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Available at: http://www.pmf.ni.ac.rs/filomat

Geometric Structures on Finsler Lie Algebroids and Applications to
Optimal Control

Esmaeil Peyghana, Liviu Popescub

aDepartment of Mathematics, Faculty of Science, Arak University, Arak, 38156-8-8349, Iran
bDepartment of Statistics and Economic Informatics, Faculty of Economics, University of Craiova, 13, Al. I.Cuza, st., 200585 Craiova, Romania

Abstract. In this paper some geometric structures on Finsler Lie algeboids are studied and h-basic dis-
tinguished connections are introduced. Specially, Ichijyō connection that is a special h-basic distinguished
connection is investigated. The generalized Berwald Lie algebroids are presented, as a particular case of
Finsler Lie algebroids and Wagner-Ichijyō connection, that is a special case of Ichijyō connection, is studied.
Moreover, the Wagner Lie algebroid is introduced and some equivalent conditions for this space are given.
Finally, an optimal control problem is solved using the Pontryagin Maximum Principle in the framework
of a Finsler Lie algebroid.

1. Introduction

The notion of Lie algebroids was first introduced and studied by J. Pradines [18], following the work of
C. Ehresmann and P. Libermann on differentiable groupoids. As Lie algebras are the infinitesimal objects
of Lie groups, Lie algebroids are the infinitesimal objects of Lie groupoids. They are generalizations of
both Lie algebras and tangent vector bundles. Recently, Lie algebroids are important issues in physics,
mechanics and optimal control since the extension of Lagrangian and Hamiltonian systems to their entity
[2, 7, 8, 10, 13, 14, 16, 17, 25, 28] and catching the Poisson structure [15].

The notion of generalized Berwald space has been originated by Wagner in [27] and investigated by
Hashiguchi in [5] based on the modern theory of Finsler connections (see [1], for more details about Finsler
geometry). Exactly, generalized Berwald spaces are the Finsler spaces which admit metric linear connections
in the tangent bundle of their base manifolds. The class of generalized Berwald spaces is a large and very
important class of Finsler manifolds whose Finsler structure, the energy-or the fundamental-function,
is linked to a linear connection of the carrying manifold in a natural manner: the parallel translations
with respect to the linear connection preserve the Finslerian length of the tangent vectors [19]. Berwald
manifolds and Wagner manifolds belong to this class, whose importance lies (among others) in the fact
that generalized Berwald manifolds may have a rich isometry group. It is known that to any generalized
Berwald manifold a whole class of best Finsler connections can be attached in general. Ichijyō connections
are the members of this class (see [19, 24], for more details). Wagner-Ichijyō connections are the special cases
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of Ichijyō connections. Indeed, Ichijyō connection induced by a linear connection of a Wagner manifold
is just a Wagner-Ichijyō connection [20]. One of the motivations for the present work is the introduce of
generalize Berwald Lie algebroids (in particular, Wagner Lie algebroids) and also the study of Wagner-
Ichijyō connections on Lie algebroids.

The second motivation of this paper is the study of some type of connections on Finsler Lie algebroids
and apply the Pontryagin Maximum Principle on this space in order to solve a optimal control problem.
The other motivation for this work is to prove that the framework of a Finsler Lie algebroid is more suitable
that the tangent bundle in order to solve the optimization problem. The optimal trajectories of a driftless
control affine system with holonomic distribution are the geodesics in the geometry of Lie algebroids. In a
lot of cases it is not possible to find the exact solution of the optimal control problem. For this reason, using
the geometry of the space, it is possible to find information about their local or global behavior. Thus, if
the geodesic curves in the framework of Finsler Lie algebroids belong to a manifold with positive constant
curvature, then the geodesics focus and, contrary the negative curvature spreads geodesics out.

