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Abstract. In this paper some geometric structures on Finsler Lie algeboids are studied and h-basic dis-
tinguished connections are introduced. Specially, Ichijyd connection that is a special h-basic distinguished
connection is investigated. The generalized Berwald Lie algebroids are presented, as a particular case of
Finsler Lie algebroids and Wagner-Ichijyo connection, that is a special case of Ichijy6 connection, is studied.
Moreover, the Wagner Lie algebroid is introduced and some equivalent conditions for this space are given.

Finally, an optimal control problem is solved using the Pontryagin Maximum Principle in the framework
of a Finsler Lie algebroid.

1. Introduction

The notion of Lie algebroids was first introduced and studied by J. Pradines [18], following the work of
C. Ehresmann and P. Libermann on differentiable groupoids. As Lie algebras are the infinitesimal objects
of Lie groups, Lie algebroids are the infinitesimal objects of Lie groupoids. They are generalizations of
both Lie algebras and tangent vector bundles. Recently, Lie algebroids are important issues in physics,
mechanics and optimal control since the extension of Lagrangian and Hamiltonian systems to their entity
[2,7,8,10,13, 14, 16, 17, 25, 28] and catching the Poisson structure [15].

The notion of generalized Berwald space has been originated by Wagner in [27] and investigated by
Hashiguchi in [5] based on the modern theory of Finsler connections (see [1], for more details about Finsler
geometry). Exactly, generalized Berwald spaces are the Finsler spaces which admit metric linear connections
in the tangent bundle of their base manifolds. The class of generalized Berwald spaces is a large and very
important class of Finsler manifolds whose Finsler structure, the energy-or the fundamental-function,
is linked to a linear connection of the carrying manifold in a natural manner: the parallel translations
with respect to the linear connection preserve the Finslerian length of the tangent vectors [19]. Berwald
manifolds and Wagner manifolds belong to this class, whose importance lies (among others) in the fact
that generalized Berwald manifolds may have a rich isometry group. It is known that to any generalized
Berwald manifold a whole class of best Finsler connections can be attached in general. Ichijyo connections
are the members of this class (see [19, 24], for more details). Wagner-Ichijyo connections are the special cases
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of Ichijyo connections. Indeed, Ichijyd connection induced by a linear connection of a Wagner manifold
is just a Wagner-Ichijyo connection [20]. One of the motivations for the present work is the introduce of
generalize Berwald Lie algebroids (in particular, Wagner Lie algebroids) and also the study of Wagner-
Ichijyo connections on Lie algebroids.

The second motivation of this paper is the study of some type of connections on Finsler Lie algebroids
and apply the Pontryagin Maximum Principle on this space in order to solve a optimal control problem.
The other motivation for this work is to prove that the framework of a Finsler Lie algebroid is more suitable
that the tangent bundle in order to solve the optimization problem. The optimal trajectories of a driftless
control affine system with holonomic distribution are the geodesics in the geometry of Lie algebroids. In a
lot of cases it is not possible to find the exact solution of the optimal control problem. For this reason, using
the geometry of the space, it is possible to find information about their local or global behavior. Thus, if
the geodesic curves in the framework of Finsler Lie algebroids belong to a manifold with positive constant
curvature, then the geodesics focus and, contrary the negative curvature spreads geodesics out.

Here is an outline of the work. In Section 2, we recall some basic concepts on Lie algebroids such as
vertical and complete lifts on a Lie algebroid, the prolongation of a Lie algebroid, horizontal and vertical
endomorphisms, Liouville section, semispray and distinguished connections on the prolongation of a Lie
algebroid. In Section 3, the concept of Finsler Lie algebroid is presented and some important geometric
structures on this space are studied. Also, the h-basic distinguished connections are introduced on Finsler
Lie algeboids. Specially, the Ichijyd connection that is a special h-basic distinguished connection is more
studied. Generalized Berwald Lie algebroids are presented next. The section will ended by the studying
of the Wagner-Ichijyo connection and the Wagner Lie algebroid. In the last section of the paper, an optimal
control problem is solved using the Pontryagin Maximum Principle at the level of a Finsler Lie algebroid.
Also, some geometric structures as spray, horizontal endomorphism, torsion and curvature on Finsler Lie
algebroid are calculated. These structures can give us some information about the behavior of optimal
solutions.

2. Preliminaries on Lie algebroids

Let E be a vector bundle of rank #n over a manifold M of dimension m,  : E — M be the vector bundle
projection and I'(E) be the C*(M)-module of sections of m : E — M. A Lie algebroid over M, is the triple
(E, [, .]Ie, p) where [+, -] is a Lie bracket on I'(E) and p : E — TM is a bundle map, called the anchor map,
such that if we also denote by p : I'(E) — x(M) the homomorphism of C*(M)-modules induced by the
anchor map then

[X, fYIE = fIX, YIe + p(X)(f)Y, VX, Y €T(E), Vf € C®(M).
The differential of E is the map dF : T(AXE*) — T[(AF1E*), defined by

k
dE (X, -, X0) = ) (<D p(X)@(Xo, -, Kif o, Xi)
i=0
+ Z(—l)”fy([Xi, Xile Xo, oo Xiv oo, Xy, X0,
i<j
for u € T(A*E*) and X, ..., X € T(E). In particular, if f € T(A°E") = C*(M) we have d*f(X) = p(X)f.

If we take local cQordinates (x") onM and alocal basis {e,} of sections of E, then we have the corresponding
local coordinates (x',y*) on E, where x' = x' o 7 and y*(u) is the a-th coordinate of u € E in the given basis.
Such coordinates determine local functions pl, LZﬁ on M which contain the local information of the Lie
algebroid structure, and accordingly they are called the structure functions of the Lie algebroid. They are
given by p(e,) = pg% and [e,, eg]e = LZﬁey with conditions

8pl & i QLV
j_UB % _ iy e TR
Pay i P = PyLygr Z [P e + Ly, Ly 1=0.
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A section w of E” also defines a function @& on E by means of &(u) =< wy,, u >, Vu € E,. If 0 = w,e®, then
the linear function @ is & (x, ¥) = w,y*.

For X € T(AYE), the contraction ix : T(APE*) — T(AP7¥E*) is defined in standard way and the Lie
differential operator £5 : T(APE*) — T(AP™1E*) is defined by ££ = ix o df — (-1)"dF o ix. Also, for
K € T(A*E* ® E), the contraction ig : T(A"E*) — T(A"™*-1E"), is defined in the natural way. In particular,
for simple tensor K = u ® X, where u € I'(AKE*), X € T(E), we set ixv = u A ixv. The corresponding Lie
differential is defined by the formula

£F =i o df + (-1)fdF o i,

E
u®X
ix : T(A\"E* ® E) — T(A"**1E* ® E) by the formula ix(u ® X) = ix(y) ® X. The generalized Frolicher-Nijenhuis
bracket is defined for simple tensors u ® X € T(A'"E*® E) and v® Y € T(A'E* ® E) by

and, in particular £ = uA £§( + (—1)kdEy A ix. The contraction ix can be extended to an operator

X veYI"™N = (£exn)®Y — (1) (Lreyp) ® X + p Av R [X, Yl
Moreover, we have (see [3, 4])

[K YTIFN(X) = [K(X), Y]e - K[X, Y]E,
[K,LIFN(X, Y) = [K(X), L] + [LX), KWz + (Ko L+ Lo K)[X, Y]e
= K[X, L(Y)]e — KIL(X), Y]e = L[X, K(Y)]e
— LIK(X), Y],

where K € T(AN'E*®E), L e T(A'E* ® E), N e T(A"E*® E) and X, Y € T(E).

For a function f on M one defines its vertical lift f¥ on Eby f¥(u) = f(n(u)) for u € E. We can consider the
vertical lift of X € I'(E) as the vector field on E given by X" (1) = X(nt(1)),/, u € E, where | : Ex) — Tu(Enq) is
the canonical isomorphism between the vector spaces Ey,) and T, (Ex)). If {e,} is a basis of sections of E, the
vertical lift XV of X = X%e, € T'(E) has the locally expression X" = (X% o 1) 9‘3, =. The complete lift of a smooth
function f € C*(M) into C*(E) is the smooth function f° : E — R defined by f°(u) = d f(u) = p(u)f. In the
local basis we have

. d
[l = Ya((PLa—;) o 7). 1)

There exists a unique vector field X° on E, the complete lift of X € I'(E), such that X° is r-projectable on p(X)

and X°(a) = £f<a, where a € I'(E*). It is known that X° has the following coordinate expression [11]:

.y d i 0X“ . d
X = (0ph) ol + ¥R G~ XV ol
Also we have X°f° = (p(X)f)" for all f € C®(M).

Let £7E be the subset of Ex TE defined by £7E = {(u, z) € EXTE|p(u) = 1t.(z)} and denote by n¢ : £°E — E
the mapping given by me(u,z) = ng(z), where nig : TE — E is the natural projection. Then (£7E, g, E) is
a vector bundle over E of rank 2n. Indeed, the total space of the prolongation is the total space of the
pull-back of i, : TE — TM by the anchor map p.

