1(s1(A),
s2(A), · · · , sn(A)), U and V are unitary matrices. Putting f (t) = 1(t) = t

1
2 in inequality (10), then we get

4s j

(A − A∗

2i

)
= 4s j

( (−iA) + (−iA)∗

2

)
= 2s j

(
i(A∗ − A)

)
= 2s j

(
i(VΣU∗ −UΣV∗)

)
= 2s j

(
VΣU∗ −UΣV∗

)
≤ s j

((
UΣU∗ + VΣV∗ + i(VΣU∗ −UΣV∗)

)
⊕

(
UΣU∗ + VΣV∗ − i(VΣU∗ −UΣV∗)

))
= s j

((
|A| + |A∗| + i(A∗ − A)

)
⊕

(
|A| + |A∗| − i(A∗ − A)

))
.

This is just inequality (2). Therefore, inequality (10) is a generalization of inequality (2).

Remark 2.15. Chen and Zhang [6] pointed out that the inequality

s j

(A + A∗

2

)
≤

1
2

s j

(
|A| + |A∗|

)
does not hold for j = 1, 2, · · · ,n, where A ∈Mn(C). However, we have the following weak form:

k∏
j=1

s j(A + A∗) ≤
k∏

j=1

s j(|A| + |A∗|), (11)

for k = 1, 2, · · · ,n. Actually, by Lemma 2.2 and inequality (3), there exists a contraction W such thatA + A∗ =

(|A| + |A∗|)
1
2 W(|A| + |A∗|)

1
2 , then by Horn’s result [10, Theorem 4.6], we get the above inequality (11).

In the sequel, we present a singular values inequality of m−tuples for sums and products of matrices.

Theorem 2.16. Let A j, B j and X j ∈ Mn(C) ( j = 1, 2, · · · ,m) and f , 1 be two nonnegative continuous functions on
[0,+∞) with f (t)1(t) = t for t ∈ [0,+∞). Then

s j

( m∑
j=1

A∗jX
∗

jB j

)
≤ s j

( m∑
j=1

(
A∗j f 2(|X j|)A j ⊕ B∗j1

2(|X∗j |)B j

))
,

for j = 1, 2, · · · ,n.
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Proof. Let X = U|X| be the polar decomposition of X ∈Mn(C), where U is a unitary matrix. Then |X| = U∗X,

|X∗| = U|X|U∗ and |X∗|X = U|X|2 = X|X|. Since
[
|X| X∗

X |X∗|

]
≥ 0, by Lemma 2.4, we get

[
f 2(|X|) X∗

X 12(|X∗|)

]
≥

0, then so is[
A∗ f 2(|X|)A A∗X∗B

B∗XA B∗12(|X∗|)B

]
=

[
A∗ 0
0 B∗

] [
f 2(|X|) X∗

X 12(|X∗|)

] [
A 0
0 B

]
≥ 0.

Hence, Lemma 2.6 gives

s j(A∗X∗B) ≤ s j(A∗ f 2(|X|)A ⊕ B∗12(|X∗|)B), (12)

for j = 1, 2, · · · ,n, where A, B ∈Mn(C).

Putting A =


A1 0 · · · 0
A2 0 · · · 0
...

...
. . .

...
Am 0 · · · 0

, B =


B1 0 · · · 0
B2 0 · · · 0
...

...
. . .

...
Bm 0 · · · 0

 and X =
m⊕

j=1
X j,

then A∗X∗B =



m∑
j=1

A∗jX
∗

jB j 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


, A∗ f 2(|X|)A =



m∑
j=1

A∗j f 2(|X j|)A j 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


and B∗12(|X∗|)B =



m∑
j=1

B∗j1
2(|X∗j |)B j 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


,

by inequality (12), we have

s j

( m∑
j=1

A∗jX
∗

jB j

)
≤ s j

( m∑
j=1

(
A∗j f 2(|X j|)A j ⊕ B∗j1

2(|X∗j |)B j

))
.

This completes the proof.

As an application of Theorem 2.16 and Lemma 2.8, we have the following inequality for unitarily invariant
norms.

Corollary 2.17. Let A j, B j and X j ∈ Mn(C) ( j = 1, 2, · · · ,m) and f , 1 be two nonnegative continuous functions on
[0,+∞) with f (t)1(t) = t for t ∈ [0,+∞). If h : [0,+∞)→ [0,+∞) be an increasing concave function. Then, for all
unitarily invariant norms ‖ · ‖,∥∥∥∥h

(∣∣∣∣ m∑
j=1

A∗jX
∗

jB j

∣∣∣∣)∥∥∥∥ ≤ ∥∥∥∥ m∑
j=1

(
h
(
A∗j f 2(|X j|)A j

)
⊕ h

(
B∗j1

2(|X∗j |)B j

))∥∥∥∥. (13)

The following results are the special case of inequality (13).