Here is an outline of the work. In Section 2, we recall some basic concepts on Lie algebroids such as
vertical and complete lifts on a Lie algebroid, the prolongation of a Lie algebroid, horizontal and vertical
endomorphisms, Liouville section, semispray and distinguished connections on the prolongation of a Lie
algebroid. In Section 3, the concept of Finsler Lie algebroid is presented and some important geometric
structures on this space are studied. Also, the h-basic distinguished connections are introduced on Finsler
Lie algeboids. Specially, the Ichijyō connection that is a special h-basic distinguished connection is more
studied. Generalized Berwald Lie algebroids are presented next. The section will ended by the studying
of the Wagner-Ichijyō connection and the Wagner Lie algebroid. In the last section of the paper, an optimal
control problem is solved using the Pontryagin Maximum Principle at the level of a Finsler Lie algebroid.
Also, some geometric structures as spray, horizontal endomorphism, torsion and curvature on Finsler Lie
algebroid are calculated. These structures can give us some information about the behavior of optimal
solutions.

2. Preliminaries on Lie algebroids

Let E be a vector bundle of rank n over a manifold M of dimension m, π : E→ M be the vector bundle
projection and Γ(E) be the C∞(M)-module of sections of π : E → M. A Lie algebroid over M, is the triple
(E, [., .]E, ρ) where [·, ·]E is a Lie bracket on Γ(E) and ρ : E → TM is a bundle map, called the anchor map,
such that if we also denote by ρ : Γ(E) → χ(M) the homomorphism of C∞(M)-modules induced by the
anchor map then

[X, f Y]E = f [X,Y]E + ρ(X)( f )Y, ∀X,Y ∈ Γ(E), ∀ f ∈ C∞(M).

The differential of E is the map dE : Γ(∧kE∗)→ Γ(∧k+1E∗), defined by

dEµ(X0, . . . ,Xk) =

k∑
i=0

(−1)iρ(Xi)(µ(X0, . . . , X̂i, . . . ,Xk))

+
∑
i< j

(−1)i+ jµ([Xi,X j]E,X0, . . . , X̂i, . . . , X̂ j, . . . ,Xk),

for µ ∈ Γ(∧kE∗) and X0, . . . ,Xk ∈ Γ(E). In particular, if f ∈ Γ(∧0E∗) = C∞(M) we have dE f (X) = ρ(X) f .
If we take local coordinates (xi) on M and a local basis {eα}of sections of E, then we have the corresponding

local coordinates (xi,yα) on E, where xi = xi
◦ π and yα(u) is the α-th coordinate of u ∈ E in the given basis.

Such coordinates determine local functions ρi
α, Lγαβ on M which contain the local information of the Lie

algebroid structure, and accordingly they are called the structure functions of the Lie algebroid. They are
given by ρ(eα) = ρi

α
∂
∂xi and [eα, eβ]E = Lγαβeγ with conditions

ρ j
α

∂ρi
β

∂x j − ρ
j
β

∂ρi
α

∂x j = ρi
γLγαβ,

∑
(α,β,γ)

[ρi
α

∂Lνβγ
∂xi + LναµLµβγ] = 0.
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A section ω of E∗ also defines a function ω̂ on E by means of ω̂(u) =< ωm,u >, ∀u ∈ Em. If ω = ωαeα, then
the linear function ω̂ is ω̂(x, y) = ωαyα.

For X ∈ Γ(∧kE), the contraction iX : Γ(∧pE∗) → Γ(∧p−kE∗) is defined in standard way and the Lie
differential operator £E

X : Γ(∧pE∗) → Γ(∧p−k+1E∗) is defined by £E
X = iX ◦ dE

− (−1)kdE
◦ iX. Also, for

K ∈ Γ(∧kE∗ ⊗ E), the contraction iK : Γ(∧nE∗) → Γ(∧n+k−1E∗), is defined in the natural way. In particular,
for simple tensor K = µ ⊗ X, where µ ∈ Γ(∧kE∗), X ∈ Γ(E), we set iKν = µ ∧ iXν. The corresponding Lie
differential is defined by the formula