We introduce the vertical subbundle

vE"E = ker 1¢ = {(u, z) € £7E|te(u, z) = 0},

where ¢ : £°E — E is the projection onto the first factor, i.e., 7¢(1, z) = u. Therefore an element of v£"E is of
the form (0, z) € E X TE such that 7.(z) = 0 which is called vertical.
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If {e,} is a local basis of I'(E), (x,y*) is a coordinate on E and (u,z) is an element of £7E, then z has the
form

4 J
z=((pau) o n) lv+z Iy s—l, z€T,E.
The local basis {X,, V,} of sections of £7E associated to the coordinate system (x, y®) is given by [8]
; d d
XO((U) = (ea(n(v))r (p(x o 7Z)_ilv)/ (va(v) = (0/ _alv)~
Ix dy

The vertical lift XV and the complete lift X© of a section X = X%, € T'(E) as the sections of £°E — E are
given by X" (u) = (0, X" (1)) and XC(u) = (X(r(u)), X°(u)), for all u € E, with locally coordinate expressions

=(X%on)V,, X°=(X*omX,+ yﬁ[(p 05 0 TV )

X«
B oxi
Itisknown that the vector bundle (E"E, 7i¢, E) is a Lie algebroid with structure ([, -]¢, pg), where pg : £°E — TE
is given by pe(u, z) = z and the bracket [+, -]¢ is given by

(X, Y ]e=0, [X,Y)e=[XYI, [X5Y=[XYI;, ¥X Y eT(E).
The Lie brackets of basis {X,, V,} are

[XD(/ Xﬁ]E = (L;/(ﬁ o T[)X}’/ [Xa/ (Vﬁ]E = 0/ [(Va/ (Vﬁ]E =0

2.1. A setting for semispray on £°E

A smooth map o : N — E is called a section of i along smooth map f : N - M if m oo = f and denoted
by I'¢(m), the set of sections of 7t along f. There is a canonical isomorphism between I'(f*7t) and I'¢(7) (see
[21]). Now we consider pullback bundle ni*rt = (1*E, pry, E) of vector bundle (E, r, M), where

7T'E := E X E := {(u,v) € E X E|n(u) = n(v)},

and pry is the projection map onto the first component. The fibres of 7*m are the n-dimensional real vector
spaces {u} X Exq) = Equ). We consider the sequence

0 — 7'(E) 5 £E L m'(E) —> 0,

with j(u,z) = (ng(z),1du)) = (v,u), z € T,E, and i(u,v) = (0,v,)) where v, : C*(E) — R is defined by
v/ (F) = %ltzoF(u + tv). Function | = ioj: £°E — £"E is called the vertical endomorphism (almost tangent
structure) of £7E. From the definitions of i, j and | we get Im] = Imi = v£"E, ker | = ker j = vE"Eand Jo ] = 0.
If {X¢, V*} is the corresponding dual basis of {X,, V,}, then we get | = V, ® X“.

Let 6 be the canonical section along 7t given by 6(u) = (u,u) € 'E for each u € E. Then the section C
given by C :=io§ is called Liouville or Euler section. The Liouville section C has the coordinate expression
C = y*V, with respect to {X,, V.}. We have

O CE™ =), @)IX",Cle=X", (i))JC=0, VX € T(E). ©)

A section X of vector bundle (E"E, mg, E) is said to be homogeneous of degree r, (ris an 1nteger), if
[C,X]e = (r— 1)X Moreover, f € C*(E) is said to be homogeneous of degree r if £5.f = pe(C)(f) = rf. Itis
known that X = X*X, + Y*V, is homogeneous of degree  if and only if

— %
—— = (r-1)XF, y“% =Y. (4)
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Also, real valued smooth function f on E is homogeneous of degree r if and only if y"‘% = rf.

A section S of the vector bundle (E"E, i, E) is said to be a semispray if it satisfies the condition J(S) =
Moreover if S is homogeneous of degree 2, i.e., [C, S]g = S, then we call it spray. A semispray S has the
coordinate expression S = y*X,, + S*V,. Moreover, S is a spray if and only if 25f = y* gii

A function h : £°E — £7E is called a horizontal endomorphism if ho h = h, ker h = v£™E and h is smooth on

£7E= £7E — {0}. Also, v := Id — h is called the vertical projector associated to h. Setting h£™E := Imh we have
the following splitting

£7E = v£"E @ h£"E, ®)

for £7E. Also, from the definition of the horizontal endomorphism we have kerh = Im] = ker] = Imv =
vETE. Moreover, we have

Oh]=hv=Jv=0, (iijy)vov=uv, (iii)vh=0, () Jh=]=0] (6)

It is known that / has the locally expression h = (Xg + Bg(Va) ® XP.
Let 11 be a horizontal endomorphism on £°E. Then H = [i,CIE™N : £7E — £7E, t = [J,h]E™N € I'(£"E)
and T = igt + H are called the tension, weak torsion and strong torsion of h, respectively, where [-, -]E‘N is the

generalized Frolicher-Nijenhuis bracket on £7E. If H = 0, then h is called homogeneous. H, t and T have the
following coordinate expressions [11], [14] :

8 a
H= (8] yw)(v ® XP, @)

— 4 ya (]
Ztaﬁx AXE RV, (8)

By
T=(8; Yyﬁ -y (Ljgom)Va® XP, )
o8]
where t/, 1= ——£ — (L 7).

ap "= oy 9yﬂ

Theorem 2.1. [11] If hy and hy are horizontal endomorphisms with same associated semisprays and strong torsions,
then I’ll = I’lz.

The curvature of a horizontal endomorphism & is defined by ) = —Nj,, where N}, is the Nijenhuis tensor
of h given by

Nu(X,Y) = [hX, hY] - h[hX, Y] - h[X, hY] + h[X, Y], VX,Y € T(£°E).

The curvature Q) has the following coordinate expression:

1 5 o
Q=-SRX AX @V, (10)
where
9273)/ ) OB B 38
= (phom =+ - (v} i3yt~ Bi gyt + ([ o8] a1

Let & be the horizontal endomorphism on £7E. If S is an arbitrary semispray of £7E, then S = hS is
called the semispray associated to k. If the horizontal endomorphism & is homogeneous, then the semispray
associated to h is spray. Also, the map hs : £'E — £7E given by hs := 3(1gg +[J, SIEN) is called the horizontal

endomorphism generated by semispray S (see [11], for more details). We have the following theorem:
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Theorem 2.2. [11] Let h be a homogeneous horizontal endomorphism on £7°E and S be the semispray associated to h.
Then we have hs = h — Yist where t is the weak torsion of h and hs is the horizontal endomorphism generated by S.

Let S be the semispray associated to h. The almost complex structure F : £°E — £7E given by F :=
h[S,hEN — ] is called the almost complex structure induced by h. F has the coordinate expression

F=~(B4(X, + BiVp) + Vo) ® X% + (Xo + BaVy) @ V. (12)
The following relations hold [11]:
()Fo]=h, [i))Foh=—], (iii)JoF=v, (iv) Fov=hoF. (13)

The horizontal map and the horizontal map for £7E associated to h are defined by H := Foi: E Xy E — £7E
and V := jo F: £'E — E X E, respectively.

Let h be a horizontal endomorphism on £7°E. Then X" := hX® € h£™E is called the horizontal lift of X by h.
If X = X%,, then we have X" = (X% o )(X, + B’z(Vﬁ). The following equations are hold [11]:

(@) JX" = X", (i) hX", Y'e = [X, YIE, Gid) [X, Y = JIX", Y'e.

Setting 0, = eZ =X, + Bﬁ(vﬁ = h(X,), it is easy to see that {0,} generate a basis of h£"E and the frame
{64, Va4l is a local basis of £7E adapted to splitting (5) which is called the adapted basis. The dual adapted
basis is {X¢, 0V*}, where 6V¢ = V¢ — BgXﬁ. Lie brackets of the adapted basis {0,, V,} are

08B,
[611/ 6ﬁ]£ = (LZﬁ o 7-()67 + RZﬁ(v}/I [60(/ (Vﬁ]E = _8_yﬁ(v}’/ [(V(Xr (Vﬁlf =0. (14)

It is easy to see that i and F have coordinate expressions & = 0, ® X* and F = =V, ® X* + 0, ® 0V* with
respect to the adapted basis

2.2. Distinguished connections on Lie algebroids
A linear connection on a Lie algebroid (E, [, ]g, p) is a map D : I'(E) X I'(E) — I'(E) satisfying in

DfX+yZ = fDXy + DyZ,
Dx(fY +Z) = (p(X)f)Y + fDxY + DxZ,

for any function f € C*(M) and X, Y, Z € I'(E). Let D be a linear connection on £°E and / be a horizontal
endomorphism on £7E. Then (D, h) is called a distinguished connection (or d-connection) on £7E, if D is
reducible, i.e., Dh = 0, and D is almost complex, i.e., DF = 0, where F is the almost complex structure
associated by k. It is known that a d-connection has the coordinate expression:

Ds, Vg =, Vy, Dy, Vs =Cl,V,, (15)

Do, 8 = Flgdy, Doy, 85 = Lo, (16)

Let (D, h) be a d-connection. Then D%? = Dh>~5? and D’)’.{? =D v)?? are called the h-covariant derivative and
v-covariant derivative, respectively. Moreover

W(DO)(X) := D,zC, 0" (DO)(X) := D_3C, (17)

are called h-deflection and v-deflection of (D, h), respectively, where X, Y € T(£7E). It is easy to see that i*(DC)
and v*(DC) have the following coordinate expression:

h(DC) = (Bl + yﬁPZﬁ)(vy ® X%, v(DC) = (&), +y*Cl )V, & 6V,

5
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where 8, is the Kronicher symbol.
The torsion tensor field T of D determined by the following, completely:

A(X,Y) : = hT(hX, hY) = D,zhY — D,5hX — h[hX, hY]e, (18)
B(X,Y) : = hT(hX,]Y) = -D;zhX — h[hX, Y], (19)
RY(X,Y) : = oT(hX,hY) = —o[hX, hY]s, (20)
PY(X,Y) : = oT(hX,]Y) = D,z]Y - o[hX, JYle, 1)
S'(X,Y) : = 0T(X,JY) = DgJY = D] X ~ o[JX, Y, (22)

where A, B, R}, P! and R! are called the h- horizontal, i- mixed, v- horizontal, v- mixed and v- vertical
torsion, respectively. It is easy to check that the components of the torsion tensor field have the following
coordinate expressions:

A=T}5,8X"®XF, B= —Czeéy ® X*® XPF,
R'=-R,V,®X*®XF, P' =PV, ®X"® X, (23)
Q' =5,V, 08X ®XF,

where

4
a

. V Vv oo V &8
(i) T)y = Fly = Fy, = (L} o m), (i) Py = Fl; +

el Y _ Y
oyP (i) Saﬁ = Caﬁ Cﬁa. (24)

Also, the curvature tensor field K of D completely determined by the following
RX,Y)Z := KhX,h)JZ, P(X,Y)Z =KX, ]Y)JZ, QX Y)Z:=K(X,]Y)]Z.