Corollary 2.18. Let A j, B j and X j ∈ Mn(C)( j = 1, 2, · · · ,m) and f , 1 be two nonnegative continuous functions on
[0,+∞) with f (t)1(t) = t for t ∈ [0,+∞). Then, for all unitarily invariant norms ‖ · ‖,∥∥∥∥∣∣∣∣ m∑

j=1

A∗jX
∗

jB j

∣∣∣∣r∥∥∥∥ ≤ ∥∥∥∥ m∑
j=1

((
A∗j f 2(|X j|)A j

)r
⊕

(
B∗j1

2(|X∗j |)B j

)r)∥∥∥∥,
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in particular,

∥∥∥∥∣∣∣∣ m∑
j=1

A∗jX
∗

jB j

∣∣∣∣r∥∥∥∥
∞

≤ max
{∥∥∥∥ m∑

j=1

(
A∗j f 2(|X j|)A j

)r∥∥∥∥
∞

,
∥∥∥∥ m∑

j=1

(
B∗j1

2(|X∗j |)B j

)r∥∥∥∥
∞

}
,

and ∥∥∥∥∣∣∣∣ m∑
j=1

A∗jX
∗

jB j

∣∣∣∣r∥∥∥∥
p
≤ max

(∥∥∥∥ m∑
j=1

(
A∗j f 2(|X j|)A j

)r∥∥∥∥p

p
+

∥∥∥∥ m∑
j=1

(
B∗j1

2(|X∗j |)B j

)r∥∥∥∥p

p

) 1
p
,

where 0 < r ≤ 1 and p ≥ 1.

Remark 2.19. Taking r = 1 in Corollary 2.18, we get Corollary 2.7 obtained by Alfakhr and Omidvar [1, Corollary
2.7].

Corollary 2.20. Let A j, B j ∈Mn(C)( j = 1, 2, · · · ,m) and h : [0,+∞)→ [0,+∞) be an increasing concave function.
Then, for all unitarily invariant norms ‖ · ‖,

∥∥∥∥h
(∣∣∣∣ m∑

j=1

A∗jB j

∣∣∣∣)∥∥∥∥ ≤ ∥∥∥∥ m∑
j=1

(
h
(
A∗jA j

)
⊕ h

(
B∗jB j

))∥∥∥∥.
Corollary 2.21. LetX j ∈Mn(C)( j = 1, 2, · · · ,m) and f , 1 be two nonnegative continuous functions on [0,+∞) with
f (t)1(t) = t for t ∈ [0,+∞). If h : [0,+∞) → [0,+∞) be an increasing concave function. Then, for all unitarily
invariant norms ‖ · ‖,

∥∥∥∥h
(∣∣∣∣ m∑

j=1

X∗j
∣∣∣∣)∥∥∥∥ ≤ ∥∥∥∥ m∑

j=1

(
h
(
|X j|

)
⊕ h

(
|X∗j |

))∥∥∥∥,
especially,

∥∥∥∥ m∑
j=1

X∗j
∥∥∥∥ ≤ ∥∥∥∥ m∑

j=1

(
|X j| ⊕ |X∗j |

)∥∥∥∥.
Proof. This result will follows by putting f (t) = 1(t) = t

1
2 and A j = B j = In( j = 1, 2, · · · ,m) in Corollary 2.17.

This completes the proof.

Corollary 2.22. Let A j and X j ∈ Mn(C) ( j = 1, 2, · · · ,m) and h : [0,+∞) → [0,+∞) be an increasing concave
function. Then, for all unitarily invariant norms ‖ · ‖,

∥∥∥∥h
(∣∣∣∣ m∑

j=1

A∗jX
∗A j+1

∣∣∣∣)∥∥∥∥ ≤ m∑
j=1

∥∥∥∥h
(
|X j|

1
2 |A∗j|

2
|X j|

1
2

)
⊕ h

(
|X∗j |

1
2 |A∗j|

2
|X∗j |

1
2

)∥∥∥∥,
where Am+1 = A1. In particular, If X j = X ∈Mn(C)( j = 1, 2, · · · ,m) are positive semidefinite matrices, then

∥∥∥∥h
(∣∣∣∣ m∑

j=1

A∗jXA j+1

∣∣∣∣)∥∥∥∥ ≤ m∑
j=1

∥∥∥∥h
(
X

1
2 |A∗j|

2X
1
2

)
⊕ h

(
X

1
2 |A∗j|

2X
1
2

)∥∥∥∥.
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Proof. Let T = U|T| be the polar decomposition of T ∈ Mn(C), where U is a unitary matrix. Then TT∗ =
U|T||T|U∗ = UT∗TU∗, and hence h(TT∗) = Uh(T∗T)U∗. So inequality (13) entails∥∥∥∥h

(∣∣∣∣ m∑
j=1

A∗jX
∗A j+1

∣∣∣∣)∥∥∥∥ ≤

∥∥∥∥ m∑
j=1

(
h
(
A∗j|X j|A j

)
⊕ h

(
A∗j|X

∗

j |A j

))∥∥∥∥
≤

m∑
j=1

∥∥∥∥h
(
A∗j|X j|A j

)
⊕ h

(
A∗j|X

∗

j |A j

)∥∥∥∥
=

m∑
j=1

∥∥∥∥h
(
A∗j|X j|A j ⊕ A∗j|X

∗

j |A j

)∥∥∥∥
=

m∑
j=1

∥∥∥∥h
(
|X j|

1
2 |A∗j|

2
|X j|

1
2 ⊕ |X∗j |

1
2 |A∗j|

2
|X∗j |

1
2

)∥∥∥∥
=

m∑
j=1

∥∥∥∥h
(
|X j|

1
2 |A∗j|

2
|X j|

1
2

)
⊕ h

(
|X∗j |

1
2 |A∗j|

2
|X∗j |

1
2

)∥∥∥∥.
This completes the proof.

Remark 2.23. Putting h(x) = x in Corollary 2.22, we get Corollary 2.10 in [1].
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