£E
K = iK ◦ dE + (−1)kdE

◦ iK,

and, in particular £E
µ⊗X = µ ∧ £E

X + (−1)kdEµ ∧ iX. The contraction iK can be extended to an operator

iK : Γ(∧nE∗ ⊗ E) → Γ(∧n+k−1E∗ ⊗ E) by the formula iK(µ ⊗ X) = iK(µ) ⊗ X. The generalized Frölicher-Nijenhuis
bracket is defined for simple tensors µ ⊗ X ∈ Γ(∧kE∗ ⊗ E) and ν ⊗ Y ∈ Γ(∧lE∗ ⊗ E) by

[µ ⊗ X, ν ⊗ Y]F−N = (£µ⊗Xν) ⊗ Y − (−1)kl(£ν⊗Yµ) ⊗ X + µ ∧ ν ⊗ [X,Y]E.

Moreover, we have (see [3, 4])

[K,Y]F−N(X) = [K(X),Y]E − K[X,Y]E,

[K,L]F−N(X,Y) = [K(X),L(Y)]E + [L(X),K(Y)]E + (K ◦ L + L ◦ K)[X,Y]E

− K[X,L(Y)]E − K[L(X),Y]E − L[X,K(Y)]E

− L[K(X),Y]E,

where K ∈ Γ(∧kE∗ ⊗ E), L ∈ Γ(∧lE∗ ⊗ E), N ∈ Γ(∧nE∗ ⊗ E) and X,Y ∈ Γ(E).
For a function f on M one defines its vertical lift f∨ on E by f∨(u) = f (π(u)) for u ∈ E. We can consider the

vertical lift of X ∈ Γ(E) as the vector field on E given by X∨(u) = X(π(u))∨u , u ∈ E, where ∨u : Eπ(u) → Tu(Eπ(u)) is
the canonical isomorphism between the vector spaces Eπ(u) and Tu(Eπ(u)). If {eα} is a basis of sections of E, the
vertical lift X∨ of X = Xαeα ∈ Γ(E) has the locally expression X∨ = (Xα

◦π) ∂
∂yα . The complete lift of a smooth

function f ∈ C∞(M) into C∞(E) is the smooth function f c : E −→ R defined by f c(u) = dE f (u) = ρ(u) f . In the
local basis we have

f c
|π−1(U) = yα((ρi

α

∂ f
∂xi ) ◦ π). (1)

There exists a unique vector field Xc on E, the complete lift of X ∈ Γ(E), such that Xc is π-projectable on ρ(X)

and Xc(α̂) = £̂E
Xα, where α ∈ Γ(E∗). It is known that Xc has the following coordinate expression [11]:

Xc = {(Xαρi
α) ◦ π}

∂

∂xi + yβ{(ρ j
β

∂Xα

∂x j − XγLαγβ) ◦ π}
∂
∂yα

.

Also we have Xc f c = (ρ(X) f )c for all f ∈ C∞(M).
Let £πE be the subset of E×TE defined by £πE = {(u, z) ∈ E×TE|ρ(u) = π∗(z)} and denote by π£ : £πE→ E

the mapping given by π£(u, z) = πE(z), where πE : TE → E is the natural projection. Then (£πE, π£,E) is
a vector bundle over E of rank 2n. Indeed, the total space of the prolongation is the total space of the
pull-back of π∗ : TE→ TM by the anchor map ρ.

We introduce the vertical subbundle

v£πE = ker τ£ = {(u, z) ∈ £πE|τ£(u, z) = 0},

where τ£ : £πE→ E is the projection onto the first factor, i.e., τ£(u, z) = u. Therefore an element of v£πE is of
the form (0, z) ∈ E × TE such that π∗(z) = 0 which is called vertical.
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If {eα} is a local basis of Γ(E), (xi,yα) is a coordinate on E and (u, z) is an element of £πE, then z has the
form

z = ((ρi
αuα) ◦ π)

∂

∂xi |v + zα
∂
∂yα
|v, z ∈ TvE.