R, P and Q are called the horizontal, mixed and vertical curvature, respectively. It is known that horizontal,
mixed and vertical curvatures, have the following coordinate expressions:

R=R "V, X®XP®X", P=P "V, X ®XP®X', Q=S5 _ "V, XX X",

apy apy apy
where
A i 91—"2}/ u &’ng i 8F2V o oF 2}’ U oA
Rapy = (paom) =7 +Ba oyt (Ppom—g — 5 ayF * FoyFau
#opl u A HeA
— Foy Fy, = (L, 0 MF,, =R (Cpy, (25)
aC; . JF) u
A _ i By @By A ay woa o, 9Bs
Pogy = (paom) o B“W + gy o T E Fay Gy + dyf Cuyr (26)
A
aC}
A_ By to~A ay t A
Sapr = Gy + CpyCan ™ gp = Car G (27)

3. Finsler Lie algebroids

Finsler Lie algebroid (E, ) is a Lie algebroid £7E provided with a fundamental Finsler function ¥ :

E — R such that ¥ is a scalar differentiable function on the manifold ]Z"= E — {0}, continuous on the null
section of 7t : E — M, positive and homogeneous of degree 2, i. e, E‘ET = 2% . Moreover, the fundamental
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formw = d£d§T is non-degenerate, where d?‘f' = ijd*F = d*F o ] (see [25, 26]). It is known that d??" has the
coordinate expression:

oF
dy*

diF = 28)

The fundamental form w of a Finsler Lie algebroid has the following coordinate expression:

PF
dy*dyP

2
rF _1&_¢ ))Xa/\)(ﬁ_

— i o B
((ptk ° n) axlayﬁ 2 ayy aﬁ X /\ (V .

Proposition 3.1. [12] For the fundamental form w we have the following identities:

() ijw =0, (i) ffw = w, (i) icw = djF.

Let (E,¥) be a Finsler Lie algebrmd with the fundamental form w. Map G : F(UE"E) X F(UET’E) C°°(£’CT)E)
defined by G(J X, J Y) =w(] X, Y) is called the vertical metric of the Finsler Lie algebroid (E, ). It is easy to

check that G is bilinear, symmetric and non-degenerate on £"E. Now we consider the pseudo-Riemannian
metric é :I'(£"E) X I'(E"E) — C*(£"E) given by

GX. )= GUX, V) + GeX, oY), VX, Y eT(E"E), (29)
which is called the prolongation of G along h and it has the coordinate expression:
G = GopX® ® X + GopdV* ® 6V,

where

= G(Va, Vi) = 0(Va, Xp) = F
ga/ﬂ-—g( ar ﬁ)—w( ar ﬁ)—w-

Let i be a horizontal endomorphism on £°E and é be a pseudo-Riemannian metric given by (29). We
consider

KX, Y) = G(X,JY) - GJX,Y), VX,Y e [(£"E),

and we call it the Kahler form with respect to G. We have K}, = i,w. Kahler form K, has the coordinate
expression Kj, = G0V A XP with respect to {0, Val.

Let (E, ) be a Finsler Lie algebroid with fundamental form w. If ¢ : E — R is a smooth function, then
the section grad¢ € T(£"E) characterized by d*¢ = igrqgw is called the gradient of ¢. If B is a non-zero

1-form on £°E, we denote by ﬁﬁ the section corresponding to w, i.e., iﬁuw = fB. Thus we can introduce the
gradient of ¢ by grad¢g = (d°®)". It is known that grad¢ has the local expression

— _Gop 1 Qi) af ¢ Ay 8¢ i &2?
gradg = -G 55X+ G oM 25 + GV 5 5 ((Ph o M35
. PF o g
—(pgo n)W oy L, ))}(Va- (30)

Proposition 3.2. [12] Let (E, ) be a Finsler Lie algebroid and f € C*(M). Then we have

(i) gradf” € T(v£™E), (ii) [C,gradf e = —gradf", (iii) pe(gradf*)(F) = f°.
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From (30), we deduce that grad /" has the coordinate expression:

d(f om)
oxt

gradf’ = Q”‘ﬁ(pfg o ) V,. (31)

A horizontal endomorphism / on a Finsler Lie algebroid (E, ) is called conservative if dﬁ?—" = 0. It is known
that & is conservative if and only if

9T _

; IF
(p}, o) e + B, ayP = 0. (32)

On any Finsler Lie algebroid there is a spray S, : E — £7E, which is uniquely determined on £°E by the
formula is,w = —d*#. This spray is called the canonical spray of the Finsler Lie algebroid and it has the
coordinate expression S, = y*X, + S&V,, where
PF

),

oxi oxidyP

" YR IF IF ;
53 =G"((pom=— + Y Goryg o™ = (py o)
and (G*) is the inverse matric of (Gap)-

Proposition 3.3. [12] Let S, be the canonical spray and h be a conservative horizontal endomorphism on Finsler Lie
algebroid (E, ') with the associated semispray S. Then we have S — S, = (dfS ﬂ:)“ where iy Fypw = dt F.
igt

igt

Let S, be the canonical spray on Finsler Lie algebroid (E, 7). It is known that endomorphism h, given by
ho = Y(1rene) + [J, So1E7N) is a homogeneous and horizontal endomorphism on £7E which is called Barthel
endomorphism. The following results are known (see [12]):

Proposition 3.4. Let h be a conservative and homogeneous horizontal endomorphism and h. be the Barthel endo-
morphism on a Finsler Lie algebroid (E, ). Then we have h = ho + 3ist + [, (dfstf)ﬁ]g‘N.

Theorem 3.5. Let hy and hy be conservative horizontal endomorphisms on Finsler Lie algebroid (E, ). If hy and hy
have common strong torsions, then hy = hy.

Theorem 3.6. There exists a unique horizontal endomorphism on Finsler Lie algebroid (E, ) such that it is homo-
geneous, conservative and torsion free.

The first Cartan tensor on a Finsler Lie algebroid (E, ) is a tensor C : F(E’?E) X 1"(£7?E) - F(£;E) which
satisfiesin [ o C = 0 and

- — - 1 = =
where ~, ?,Z € 1"(£7?E). Also, the lowered tensor Cy, of C is defined by

C(X,Y,Z) = GC(X,Y),]Z), VX, Y, ZeT(EE).
Itis known that the first Cartan tensor and the lowered tensor of it have the following coordinate expressions:
C= CiﬁX“ X RV, C,=Cup XX X,

where

o = 19Gsa
ap 2 aya

PT

PF 1 FF
2 dy*dyPay””

1
2 Jy*dyPoy’

QVA = g)’A, Caﬁ)/ = Cgﬁgw/}\ =
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Now, we consider a horizontal endomorphism / on £7E, and the prolongation G of the vertical metric G
along h. The second Cartan tensor (belonging to h) is a tensor C: I'(E"E) X I'(E"E) — I'(£"E) which satisfies
info C =0and 5(5()?, ?),]Z) = %(Ehié)( ] ?, ]Z) where X, ?,Z € T'(£™E). Also, the lowered tensor Eb of C is

defined by Eb (i, 17, Z) = é(&'()?, 17), i Z). It is known that the second Cartan tensor and the lowered tensor
of it have the following coordinate expressions:

C=CX*®X 8V, Ch=CupX ®X' ®X,

where
~ 1., G 119Gy 0Bl 88"
7 = Z((p ZPH orp t ov
Cop = 3((hom 5 9"t B oy 9T Gy T Gy ) (34)
and
=~ = 1, Ggy 1 Gy 383 83"
Caﬁy - Caﬁg/\)/ - 5((p(¥ ° n) &X’ Ba a A ayﬁ g gﬁ/\) (35)

Definition 3.7. Let (D, h) be a d-connection on £7E. We call it a h-basic d-connection if there is a linear connection
V on E such that

DYV = (VxY)Y, VX Y eTI(E). (36)

A linear connection V in the above definition is called the basic connection belongs to (D, h). Note that the
base connection of a h-basic d-connection is unique.
The canonical map

D: T(E"E) x (£"E) — L(£"E),
X, JY) —>D’ ]Y [, ]Y]F NY,

is called the intrinsic or the flat v-connection in v£™E. Let X and Y be two sections of £7E. Then we have
i = -~ i o~ - —
D[)? ]Y = ][]X/ Y]El Dy)? ]Y = ][UX/ Y]E
pi
Now we consider the map D: I'(v£7E) X I'(E"E) — I'(v£™E) defined by
pi — ~ n = i =~
D];( JY :D];( JY, D];( hY =F D];( JY.
If D is the map

{ D : T(E"E) X T(E"E) — [(£"E), (37)

—~— — ~ ~ pi ~
(X,Y) > DY :=D,5xY+D,; Y,
then (5, h) is a d-connection on £"E, which is called the d-connection associated to (D, k). It is known that

D has the following coordinate expression:

yOVP = g = OYP
‘a7 -+ XY'F, + X Sy —— g

8175 V& ﬁ a7 B ~a81~/ﬁ
+(XMphom5 - + X8l Sy + XYy + X' 52

_ oYF
DgY = (X*(p} 0 n)— + X8

)Vs. (38)
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where X = }~(“6a + }?@Va and Y = ?ﬁéﬁ + ?E(Vﬁ are sections of £7°E and (Fzﬁ,CZﬁ) are the local coefficients
of d-connection D. If we denote the local coefficients of d-connection D by (l.-"zﬁ, EZ[;)' then from the above

equation we conclude ?Zﬁ = FZ/; and 62;5 = 0. Therefore using (25), (26) and (27) we derive that

- i aF//g\V ang i JF 27’ U &FQ H oA
Raﬁy (pa ° n)_l +Ba a u (Pﬁ ° ) oxi B ay FﬁyFay

ngng (L“ om)F}
_ OFr

A_ Y A
Pogy = dyp’ apy =0 39

uy’

where Raﬁy Paﬁy’\ and S A are coefficients of the horizontal, mixed and vertical curvatures of d-connection

(5, h), respectively.

Proposition 3.8. Let (D, h) be a d-connection on £7E and (5, h) be the d-connection associated to (D, h) given by
(37). Then (D, h) is h-basic if and only if the mixed curvature of (D, h) is zero.

Proof. Let (D, h) be a h-basic d-connection on £°E and {e,} be a basis of I'(E). Since V, eg belongs to I'(E),
then we can write it as V, eg = Fzﬁey, where FZ}S are local functions on M. From (36) we can deduce

Do, Vg = Dyey = (Ve,ep)" = (rgﬁ om)V,.