The local basis {Xα,Vα} of sections of £πE associated to the coordinate system (xi,yα) is given by [8]

Xα(v) = (eα(π(v)), (ρi
α ◦ π)

∂

∂xi |v), Vα(v) = (0,
∂
∂yα
|v).

The vertical lift XV and the complete lift XC of a section X = Xαeα ∈ Γ(E) as the sections of £πE → E are
given by XV(u) = (0,X∨(u)) and XC(u) = (X(π(u)),Xc(u)), for all u ∈ E, with locally coordinate expressions

XV = (Xα
◦ π)Vα, XC = (Xα

◦ π)Xα + yβ[(ρ j
β

∂Xα

∂x j − XγLαγβ) ◦ π]Vα. (2)

It is known that the vector bundle (£πE, π£,E) is a Lie algebroid with structure ([·, ·]£, ρ£), whereρ£ : £πE→ TE
is given by ρ£(u, z) = z and the bracket [·, ·]£ is given by

[XV,YV]£ = 0, [XV,YC]£ = [X,Y]V
E , [XC,YC]£ = [X,Y]C

E , ∀X,Y ∈ Γ(E).

The Lie brackets of basis {Xα,Vα} are

[Xα,Xβ]£ = (Lγαβ ◦ π)Xγ, [Xα,Vβ]£ = 0, [Vα,Vβ]£ = 0.

2.1. A setting for semispray on £πE
A smooth map σ : N→ E is called a section of π along smooth map f : N→M if π ◦ σ = f and denoted

by Γ f (π), the set of sections of π along f . There is a canonical isomorphism between Γ( f ∗π) and Γ f (π) (see
[21]). Now we consider pullback bundle π∗π = (π∗E, pr1,E) of vector bundle (E, π,M), where

π∗E := E ×M E := {(u, v) ∈ E × E|π(u) = π(v)},

and pr1 is the projection map onto the first component. The fibres of π∗π are the n-dimensional real vector
spaces {u} × Eπ(u) � Eπ(u). We consider the sequence

0 −→ π∗(E) i
→ £πE

j
→ π∗(E) −→ 0,

with j(u, z) = (πE(z), Id(u)) = (v,u), z ∈ TvE, and i(u, v) = (0, v∨u ) where v∨u : C∞(E) → R is defined by
v∨u (F) = d

dt |t=0F(u + tv). Function J = i ◦ j : £πE → £πE is called the vertical endomorphism (almost tangent
structure) of £πE. From the definitions of i, j and J we get ImJ = Imi = v£πE, ker J = ker j = v£πE and J◦ J = 0.
If {Xα,Vα

} is the corresponding dual basis of {Xα,Vα}, then we get J =Vα ⊗ X
α.

Let δ be the canonical section along π given by δ(u) = (u,u) ∈ π∗E for each u ∈ E. Then the section C
given by C := i ◦ δ is called Liouville or Euler section. The Liouville section C has the coordinate expression
C = yαVα with respect to {Xα,Vα}. We have

(i) [J,C]F−N
£ = J, (ii) [XV,C]£ = XV, (iii) JC = 0, ∀X ∈ Γ(E). (3)

A section X̃ of vector bundle (£πE, π£,E) is said to be homogeneous of degree r, (r is an integer), if
[C, X̃]£ = (r − 1)X̃. Moreover, f̃ ∈ C∞(E) is said to be homogeneous of degree r if ££

C f̃ = ρ£(C)( f̃ ) = r f̃ . It is
known that X̃ = X̃α

Xα + Ỹα
Vα is homogeneous of degree r if and only if

yα
∂X̃β

∂yα
= (r − 1)X̃β, yα

∂Ỹβ

∂yα
= rỸβ. (4)



E. Peyghan, L. Popescu / Filomat 36:1 (2022), 39–71 43

Also, real valued smooth function f̃ on E is homogeneous of degree r if and only if yα ∂ f̃
∂yα = r f̃ .