Thus we have Fy = (l"y o 1), where Fy are local coefficients of Dy, V. Since FZ,@ are functions with respect

to (x), then using the first part of (39) we get P =0, i.e., the mixed curvature of (5, h) is zero. Conversely,

aﬁ 4
let the mixed curvature of (D, h) be zero. Then from (39) we derive that Fzﬁ are functions with respect to

(x), only. Now we define V : T(E) x T(E) — I'(E) by (VxY)" := Dx:YV. Since the vertical lift of a section of
E is unique, then V is well defined. Also, we have

(Vx(fY)" = Dx(fV)" = Dxa(f°YY) = pe(X")(f)Y" + f°DsaY”,

where X, Y € T(E) and f € C*(M). It is easy to check that p(X")(f*) = (p(X)f)?. Setting this in the above
equation we get

(Vx(fY)" = (eX)NYY + DY = (p(X) )Y + f(VxY)"
= (pX)(NY + fVx)Y,

which gives us Vx(fY) = p(X)(f)Y + fVxY, because the vertical lift is unique. Similarly we can obtain
VixigyZ = fVxZ + gVyZ and Vx(Y + Z) = VxZ + VyZ, for all X, Y, Z € T(E) and f, g € C*(M). Thus V is a
linear connection on E and consequently (D, ) is h-basic. [

Let V be a linear connection on E, {e,} be a basis of I'(E) and V., ez = Fzﬁey. Then

hy = (Xa =y (Thy 0 M) V) ® X7, (40)
is a horizontal endomorphism on £7E. Indeed we have

(VxV)" = [X"™,Y"], VXY eT(E).

We call hy given by (40) the horizontal endomorphism generated by V. It is easy to see that hy is homogeneous
and it is smooth on the whole £7E.
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Lemma 3.9. Let V be a linear connection on E and hy be the horizontal endomorphism genemted by V. IfK " and

aﬁ)/
A y A
R are local coefficients of curvature tensors of V and hy, respectively, then we have y" (K | ) = —Ri

ﬂV
Proof. Setting B} = ~y”(I[';,, o m) in (11) gives us

AT}, o m) AT} o)

Rgﬁ = ((pﬁ o T())— + (Fm, o T[)(Fgu o n) (pa o 7-()‘8}—
— (T, o M)y, 0 1) = (L, 0 M(T}, 0 1)) = =y (K, 0 7).

O

Corollary 3.10. Let V be a linear connection on E and hy be the horizontal endomorphism generated by V. Then the
curvature of V is zero if and only if the curvature of hy vanishes.

Proposition 3.11. Let (D, h) be a h-basic d-connection with the base connection V and hy be the horizontal endo-
morphism generated by V. Then Dy, C = X" — X",

Proof. Let FZﬁ be the local coefficients of Ds, Vg and FZ}S be the local coefficients of V. es. In the above
proposition we show that FZ;; = (I”Zﬁ o 7t), because (D, ) is a h-basic d-connection with the base connection
V. Thus we can obtain

DyiC = (X* o m)(By + Y Fop) Vi = (X* o m)(B, +y (Th 0 1)V, (41)
where X = X%,, X" = (X* o 11)8,. (40) and the above equation give us
X' — XM = (X o 11)(Xy + BhVp) — (X¥ o m)(X, V(ra), o m)Vg) = Dy C.
|

Corollary 3.12. Let (D, h) be a h-basic d-connection with the base connection V and hy be the horizontal endomor-
phism generated by V. Then hy coincides with h if and only if the h-deflection of (D, h) is zero.

Proof. If hy = h, then from the above proposition we have Dx:C = 0 and in particular D;,C = D, C = 0.
Therefore we deduce h*(DC)(0.) = Ds,C = 0, i.e., the h-deflection of (D, h) vanishes. Conversely, if the
h-deflection of (D, h) is zero, then we deduce D;s,C = 0 and consequently Dy:C = 0. Thus from the above
proposition we derive that X" = XV and consequently & = hy. [

Corollary 3.13. Let (D, h) be a h-basic d-connection with the base connection V and hy be the horizontal endomor-
phism generated by V. If the h-deflection of (D, h) is zero, then we have

(i) D,z0Y = o[hX,0Y]e, (i) D,ghY = hF[hX, ]Y]e,
where X, Ye T'(£™E).

Proof. Let X = )?“(Sa + }?"”Va and Y = ?ﬁéﬁ + ?B(V,g be sections of £7E. Since the h-deflection of (D, h) is zero,
then using the above corollary we have I = hy and consequently B = —yA(Fi 4 © 7). Thus we can obtain

- - -, oYP N oYP
olhX, 0Y]e = X*((pl 0 M)~y (T, 0 M) 5

S =)V + XYA() 0 m) V), = DygoY,

because FZ 5= (FZ 5 11), where FZ[S are local coefficients of Ds, V. Therefore we have (i). Now we prove (ii)
as follows:

D,zhY = FD,5]Y = FD,50]Y = Fo[hX,0]Y]e = hF[hX, [Y]z.



E. Peyghan, L. Popescu / Filomat 36:1 (2022), 39-71 51

Proposition 3.14. Let (D, h) be a h-basic d-connection with the base connection V and h be a homogeneous horizontal
endomorphism. Then the h-deflection of (D, h) is zero if and only if the v-mixed torsion of D is zero.

Proof. Using (21) we have

y 98],
P'(6a,0p) = D5, Vg — 0[00, Vle = ((FLﬁ o)+ a—yﬁ)(V;h (42)
Thus P! = 0 if and only if ‘;f;', = —(l"zﬁ o 7). But since h is homogeneous, then we have yﬁ??l;;;: = B,. Thus we

can deduce P! = 0if and only if 8] = —y#(I’’ §° ) (this equation gives us I = hy). Therefore the vanishing
of P! is equivalent to the vanishing of the h-deflection of (D, k). O

Remark 3.15. Since in Corollaries 3.12, 3.13 and Proposition 3.14 we work on the vanishing of the h-deflection of
(D, h), then we have h = hy. But hy is smooth on the whole £7E. Therefore the horizontal endomorphism h should be
smooth on the whole £7E.

Proposition 3.16. Let (D, h) be a h-basic d-connection with the base connection V and the horizontal endomorphism
h be smooth on whole £7E. Then the h-deflection of (D, h) coincides with the tension of h if and only if the v-mixed
torsion of D is zero.

Proof. Let the v-mixed torsion of D be zero. Then from (42) we can deduce (I’Z 5 ° ) = —?9(—1;;3. But from (41)

we have D5 C = (Bg + yV(Fi), o 7))Vpg. Setting (Fzﬁ o) = —‘;i;% in this equation and using (7) we obtain

. s 985
h(DC)(6a) = Ds,C = (B, —y” oy )V = H(ba).
Conversely, if i*(DC) = H and h is smooth on the whole £7E then using (7) and (41) we obtain ‘;f;:*/ = —(1"3;}g oT).

Setting this equation in (42) we deduce P! = 0. [J

Theorem 3.17. Let (D, h) be a h-basic d-connection on Finsler Lie algebroid (E, ¥) and the first Cartan tensor be
nonzero on (E, 7). Then (D, h) is h-metrical if and only if h is conservative and the h-deflection of (D, h) is zero.

Proof. Let (D, h) be h-metrical. Then we get
h 1 G G o ﬁ v (1B a\?
X 7'- = EX (g(C/ C)) = g(C, thc) = (X (o] n)(Ba + y7 (szy o T())W = (thc)‘f.

But from Proposition 3.11 we have (Dx.C)F = X"F — X'""#. Two above equations give us X"# = 0 and
consequently dj,, F = 0. Thus hy is conservative. By direct calculation we obtain

g 5 5 om0 m 298
XG(Vy, V1) = 6DV, Vi) = G(Vi, DaVy) = (X* o m)((pf, 0 ) — -
ag 4
—y' (T o) &yff — (7 0 MGy — (T, 0 M)Gy5)- (43)

Since hy is conservative, then we have (32) with Bg = —y* (I”fl 5 © ). Differentiating (32) with respect to y”
we obtain

PF 0B oF o O°F

oxay "oy oy " Payiay T0 w

(pl o)
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Differentiation of the above equation with respect to y gives us

, 0G,. 98B BBA 0B} 9Ga

o e T G+ G, B, 5)
f oxi  dy’dy® oyt ay)’ dy® b oyr
N aBA G

(py o m) ox dybdy® oyt (9 B g GM +5y dy* =0 (46)

with Bfg‘ = —y# (1"2 5© 7). Setting this equation in (45) we can see that the right side of (43) vanishes. Therefore
we have

X"G(Vs, V2) = GDxVp, Vi) + G(Vs, Dxa V). (47)
Moreover, since (D, k) is h-metrical, then we have
X'G(Vy, V1) = GDx V5, Vi) + G(Vy, Dxi V).
Two above equations give us
X" — XMG( Vs, V) = 0. (48)
For the vertical metric G, using (33) we can obtain
G(C(0a, 0p), X" = X") = (X7 0 )(B; + ¥ (T, 0 1)G(C(Sa, 0p), V)
= -(X” o )(B} +y' (I}, © M)(Ev, ] G) (S, 01)
= §<X“ o m)(B; +y' (T, 0 NVaG(Vp, V)):

Since V,.G(Vp, Vi) = VaG(Va, Vi), then using this equation in the above equation and using (48) we
deduce

G(C(Bu,39), X! = XI) = 2(X° 0 7(BL + 7 (Thy 0 WNVAG(Va, V)
= (X" = XNG(Va, V)
= (X" = XMG(Va, V) = 0

From the above equation we derive that G(C(Y, Z), X" — X") = 0, for all Y,Z € T(£"E). Since G is non-
degenerate, then this equation gives us X" — XV = 0 or X" = X" and consequently & = hy. Thus h
is conservative and using Corollary 3.12, the h-deflection of (D, h) vanishes. Conversely, let /i be the
conservative horizontal endomorphism and the h-deflection of (D, i) be zero. Then from Corollary 3.12, h
coincides with hy and so hy is conservative. Therefore we have (47) which gives us

(Dx@)(Va, Vp) = (X" = X")G(Va, Vi) = 0
Also, since h = hy and h is conservative, then using (ii) of Corollary 3.13 and (45) we obtain
X'G(Vy, V1) = GDxVy, V) = G(Vy, DyV) = 0,

which gives us (thé)(éa, 0g) = 0. Therefore we can deduce Dhgé =0,forall X € £°E. [J
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3.1. Ichijyo connection
Theorem 3.18. Let (E, ) bea Finsler Lie algebroid, V be a linear connection on E, hy be the horizontal endomorphism

v
generated by V and G be the prolongation of vertical metric along hy. Then there is a unique d-connection (D, hy) on
(E, F) such that

(i) [V) is v-metrical,
(ii) The v-vertical torsion of I% is zero,
(iii) The h-deflection of (1%, hv~) is zero,
( iv)l"he mixed curvature of ([V), hvy) is zero,
where ([V), hy) is the d-connection associated to ([V), hy) given by (37).

v v v
Proof. Let there exists a d-connection D on (E, ) such that D satisfies in (i)-(iv). Since D is v-metrical, then
we have

P(VIG( Vs, V,) = GDw, Vi, Vy) + GV, D, V), (49)
P(VIG(V,, V) = GDw,Vy, Vi) + G(Vy, Dy V), (50)
—pe(6,)G(Va, V) = ~G(Dv, Ve, V) = GV, Do, V). (51)

v
Since the v-vertical of D is zero, then we have

v v
D“VL,(V‘B_ D(Vﬁ(va = [(Va, (Vﬁ]g =0.