A section S of the vector bundle (£πE, π£,E) is said to be a semispray if it satisfies the condition J(S) = C.
Moreover if S is homogeneous of degree 2, i.e., [C,S]£ = S, then we call it spray. A semispray S has the
coordinate expression S = yαXα + SαVα. Moreover, S is a spray if and only if 2Sβ = yα ∂Sβ

∂yα .
A function h : £πE→ £πE is called a horizontal endomorphism if h ◦ h = h, ker h = v£πE and h is smooth on

◦

£πE= £πE− {0}. Also, v := Id− h is called the vertical projector associated to h. Setting h£πE := Imh we have
the following splitting

£πE = v£πE ⊕ h£πE, (5)

for £πE. Also, from the definition of the horizontal endomorphism we have ker h = ImJ = ker J = Imv =
v£πE. Moreover, we have

(i) hJ = hv = Jv = 0, (ii) v ◦ v = v, (iii) vh = 0, (iv) Jh = J = vJ. (6)

It is known that h has the locally expression h = (Xβ +BαβVα) ⊗ Xβ.
Let h be a horizontal endomorphism on £πE. Then H = [h,C]F−N

£ : £πE → £πE, t = [J, h]F−N
£ ∈ Γ(£πE)

and T = iSt + H are called the tension, weak torsion and strong torsion of h, respectively, where [·, ·]F−N
£ is the

generalized Frölicher-Nijenhuis bracket on £πE. If H = 0, then h is called homogeneous. H, t and T have the
following coordinate expressions [11], [14] :

H = (Bαβ − yγ
∂Bαβ
∂yγ

)Vα ⊗ X
β, (7)

t =
1
2

tγαβX
α
∧ X

β
⊗Vγ, (8)

T = (Bαβ − yγ
∂Bαγ

∂yβ
− yγ(Lαγβ ◦ π))Vα ⊗ X

β, (9)

where tγαβ :=
∂B

γ
β

∂yα −
∂B

γ
α

∂yβ − (Lγαβ ◦ π).

Theorem 2.1. [11] If h1 and h2 are horizontal endomorphisms with same associated semisprays and strong torsions,
then h1 = h2.

The curvature of a horizontal endomorphism h is defined by Ω = −Nh, where Nh is the Nijenhuis tensor
of h given by

Nh(X̃, Ỹ) = [hX̃, hỸ] − h[hX̃, Ỹ] − h[X̃, hỸ] + h[X̃, Ỹ], ∀X̃, Ỹ ∈ Γ(£πE).

The curvature Ω has the following coordinate expression:

Ω = −
1
2

RγαβX
α
∧ X

β
⊗Vγ, (10)

where

Rγαβ = (ρi
α ◦ π)

∂Bγβ

∂xi − (ρi
β ◦ π)

∂Bγα
∂xi +Bλα

∂Bγβ
∂yλ
− B

λ
β

∂Bγα
∂yλ

+ (Lλβα ◦ π)Bγλ. (11)

Let h be the horizontal endomorphism on £πE. If S is an arbitrary semispray of £πE, then S̄ = hS is
called the semispray associated to h. If the horizontal endomorphism h is homogeneous, then the semispray
associated to h is spray. Also, the map hS : £πE→ £πE given by hS := 1

2 (1£πE + [J,S]F−N
£ ) is called the horizontal

endomorphism generated by semispray S (see [11], for more details). We have the following theorem:
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Theorem 2.2. [11] Let h be a homogeneous horizontal endomorphism on £πE and S be the semispray associated to h.
Then we have hS = h − 1

2 iSt where t is the weak torsion of h and hS is the horizontal endomorphism generated by S.

Let S be the semispray associated to h. The almost complex structure F : £πE → £πE given by F :=
h[S, h]F−N

£ − J is called the almost complex structure induced by h. F has the coordinate expression

F = −(Bγα(Xγ +B
β
γVβ) +Vα) ⊗ Xα + (Xα +B

β
αVβ) ⊗Vα. (12)

The following relations hold [11]:

(i) F ◦ J = h, (ii) F ◦ h = −J, (iii) J ◦ F = v, (iv) F ◦ v = h ◦ F. (13)

The horizontal map and the horizontal map for £πE associated to h are defined byH := F ◦ i : E ×M E → £πE
andV := j ◦ F : £πE→ E ×M E, respectively.