Summing (49)-(51) and using the above equation we get

~ Vv 1 8gﬁ)/ agay agaﬁ 1 agﬁy
which gives us
v 1 agﬁ)/ , i
Dy, Vg = Ea—yag} Y, = Cog V- (52)

v
Also, since D is d-connection, then using the above equation we obtain

v 1 ag ﬁy
D, 0 = 2 ay*

Gou = Clgdu (53)

v
Condition (iv) together Proposition 3.8 told us that (D, hy) is h-basic. Thus there exists a unique linear

— — v —
connection V on E such that (VxY)" =Dy, YV. But using (iii) and Corollary 3.12 we deduce that V coincides
with V. Thus we have

\Y%
Dy Y = (VxY)Y, VX, Y e T(E).

From the above equation we obtain

v
Ds, Vg = (Fzﬁ o)V, (54)
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where FZE are local coefficients of the linear connection V. The above equation gives us
v y
Dy, 0p = (L5 0 1)y, (55)
v v
because D is a d-connection. Relations (52)-(55) prove the existence and uniqueness of D [J
v
We call d-connection (D, hy) introduced in the above theorem, Ichijyo connection induced by V on the Finsler

algebroid (E, ).

Let X and Y be sections of £°E. Then using (52)-(55) we can obtain the following formula for the Ichijyo
connection:

—~ Vv

\ —~ VvV —~ VvV ~ Vv ~
D)? Y =va>~< vy Y+ va)~( hy Y+ th;( v Y+ thi hvY,

where
Dyog Y = hyFslhoX, [V, (56)
[V)UV;( ovY = JlovX, FyYle + C(EvX, FyY), (57)
D, 5 Y = hy[oyX, Ve + FyC(FeX, ), (58)
zv)hvg oY = vy[hyX, vy Yle. (59)

Using the above equations we can obtain

. d(Y? o
Bxhv Y = (X% 0 m)(pl, 0 n)% +(X* o m)(YP o m)(I7y o m))s,
= (VxV), (60)
Dy YV = (X* o m)(YF o m)Chs Vi = C(X™, Y™), (61)
DXV YW = (X*om)(YP o n)c” Sy = FC(X™,Y™), (62)
Dy YV = ((X* o m)(pl, 0 n)M + (X o m)(YF o )(I7; 0 )V,
= (VxY)", (63)
where X, Y € I'(E).

v
Proposition 3.19. Let (E, ) be a Finsler Lie algebroid, V be a linear connection on E and (D, hy) be the d-connection
induced by V. Then

(D OF,2) = (D5 OX2), VXY, ZeT(EE).

v v
Proof. 1t is sufficient to show that (D, C)(0p,0y) = (D, C)(6a,0y). Using the local expression of the first
Cartan tensor and (53) we get

8gy/\ 3g B 8g)//\ Ao agvo

g)’/\ /\[J v
Dy, Oy o)) = J (5 G +2 5 T+ TG TG
8 & Vo V.
gﬁ/\gw\ Q; L QMQM 9Gfo gU!’)(V#_ (64)




E. Peyghan, L. Popescu / Filomat 36:1 (2022), 39-71 55
1 12 Vo
Since g}m agy = _gva o

ag yA g/\a -
ayP dy

y"‘ , then we get

agvog — _ag)/)\ agAy
oyf dy*

Similarly we obtain

agy/\ agﬁa g;//\ agy}\ 8QAIJ

dy* dyf

A(}gva

VA

gv goy - _

G

Setting two above equations in (64) give us

( PGy Gh 4 9Gyr IGM BQﬁA
dy*dyP dyf dy®
agy)\ 8QM‘

Ty oyf )

gvA ag;/g

goy

(Dw C)(0g,0y) =

Similarly we can obtain

( gyA g/m " agyA 3§A“ _ 3§M " ag;/o

dyPay« dy* dyf  dyf ay”
8g}fﬂt 8g"“

+ ayﬁ aya )(VH

(D‘V;; C)(ém 6)/) QUH

v v
Two above equations show that (D, C)(63,6,) = (D, C)(6a,0y). O

Let ty be the weak torsion of hy and Ty be the torsion of V. Then using the locally expression of tgﬁ and (40)
we deduce

= (F I‘)/ - L”ﬁ) o1 = (Ty(ea, €p))",

4 . . V . . . V
where tlﬁ are coefficients of ty. If we denote by T, the torsion of the Ichijyo connection (D, hy) then we get

T ur89) = (7, ~ T, — 1) o ), — RV,
= tz;séy + Q(6a, 6p) = Fyty(0a, 0p) + Qv (04, 0p)
= (Tv(ew, )" + (30, Op),

190Gy

T (6&/(Vﬁ) = 2 a ﬁ

G"6u = —FvC(6a,0p) = —FvC(ba, Fv V),

v
T ((Va/ (vﬁ) = 0/
where Qy is the curvature tensor of iy. From the above equations we can conclude the following:

v

Proposition 3.20. Let (D, hy) be the Ichijyo connection on a Finsler Lie algebroid (E, F) with the base connection
v

V. Then the torsion tensor of D satisfies

vV - —_ _ —_ _ —_ _
T (X,Y) = Fyty(hvX, hyY) + Q(hv X, hyY) — FyC(hy X, FyoyY)
+ FyC(FyoyX, hvY), VX, Y € T(£°E).
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v
Corollary 3.21. Let (D, hy) be the Ichijyo connection on a Finsler Lie algebroid (E, F) with the base connection V.
Then for all X,Y € I'(E) we have

\%
T (X", Y™) = (Ty(X, V) + Qu(X", Y™),
T (X", YV) = —=FyC(X", FyY"),

T x",Y"y =o.

v ty 4 y 4

LetRyp) , Pagy and S, be coefficients of horizontal, mixed and vertical curvatures of the Ichijyo connection

afy aBy
Vv
(D, hy), respectively. Then using (25)-(26) and (52)-(55) we get

V A T 5 o 1) ) d I'g o )
Rupy = (plyo )—5—— = (p}0 M) =5 + (I o m)([4, o 1)
- (F ° n)(rﬂ# ) (Laﬁ n)(ryy ) all;cﬁy
R
oyr ~ RapClr (65)
v A acA C" R
Pagy = (poom)— =y (T 0 M) =5 g -+ C} (T, 0 1) = (Th, 0 M)C),
- on)CW, (66)
v A BCA A
_ L~ ay T
Sapy = ya -+ CiyCiu = 5o ~ Chy Gl (67)

Using the above equations we conclude the following proposition which gives us global expressions of
horizontal, mixed and vertical curvatures of the Ichijyd connection.

v
Proposition 3.22. Let (D, hy) be the Ichijyo connection on a Finsler Lie algebroid (E, F) with the base connection
V. Then we have

RENZ = [ Q& NEN0Z) + CEQ(X, V), Z),
P (X, Y)Z = (D, 5 O)inY, vZ),
O R N7 = CFCX,2), ) - CX, FyC(¥, 2),

where X, 17, Ze 1"(£’3E).

Corollary 3.23. The horizontal curvature of the Ichijyo connection is zero if and only if the curvature of hy or the
curvature of the base connection V is zero.

v A
Proof. If the curvature of hy vanishes, then we have Rgﬁ = 0. Therefore from (65) we deduce R 4, = 0, i.e.,

A

apy

v
the horizontal curvature of the Ichijyo connection is zero. Conversely, if R4, = 0, then from (65) we derive

that

afy
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IRN
Multiplying y” in the above equation and using yVCﬁ}, =0, give us y” ay“f = 0. But it is easy to see that
OR*
yVW“f = Rgﬁ. Thus we deduce Rf‘lﬁ = 0, i.e., the curvature of hy is zero. Note that from Corollary 3.10,

we deduce that the vanishing of the horizontal curvature of the Ichijyo connection is equivalent to the
vanishing of the curvature of the base connection V. [J

From the second relation of Proposition 3.22 we conclude

Corollary 3.24. The mixed curvature of the Ichijyo connection is zero if and only if the h-covariant derivative of the

v v
first Cartan tensor with respect to D (i.e., Dy, C) vanishes.

vy VvV VvV V
If we denote by A, B, R, P!, Q! the components of the torsion of the Ichijyd connection, then using (23),
(24) and (52)-(55) we obtain

v _ YV Y Y — ¢/ —
A (54, 0p) = ((raﬁ -1 —Ll)o ), = 46, = Fytv(Sa, 6p)

= (Ty(ea, ep))", (68)
V 4
B (8a, 8p) = =Cl;0y = ~FvC(da, ), (69)
\
Rl (60(/ 6ﬁ) = _RZﬂ(VW/ = QV(éa/ 6}3)/ (70)
v \
P1: 0, Ql =0. (71)

From the above equation we conclude the following

v
Proposition 3.25. Let (D, hy) be the Ichijyo connection on a Finsler Lie algebroid (E, F) with the base connection
V. Then for all sections X and Y of E we have

v
A (XM, YY) = (To(X, V) = Fyty(X", Y™),
v
B (X%, Y'%) = ~FyC(X", Y™),
v
R (X", Y") = QyC(X", Y™),
v v
P'=0, Q'=o.
From the first equation of the above proposition we have:

Corollary 3.26. The h-horizontal torsion of the Ichijyo connection is zero if and only if the torsion tensor of V ( or
the weak torsion of hy) vanishes.

3.2. Generalized Berwald Lie algebroid

Definition 3.27. Let (E, ¥) be a Finsler Lie algebroid and V be a linear connection on E. Then (E, ¥, V) is called
generalized Berwald Lie algebroid, if the horizontal endomorphism hy is conservative.

Proposition 3.28. Let (E, ¥) be a Finsler Lie algebroid and V be a linear connection on E. Then the following items
are equivalent:
(i) (E, ¥, V) is a generalized Berwald Lie algebroid.

(ii) The second Cartan tensor Cy belonging to V is zero.

v
(iii) The Ichijyo connection (D, hy) is hy-metrical.
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Proof. (i) = (ii). Since hy is conservative, then we have (32). Setting 8} = —y’(I'}, o 7) in this equation we
have

; oF ., cn oF
(pix ° n)% -y (Faa omn ay/\ =0. (72)
Differentiating the above equation with respect to y? and y* gives us
; PF PF PF
Lom)z—a——— (Thg o M)=—o— — ([h, 0 )5
e o) 5 iggiayr ~ T 0 gouger ~ Taw 0 M 5550
PF
" I"/\ — 73
y ( ao o n)ay‘u&yﬁ&y/\ ( )

If we multiply g”* in the above equation, then we obtain 5:)43 = 0, where Ezﬁ are coefficients of the second
Cartan tensor Cy given by (34).

(if) = (i). Since the second Cartan tensor Cy belonging to V is zero, then we have CZﬁ = 0. Thus setting
B} = —y’(I'}, o m) in (34) and multiplying g, in it, we deduce (73). Since the Finsler function ¥ is
homogeneous of degree 2, then we can obtain

I T

=y — 74
ay” y dy’dy*’ (74)
which gives us
3
s — 75)

y dy? dyrdyt
Multiplying y#y* in (73) and using (75) and (74) we obtain (72). Thus hy is conservative.
v vV o~
(iif) = (ii). Since D is h-metrical, then we have Dj, G = 0. Thus we get

(thé g)(éﬁfé)’) - (pa o 7T) g (raﬁ ° n)g)\y - (rgy o n)gﬁ)\

ygﬁy
-y (rad o 71) ay/\ .

Therefore we have (73), i.e., the second Cartan tensor Cy belonging to V is zero.
v —
(i1) = (ii1). If (ii) holds, then we have (73). Using this equation, it is easy to check that (Dy,s, G)(0,0,) =

v ~ v ~ v
(Diys, G)(Vp,V,) = 0. Also, we have (Dyys, G)(0p,V)) = 0. Thus the Ichijyo connection (D, hy) is hy-
metrical. [

Proposition 3.29. Let (E, ¥, V) be a generalized Berwald Lie algebroid. Then the mixed curvature of the Ichijyo

v
connection (D, hy) is zero.

A
Proof. It is sufficient to show that IVDaﬁ), = 0. Using (66) we have
v A ; 9 gﬁa oA 4 &gﬁo ag(m 1, m &zgﬁa oA
POK‘B)/ - E(pa oTt )(a 18 ),g ay)/ axl‘ ) - _y (rav ° T()(8y‘“&yyg
agﬁg 8@‘” 1 gﬁg 1 gﬁa
oL _ = g
* g o) 3y O oM 5 56T o)
L2 Gt o), (76)

28)’
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Since the Ichijyo connection is h-metrical, then we have

gm\ ga

0 thba go/\ (pa o T() ox P y (r ) + gﬁy(rap ) + g/w(rap )r

which gives us

; aga)\ - go}t
(bl o)~y (Th, 0m) >

gU‘u(ra‘u o T[) = _g/\‘u(rgy ° T()'

Setting the above equation in (76) we get

2
Far =300 n)jxf—i;g e )8y*iﬁ;w "
; &iia G NI ay M) — ; fy ‘;/‘7 ga}\ )
. agyff G (I3, o m).
Since hy is conservative, then using (73) the right side of the above equation vanishes. Thus we have
P aﬁyAZ 0. O

Let (E, ¥, V) be a generalized Berwald Lie algebroid and f be a non-constant smooth function on E. We

define hy := hy —df¥ ® C. Since df" = (p, o n)%)(“, then using (40) we can see that hy has the local
expression:

Iy = (X, + BV ® X7, (77)

where

(f )
=~y (p} o )=+ y\(T,, o ). (78)
Using two above equations it is easy to check that /iy is an everywhere smooth function and k2 = hy,
kerhy = F(UE"E). Thus hy is an everywhere smooth, horizontal endomorphism on £°E. Moreover we can

yaB

obtain Vot = Bﬁ, ie, hyisa homogeneous horizontal endomorphism.

Lemma 3.30. Let (E,F,V) be a generalized Berwald Lie algebroid and {e,} be a basis of sections of E. Then hy is
conservative if and only if p(e,)(f) =0

Proof. Using (32), hy is conservative, if and only if
(‘Da [¢] ﬂ)ﬁ + Baa—yﬁ = O, (79)

where B are given by (78). Setting (78) in the above equation give us

IF ; J(f o) OF IF
B 97 AP 9 _
(pa o n) axi y (pa o n) 8Xi ayﬁ y (Fa)\ © T() ayﬁ 0

Also, since hy is conservative, then we have

i (97: A ﬁ &/ﬂ _
(pa ° ﬂ)% -y (Fa)\ o R)W =0.
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Two above equations give us

) d(f o) OF
B(pt e
y (paom) oxi oy 7

and consequently

I o TI) 8(];;7'() ¥

a

=0,

because ¥ is homogeneous of degree 2. But since ¥ is non-zero, then from the above equation we deduce

(pl, o m) 3(3[;71) =0or (p(ea)f)” = 0. Thus hy is conservative if and only if p(e,)(f) =0. O

Corollary 3.31. Let (E,F, V) be a generalized Berwald Lie algebroid and the anchor map p be injective. Then hy is
not conservative.

Now we consider the linear connection V,, eg = fzﬂew where

8By Vv, d(f om)
oyf = 0(Pa ) ox!

+ (I

([ om) = ap ©

or

of
V Y
Lo = 03Pz + Ty (80)

and we call it the linear connection generated by hy.
Proposition 3.32. Let (E, ¥, V) be a generalized Berwald Lie algebroid and V be the linear connection generated by

_ v o
hy. Then the mixed curvature of the Ichijyo connection (D, hy) vanishes.
Proof. Using (66) and (80) we get

v Ay A1 A(fon) PG
= - L gA
Paﬁ)/ P[Yﬁ)/ 2y (pa © TC) a i (&yyayy g
86 s dG7 1 8§ o INfoTt
+af/&gl) ﬁ/gaA(r )(f)
y yt 2 ay’ Ixi
1 gﬁ” oA (i a(fOT() 1ag[3(7 oA s i a(fOTC)
2 ay” Sy 9 (Paem) x| 2 dy” G (pa o m) o (81)

Since (E, ¥, V) is a generalized Berwald Lie algebroid, then hv is conservative. Thus according to Proposition

v
3.29, P 5., = 0. Moreover, we have

apy

azgﬁa . _agﬁcf y&g‘”
8y“o7y7 - dyr’ y oyt

=0,

because gﬁ and G°* are homogeneous functions of degree -1 and 0, respectively. Therefore, (81) reduces
to the followmg
v ho I(f o) 0Ggs 19Gps

dfom
Pagy = _(Pa °7) oxt  dyr G+ 2 dyr Sy 9 0hem) (j;xi :
1 gﬁa &(foﬂ) _1 gﬁg
2 9y ox! 2 dyr
=0.

——G"(py o) GNPl om)

d(f om)
oxt
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Definition 3.33. A generalized Berwald Lie algebroid (E, ¥, V) is called Berwald Lie algebroid, if V is a torsion free
linear connection on E.

Proposition 3.34. Let (E, F) be a Finsler Lie algebroid and h, be the Barthel endomorphism of it. Then (E, F) is a
Berwald Lie algebroid if and only if there is a linear connection on E such that

(VxY)V = [X",YV],, VX, Y eT(E).

Proof. Let (E,¥) be a Finsler Lie algebroid. Then there is a torsion free linear connection V on E such
that hy is conservative. From the torsion freeness of V we conclude that ty is zero and consequently hy
is homogeneous. Thus hy is the Barthel horizontal endomorphism and consequently hy = h,, because the
Barthel connection is unique. Therefore we have (VxY)" = [X"V,YV]. = [X",YV].. Conversely, let there
is a linear connection on E such that (VxY)" = [X",Y"], for all X,Y € T(E). Since (VxY)" = [X",Y"],
then we deduce [X", YV]e = [X",Y"]¢ and consequently hy = h,. Thus hy is conservative and V is torsion
free, because the Barthel connection is conservative and torsion free. Therefore (E,¥) is a Berwald Lie
algebroid. [J

If h is the Barthel endomorphism of Finsler Lie algebroid (E, ), then the d-connection D given by

il _ 196 ~y H _ 196 ~y
Dy, Vg = 355GV, Dv,bp = 555Gy,
H

8"

Ds, Vg = —a—yﬁ(vy, D, 0p = _Wéy’

is called the Hashiguchi connection of (E, ).

Theorem 3.35. A Finsler Lie algebroid is a Berwald Lie algebroid if and only if the Hashiguchi connection of it, is
the Ichijyo connection.