Let h be a horizontal endomorphism on £πE. Then Xh := hXC
∈ h£πE is called the horizontal lift of X by h.

If X = Xαeα, then we have Xh = (Xα
◦ π)(Xα +B

β
αVβ). The following equations are hold [11]:

(i) JXh = XV, (ii) h[Xh,Yh]£ = [X,Y]h
E, (iii) [X,Y]V

E = J[Xh,Yh]£.

Setting δα = eh
α = Xα + B

β
αVβ = h(Xα), it is easy to see that {δα} generate a basis of h£πE and the frame

{δα,Vα} is a local basis of £πE adapted to splitting (5) which is called the adapted basis. The dual adapted
basis is {Xα, δVα

}, where δVα =Vα
− B

α
βX

β. Lie brackets of the adapted basis {δα,Vα} are

[δα, δβ]£ = (Lγαβ ◦ π)δγ + RγαβVγ, [δα,Vβ]£ = −
∂Bγα
∂yβ
Vγ, [Vα,Vβ]£ = 0. (14)

It is easy to see that h and F have coordinate expressions h = δα ⊗ Xα and F = −Vα ⊗ X
α + δα ⊗ δVα with

respect to the adapted basis

2.2. Distinguished connections on Lie algebroids
A linear connection on a Lie algebroid (E, [, ]E, ρ) is a map D : Γ(E) × Γ(E)→ Γ(E) satisfying in

D f X+YZ = f DXY + DYZ,
DX( f Y + Z) = (ρ(X) f )Y + f DXY + DXZ,

for any function f ∈ C∞(M) and X,Y,Z ∈ Γ(E). Let D be a linear connection on £πE and h be a horizontal
endomorphism on £πE. Then (D, h) is called a distinguished connection (or d-connection) on £πE, if D is
reducible, i.e., Dh = 0, and D is almost complex, i.e., DF = 0, where F is the almost complex structure
associated by h. It is known that a d-connection has the coordinate expression:

DδαVβ = FγαβVγ, DVαVβ = CγαβVγ, (15)

Dδαδβ = Fγαβδγ, DVαδβ = Cγαβδγ. (16)

Let (D, h) be a d-connection. Then Dh
X̃

Ỹ := DhX̃Ỹ and Dv
X̃

Ỹ := DvX̃Ỹ are called the h-covariant derivative and
v-covariant derivative, respectively. Moreover

h∗(DC)(X̃) := DhX̃C, v∗(DC)(X̃) := DvX̃C, (17)

are called h-deflection and v-deflection of (D, h), respectively, where X̃, Ỹ ∈ Γ(£πE). It is easy to see that h∗(DC)
and v∗(DC) have the following coordinate expression:

h∗(DC) = (Bγα + yβFγαβ)Vγ ⊗ X
α, v∗(DC) = (δγα + yβCγαβ)Vγ ⊗ δV

α,
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where δγα is the Kronicher symbol.
The torsion tensor field T of D determined by the following, completely:

A(X̃, Ỹ) : = hT(hX̃, hỸ) = DhX̃hỸ −DhỸhX̃ − h[hX̃, hỸ]£, (18)

B(X̃, Ỹ) : = hT(hX̃, JỸ) = −DJỸhX̃ − h[hX̃, JỸ]£, (19)

R1(X̃, Ỹ) : = vT(hX̃, hỸ) = −v[hX̃, hỸ]£, (20)

P1(X̃, Ỹ) : = vT(hX̃, JỸ) = DhX̃ JỸ − v[hX̃, JỸ]£, (21)