Proof. Let (E, ) be a Berwald Lie algebroid. Then from the above proposition, hy = h,, where hy is
a horizontal endomorphism generated by V and . is the Barthel endomorphism. Thus we have 8} =
-y’ (FZV o m). Setting this equation in (82) we obtain

H " \ H " \Y

Ds, Vg = (Cy50 )V =Ds, Vg, Do, 0p = (U5 © )0y =D, Op-
Also, from (82), (52) and (53) we have

H v H \Y

D, Vg =D, Vg, De, 6g =D+, 0p.

v
Thus D=D. Conversely, if the Hashiguchi connection of a Finsler algebroid (E, ¥) is the Ichijy6 connection,
then it is easy to see that iy = h,. Thus according to the above proposition we conclude that (E, ) is a
Berwald Lie algebroid. [

Let (E, ¥, V) be a Berwald Lie algebroid. If V is a flat connection then we call (E, 7, V), the locally Minkowski
Lie algebroid.

Theorem 3.36. A Finsler Lie algebroid (E, ¥) is a locally Minkowski Lie algebroid if and only if there is a torsion

v
free and flat linear connection on E such that the Ichijyo connection (D, hy) is hy-metrical.

Proof. Let (E, ¥) be a locally Minkowski Lie algebroid. Then there exists the torsion free and flat linear
connection V on E such that (E, ¥, V) is a generalized Berwald Lie algebroid. Therefore, from Proposition

v
3.28, we deduce that the Ichijyd connection (D, hy) is hy-metrical. Using Proposition 3.28, the proof of the
converse of the theorem is obvious. [J
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Proposition 3.37. Let (E, ¥, V) be a generalized Berwald Lie algebroid. Then we have
Sy = So + (T, (83)

m_h+1%w+[ﬂd FYLN, (84)

ls ty

Proof. Since (E, ¥, V) be a generalized Berwald Lie algebroid, then hy is conservative. Thus from Proposi-
tions 3.3 and 3.4 the proof is obvious. [

Theorem 3.38. Let (E,F,V1) and (E, ¥, V>) be generalized Berwald Lie algebroids. Then V1 is equal to V, if and
only if torsion tensor fields of these, are equal.

Proof. If V1 = V,, then Ty, = Tvy,. Conversely, if Ty, = Ty, then the horizontal endomorphisms hy, and
hy, have same weak torsions and since these horizontal endomorphisms are homogeneous, then they have
same strong torsions. Therefore using Theorem 3.5 we deduce that iy, = hy, and consequently V; = V,. [

Proposition 3.39. Let (E,¥,V) be a generalized Berwald Lie algebroid. If the spray Sv generated by V is the
projective change of spray S, then Sy = S, and consequently (E, ) is a Berwald manifold.

Proof. Since Sy is the pro]ectlve change of S, then there exists a function f E — R thatis smooth on E — {0}
such that Sy = S, + fC. Then using (83) we have (d£ 7’)Ii = fC Thus using (iii) of Proposition 3.1 we

. . o o _ - _ ~£ _
obtain is,_g,@ = Z(dfsvtvf)ﬁw =lpw = ficw = fd]?'. Also, we have is,_g,w = disvth‘ These equations give us

F = fdF. (85)

15 ty
Thus we have

di,_ F(S) = d“F (is,tv(S)) = d"F (tv(Sv, ))
= d*F (ty(S,S)) = d“F(0) = 0

Also from (28) we have d??"( ) =y~ g;fr = 27 . Setting this equation and the above equation in (85) we

deduce f?—' = 0 and consequently f = 0. Therefore we have Sy =S. [

3.3. Wagner-Ichijyo connection

v
Let V be a linear connection on E and f be a smooth function on M. If (D, hv) is the Ichijyo connection

v
such that the h-horizontal torsion of D satisfies in
v
A=d Y Ay =d*f' @ hy — hy ®d“f", (86)

v
then we call (D, hy, f) the Wagner-Ichijyo connection generated by V.
v v
From (86) we deduce that A (V4, Vg) =A (04, V) = 0 and

A (0, 05) = dE £V (0)9(85) — hy(Gu)d® £ (65)
= pe(0a)(f © )05 — pe(®p)(f © ™)

. d(f o o
= ((bhom) (faxin)ég‘(% om2L n)éy)é

(87)
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v
Lemma 3.40. Let (D, hy, f) be a Wagner-Ichijyo connection on Finsler Lie algebroid (E, ). Then we have
Ty(X,Y) =d"f(X)Y —d"f(V)X, VX, Y €T(E),
ty=df'A]=df' @] -]edf",
isgty = f]—d*f' ®C.
Proof. Using (87) we obtain

S of ,  .of
A (50, 65) = ((p;a—£6; - pg()—i:é;)ey)h = (ple)(Pes - plep)(Pe)

= (d" Flea)es — d° f(eﬁ)ea)h.

v
Also, from (68) we have A (64, 0p) = (Tv(ea, eﬁ))h. Therefore we obtain

TV(ea/ eﬁ) = dEf(ea)eﬂ - dEf(eﬁ)ea/

that gives us the first equation of the lemma. Also, from (68) and (87) we obtain

Fyty(a, 6p) —A (0a, 0p) = d° Y (02)15(8p) = hv (0p)d" ¥ (8)-

Applying Fy to the above equation and using Fyhy = —] and FyFy = —1 we derive that

by (B, Op) = d°FY (5] ) = J(Ga)d"f " (3p),
which gives us the second equation of the lemma. Using the above equation and (1) we get
isy by (95) = tv(Sv, 8p) = Y*tv(6a, Op) = y*d“f " (8a) Vy = y* Vad“f* (6)
= y*pe(0a)(f )V = Cd"f" (5p)
=y o 2L ) - a3
= fIEp) — d°f ' (p)C,

which gives us the third equation of the lemma. [

Definition 3.41. Let (E,#,V) be a generalized Berwald Lie algebroid and f be a smooth function on E. Then
(E,F,V, f) is called Wagner Lie algebroid if the torsion of linear connection V satisfies in the following relation

Ty(X,Y) =d* f(X)Y —d* f(Y)X, VX, Y e T(E). (88)

Theorem 3.42. Let (E, F) be a Lie algebroid, f be a smooth function on M and V be a linear connection on E. Then
the following items are equivalent:
(i) (E, ¥, V, f) is a Wagner Lie algebroid.

v
(ii) The Wagner-Ichijyo connection (D, hy, f) generated by V, is h-metrical.
(iii) The horizontal endomorphism hy satisfies in the following

hy = ho + f] = FLgradf 15N — d;F ® gradf". (89)

Proof. From Proposition 3.28 the equivalence of (i) and (ii) is obvious. Thus it is sufficient to prove that (i) is
equivalent to (iii). Let (i) holds. Since (E, ¥, V, f) is a Wagner Lie algebroid, then (E, 7, V) is a generalized
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Berwald Lie algebroid and consequently from Proposition 3.37 we have the formula (84) for hy. Using the
third equation of Lemma 3.40 and the definition of gradient, we obtain

(di, 1, F)Op) = (@ F 0 isytv)(Sp) = d°F (tv(Sv, 6p))

isyty
= d*F (f°](6p) — d"f" (5)C)
= fd*F(J(8p)) — d*f* (8p)d"F (C)
= fd"F (J(8p)) = (igrad @) (8p)d"F (C). (90)
Since ¥ is homogeneous of degree 2, then we deduce
F(0) = peCNF) = ¥ gf =2f

Also, from (iii) of Proposition 3.1 we get
d“F (J(55)) = (d[F)(0p) = (icw)(Sp)-

. . . . £ 2 . .
Setting two above equations in (90) we obtain d is, tvf = ifec-a7grad fo@, which gives us

@ F) = f°C-2Fgradf". (91)

isyty

Setting the third equation of Lemma 3.40 and the above equation in (84) we get

1 1 _ _
hy = h, + E(fC] -d*f'®C)+ E[],fCC]g N 1], Fgradf 1L ™N. (92)
By direct calculation we can obtain the following equations

[ FFCIEN = f T+ d? ffeC
[, Fgradf'1EN = FJ, grad f'IEN + dff ®gradf”.

Setting two above equations in (92) give us

hy :ho+%(fcj—dEfV®C)+%f5]+%d§fc®c

—FlJ, gradfVIEN - d??’ ® gradf". (93)
But we have
af¢ . d(f o
@6 = V) = T = (oM™ = ()

and (d;f)(Va) = 0 = (d°fY)(V,). Thus we have d;f¢ = d*f¥. Setting this equation in (93) we obtain (89),
i.e., (iii) holds. Now we let (iii) holds and we prove (i). Let

ho = (Xa + BEV) ® X, hy = (X, + BhVp) @ X°.

Then using (31) and (89) we can obtain

= ; INfom) g Gk d(f om)
B _ @b V(i B _ i
B, =B, +y (p) om) p 0p = F Jy° (p) o m) pw
oF ;. _\O(fom)
_ L By
a9 Py oM =5 (99)
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Since h, is conservative, then using (32) we have (p/, o )2 o Bﬁ g;’; 0. Thus using the above equation we
get
(pa ° T() axl' + Ba &yﬁ =Yy (p}/ © T() axi aya 8ya (p}/ © n) axi ayﬁ (95)
d(f om) IF
ﬂ) Oxi a—yﬁ
From (74) we obtain
o
W =Yy gyA- (96)

Using the above equation in (95), the sum of the first and third sentences of the right side of the above
equation vanishes. Thus the above equation reduces to

5 0GP dfom)aF
(Paon) t)ta ‘3 a a ( )/ ) axi 3y5

But from (75) and (96) we deduce
AP IF _ 3G . Gy
oy oy Y oy oY 56

Two above equations give us (p, o ) ;‘;Z +B gyﬁ = 0. Thus hy is conservative and consequently (E, ¥, V) is

a generalized Berwald Lie algebroid. Now we show that the torsion of V satisfies in (88). Differentiating of
(94) with respect to y* we obtain

0B, 9B, . dfom) s OF IG¥ A(f om)
Iyt oyt *lppom) oxi Oa = dy+ dy* Syr Py om oxi
PGV . Afom)  FF . . dfom
B ¢ay+¢3ya (pyom) =57~ ayﬂayag (py o) =53
oF 0GF d(f o)
oy aye P7° RiF v

a:E’*
Changing a and y in the above equation we can obtain 7. Therefore we can obtain

- ~ﬁ f
0B’ o8, 9B, X f n) p
tya = ayﬁ( ( ya ) ays - aya - (Lya ° 71) + (p‘zu ° 71) 6
i a(f b i a(f 0 71) i f o T[)
(@ om Lol = 8+ (o1, 0 m LIk o L2
where ?ﬁa are coefficients of the weak torsion ty of hy and tfm are coefficients of the weak torsion f, of the