S1(X̃, Ỹ) : = vT(JX̃, JỸ) = DJX̃ JỸ −DJỸ JX̃ − v[JX̃, JỸ]£, (22)

where A, B, R1, P1 and R1 are called the h- horizontal, h- mixed, v- horizontal, v- mixed and v- vertical
torsion, respectively. It is easy to check that the components of the torsion tensor field have the following
coordinate expressions:

A = Tγαβδγ ⊗ X
α
⊗ X

β, B = −Cγαβδγ ⊗ X
α
⊗ X

β,

R1 = −RγαβVγ ⊗ X
α
⊗ X

β, P1 = PγαβVγ ⊗ X
α
⊗ X

β,

Q1 = SγαβVγ ⊗ X
α
⊗ X

β,
(23)

where

(i) Tγαβ = Fγαβ − Fγβα − (Lγαβ ◦ π), (ii) Pγαβ = Fγαβ +
∂Bγα
∂yβ

, (iii) Sγαβ = Cγαβ − Cγβα. (24)

Also, the curvature tensor field K of D completely determined by the following

R(X̃, Ỹ)Z̃ := K(hX̃, hỸ)JZ̃, P(X̃, Ỹ)Z̃ := K(hX̃, JỸ)JZ̃, Q(X̃, Ỹ)Z̃ := K(JX̃, JỸ)JZ̃.

R, P and Q are called the horizontal, mixed and vertical curvature, respectively. It is known that horizontal,
mixed and vertical curvatures, have the following coordinate expressions:

R = R λ
αβγ Vλ ⊗ X

α
⊗ X

β
⊗ X

γ, P = P λ
αβγ Vλ ⊗ X

α
⊗ X

β
⊗ X

γ, Q = S λ
αβγ Vλ ⊗ X

α
⊗ X

β
⊗ X

γ,

where

R λ
αβγ = (ρi

α ◦ π)
∂Fλβγ
∂xi +B

µ
α

∂Fλβγ
∂yµ

− (ρi
β ◦ π)

∂Fλαγ
∂xi − B

µ
β

∂Fλαγ
∂yµ

+ FµβγFλαµ

− FµαγFλβµ − (Lµαβ ◦ π)Fλµγ − R µ
αβ Cλµγ, (25)

P λ
αβγ = (ρi

α ◦ π)
∂Cλβγ
∂xi +B

µ
α

∂Cλβγ
∂yµ

+ CµβγFλαµ −
∂Fλαγ
∂yβ

− FµαγCλβµ +
∂B

µ
α

∂yβ
Cλµγ, (26)

S λ
αβγ =

∂Cλβγ
∂yα

+ CµβγCλαµ −
∂Cλαγ
∂yβ

− CµαγCλβµ. (27)

3. Finsler Lie algebroids

Finsler Lie algebroid (E,F ) is a Lie algebroid £πE provided with a fundamental Finsler function F :

E → R such that F is a scalar differentiable function on the manifold
◦

E= E − {0}, continuous on the null
section of π : E→ M, positive and homogeneous of degree 2, i. e., ££

CF = 2F . Moreover, the fundamental
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form ω = d£d£
JF is non-degenerate, where d£

JF = iJd£
F = d£

F ◦ J (see [25, 26]). It is known that d£
JF has the

coordinate expression:

d£
JF =

∂F
∂yα
X
α. (28)

The fundamental form ω of a Finsler Lie algebroid has the following coordinate expression:

ω =
(
(ρi
α ◦ π)

∂2
F

∂xi∂yβ
−

1
2
∂F
∂yγ

(Lγαβ ◦ π)
)
X
α
∧ X

β
−

∂2
F

∂yα∂yβ
X
α
∧V

β.

Proposition 3.1. [12] For the fundamental form ω we have the following identities:

(i) iJω = 0, (ii) ££
Cω = ω, (iii) iCω = d£

JF .