Barthel endomorphism /,. But the Barthel endomorphism is torsion free. So tﬁa = 0. Therefore from the
above equation we obtain

. d(f om) . d(f om)
tV(éy/ 0a) :?fza(vﬁ = (p‘lu o 1) j;xi Va-— (p:x o 1) j;xi (Vy' 97)
But from (68) and the above equation we deduce
) ; ( 7T) ; d(f om)
(TV(eweuc))lV = Fyty(6y,0a) = (p o f Oa = (Pa j;xi Ou

= (p(ey)(f)ea - P(ea)(f)ep) = (dEf(ey)ea —d f(ea)ey)hvr
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which gives us Tv(e, e,) = dEf (eu)ea — dE f(ea)ey. Therefore (88) holds and consequently (E,¥,V, f) is a
Wagner Lie algebroid. [

Corollary 3.43. If (E,F,V, f) is a Wagner Lie algebroid, then the spray Sy generated by hy satisfies in the following
relation

Sy =So + f°C—2F gradf”.
Proof. Since (E,¥,V, f) is a Wagner Lie algebroid, then we have (91). Setting (91) in (83) the proof com-
pletes. [
4. Applications to optimal control

We consider the following optimal control problem in R® with positive homogeneous cost of Randers
type:

P=u
xz — uzxz (98)
B =u

T
2
min% f (\/(ul)2 + (u2)? + eul) dt, 0<e<]l,
0

where ¥’ = dd—’f, i= 1,_3 and 1!, u? are real control variables. We are looking for the trajectories starting from

the point (1,1,0)" and parameterized by arclength (minimum time problem) and free endpoint. From the
system (98) we obtain u? = %3 and u! = x! — 3! and it results the Lagrangian

L= %(\/(xl — B2+ () + e (i - x3x1))2,
with holonomic constraint
=25,
which, by integration leads to the equation
Inx*=x*+c¢, ceR,
The total Lagrangian, including the constrain has the form

L = L(x, %) +A@) (2 - 20),

where A = A(x) is the Lagrange multiplier and it results

L= (V& =27 + (0P + ¢ (¢ - 0x))) + A0 (£ - 225).

1
2
We have to mention that the total Lagrangian L is degenerate on the tangent bundle TR? (the Hessian

matrix % is singular) and the corresponding Euler-Lagrange equations yield a complicated system of
second-order differential equations. Moreover, the Legendre transformation is not well defined and thus
no straightforward Hamiltonian formulation can be related. In addition, we can not obtain the explicit
coefficients of the semispay S from the symplectic equation isw;, = —dEy, because the total Lagrangian L is

not regular.
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We can try to use the Pontryagin Maximum Principle in order to solve this optimal control problem and
the Hamiltonian function on the cotangent bundle has the form

. 2
H(u,x,p) =pix' =L =p; (u1 + ule) + p2u2x2 + p3u2 - % ( )2 + (u?)2 + eul) ,

where p are momentum variable. From the conditions % =0,i = 1,2is difficult to find the control variables
u', u? as a smooth function of (x, p) and we can not write the Hamiltonian H without dependence on control
variables, using this way. For these reasons, we will use a different approach, involving the geometry and
framework of a Lie algebroid.

The control system (98) can be written in the form [16]:

xl 1 xl
x=ulX;+u2X,, x=| 2% |eR3, X3 =] 0|, Xo=| % |,
X 0 1

min [ FuE)dt, Fw) = L (J@P+ 022 +enl), 0<e<l.

which is a driftless control affine system. The associated distribution D = (Xj, X»), generated by the vector
fields X;, X; is a holonomic distribution, that is [X;, X;] € D for every i,j = 1,2, i # j, with constant rank,

rankD = 2. Indeed, in the canonical basis (%, %, %) of TR® we have

and therefore, the Lie bracket is given by [Xj, X»] = Xj. From the well known Frobenius theorem it results
that the distribution D is integrable, it determines a foliation on R?, given by surfaces Inx* = x*> + ¢, c € R
and two points can be joined by a optimal trajectory if and only if they are situated on the same leaf.

We will consider the Lie algebroid, being just the holonomic distribution E = D = (X, X») and the
anchor p : E — TRR® has the components

' 1 A
pa=| 0 ¥ |, (99)
0 1
with nonzero structure functions [X,, Xglz = LZﬁX), given by L, = 1, L} = —1. The cost F(u) =

2
i ( V@) + (u2)? + eul) is positive and homogeneous of degree 2. It results that ¥ is a Finsler function on
Lie algebroid E and we obtain that the pair (E, ¥) is a Finsler Lie algebroid. The matrix

PF

Gap = u®oub’

is non-degenerate. The canonical spray S, = u*X, + S5V, of this Finsler algebroid has the components
given by

a aB, VT e oF 1 n
S¢ = g*y L)/ﬁﬁ’ a,B,y,e€1,2,
where G* is the inverse matrix of Gap- The coefficients of the homogeneous horizontal endomorphism
(Barthel endomorphism) h, = (X ot ng/a) ® XP generated by the canonical spray has the form

. 1[09S%
B'BZE(

Yo _ Era
e uLﬁS).
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The expressions of the tension, weak torsion and strong torsion of k. are given by (7), (8), (9) and have the
expressions:

88/”; ’
_ a Ly _
—[Bﬁ u &uy](V,X@X =0,

IB] Y
t= —%—LV]X“/\X’;@)(VW

1
2\ dur  guf e

(4

B
= (Bg —u'— —u’L

B
auﬁ )/ﬂ) (Va ®X .

The components of the curvature tensor of /1, have the expressions given in (11), which leads to

88 0B
A A A gy
Baa A Bﬁ our LﬁaBA

The first Cartan tensor C and second Cartan tensor C of Finsler Lie algebroid have the expressions given by

19Gga
VA X4 p
C= =g X AP @Y,
aBV , 98
C=|8! f TG+ S+ S G | X AKX @,

In the following, we will use the Pontryagin Maximum Principle at the level of Finsler Lie algebroid E, in
order to solve the optimal control problem. The extreme trajectories satisfy the Hamilton-Jacobi-Belmann
equations on Lie algebroids given by [9]

dd  OH  dpa i OH I IH

E - a&‘u dt - a 8xl [u} aﬁ&#ﬁ (100)

2
Using Finsler function (1) = ( V@) + (u2)? + gul) and the result from [6] we can find the Hamiltonian
function on E* in the form

1 (w1)? (2)*  eu
Hw) = E(\/u —152)2 Pt e

From (100) we deduce that

2

Lo OH GO L s IH

X X =x , = —,
8y1 3#2 8/-12 a[»12
H1 H1 8H2I H2 = H1 0—)”1,
with
, (11)? (42)?
ﬁ _ (1 + 62) H1 _ S (1ﬁ82)2 + 1‘1_52 3 éy%
I (1-¢2)? 1-e¢? (1 - €2y W2 G ’

-2 T 1=
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oH H2 e

o 1-& [GF . Gor
,U (1 - 52)2 (1&1{»2)2 + 1!1_2{,2

We use the following change of variables

_ N,
m@E) = (1-¢ )—coshG(t)’
a(t) = V1—e2r(t) tanh 6(t),
where
0_ 0 0, 0 inh 0_ 0
sinh9=e ¢ ,Cosh9=e+e ,tanh9=sm9—e ¢

cosh® = ¢ +¢0’

and it results

W) (W)
\/(1 _152)2 1 _252 =1l

The equations

. IH IH

1 = _#18_}12’ U2 = }11%,

lead to

V1 — 2 (Z — Otanh 6) =r(—tanh 0 + * _tanh 0),
r cosh 6

respectively

; . 2 , ,
Vl—ez(ftanh6+ 62 ):r((1+§) -t 63 .
r cosh” 6 cosh’@ cosh®  cosh®0

Reducing 6 and f from the relations (101) and (102), we get

V1 -2 =%

1 £
cosh 6 tanh 6(cosh 0 b,

and

, 2
Vl—ezézr( ¢ —1).
cosh 6

The equations (103) and (104) lead to

7 —arp tanh 6
1 7

0 coséhe -
with the solution

e
osh 6

ln|r|:—ln( —1)—lnc.
C

and we obtain

69

(101)

(102)

(103)

(104)
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Since the geodesics are parameterized by arclength (minimum time problem) the the Hamiltonian is exactly
1/2 and it results
r? e V¥ _ 1
H 2 ( cosh 9) 2c?
We obtain c = £1 and
1

rE=t———
cosh 6
The equation
. .3
H1 = —thx,

leads to

T

G (1 - Cosghﬁ)
(1 - 62)coslhe I

In addition, we are looking for the trajectories starting from the point (1, 1,0)! and it results x*(0) = 0 which

x*(0) = In aq eR

yields In 11, =0and c; =1 + ¢, which gives the solution
¥(0) =In - _hf _pSosho—¢€
(1-8)cro 1-e¢
The equation
¥ __f
x2 m’
yields
(o) = 2=,
(1- ) o

and using that x2(0) = 1 we get ¢c; = 1 + ¢. These lead to the solution
cosh0 — ¢

1-¢
By direct computation we obtain

x*(0) =

o = th (561 - Xl%) = mx' +x',
iz

and, consequently, by integration it results i = p1x! + c3. Next,
sinh 0 N os(1 - 559) '
Vi—e2  (1-¢€2) o5
From x'(0) = 1 it results that c3 = 1 + ¢ and we obtain the solution
sinh O + cosh 0 — ¢
Vi—e  d1-e
The solution is optimal because the Hamiltonian function is convex. Finally, the optimal solution is given

by

x1(0) =

x'(0) =

inh ho—¢ ho—¢ ho —
A(0) = sinh 0 4 Cos 0 é,x2(6)=COS 0 é,x3(6):lnCOS 0-¢
V1 — &2 1-¢ 1- 1-¢
The control variables are given by u! = &' — 3x!, u? = #* and it results
1 _ cosh® sinh? 6 9 sinh 6

= - S U= ——.
1-&  \1-¢2(cosh 0 — &) cosh@ —¢
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