Let (E,F ) be a Finsler Lie algebroid with the fundamental form ω. Map G : Γ(v
◦

£πE) × Γ(v
◦

£πE) → C∞(
◦

£πE)
defined by G(JX̃, JỸ) := ω(JX̃, Ỹ) is called the vertical metric of the Finsler Lie algebroid (E,F ). It is easy to

check thatG is bilinear, symmetric and non-degenerate on v
◦

£πE. Now we consider the pseudo-Riemannian

metric G̃ : Γ(
◦

£πE) × Γ(
◦

£πE)→ C∞(
◦

£πE) given by

G̃(X̃, Ỹ) := G(JX̃, JỸ) +G(vX̃, vỸ), ∀X̃, Ỹ ∈ Γ(
◦

£πE), (29)

which is called the prolongation of G along h and it has the coordinate expression:

G̃ = GαβX
α
⊗ X

β +GαβδV
α
⊗ δVβ,

where

Gαβ := G(Vα,Vβ) = ω(Vα,Xβ) =
∂2
F

∂yα∂yβ
.

Let h be a horizontal endomorphism on £πE and G̃ be a pseudo-Riemannian metric given by (29). We
consider

Kh(X̃, Ỹ) = G̃(X̃, JỸ) − G̃(JX̃, Ỹ), ∀X̃, Ỹ ∈ Γ(£πE),

and we call it the Kähler form with respect to G̃. We have Kh = ivω. Kähler form Kh has the coordinate
expressionKh = GαβδVα

∧ X
β with respect to {δα,Vα}.

Let (E,F ) be a Finsler Lie algebroid with fundamental form ω. If φ : E→ R is a smooth function, then
the section gradφ ∈ Γ(£πE) characterized by d£φ = igradφω is called the gradient of φ. If β is a non-zero
1-form on £πE, we denote by β] the section corresponding to ω, i.e., iβ]ω = β. Thus we can introduce the
gradient of φ by gradφ = (d£φ)]. It is known that gradφ has the local expression

gradφ = −Gαβ
∂φ

∂yβ
Xα +Gαβ

{
(ρi
β ◦ π)

∂φ

∂xi +Gλγ
∂φ

∂yγ
(
(ρi
λ ◦ π)

∂2
F

∂xi∂yβ

− (ρi
β ◦ π)

∂2
F

∂xi∂yλ
−
∂F
∂yγ

(Lγλβ ◦ π)
)}
Vα. (30)

Proposition 3.2. [12] Let (E,F ) be a Finsler Lie algebroid and f ∈ C∞(M). Then we have

(i) grad f∨ ∈ Γ(v£πE), (ii) [C, grad f∨]£ = −grad f∨, (iii) ρ£(grad f∨)(F ) = f c.
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From (30), we deduce that grad f∨ has the coordinate expression:

grad f∨ = Gαβ(ρi
β ◦ π)

∂( f ◦ π)
∂xi Vα. (31)

A horizontal endomorphism h on a Finsler Lie algebroid (E,F ) is called conservative if d£
hF = 0. It is known

that h is conservative if and only if

(ρi
α ◦ π)

∂F

∂xi +B
β
α
∂F

∂yβ
= 0. (32)

On any Finsler Lie algebroid there is a spray S◦ : E → £πE, which is uniquely determined on
◦

£πE by the
formula iS◦ω = −d£

F . This spray is called the canonical spray of the Finsler Lie algebroid and it has the
coordinate expression S◦ = yαXα + Sα◦Vα, where

Sα◦ = Gαβ
(
(ρi
β ◦ π)

∂F

∂xi + yγ(
∂F

∂yλ
(Lλγβ ◦ π) − (ρi

γ ◦ π)
∂2
F

∂xi∂yβ
)
)
,

and (Gαβ) is the inverse matric of (Gαβ).

Proposition 3.3. [12] Let S◦ be the canonical spray and h be a conservative horizontal endomorphism on Finsler Lie
algebroid (E,F ) with the associated semispray S. Then we have S − S◦ = (d£

iStF )] where i(d£
iStF )]ω = d£

iStF .

Let S◦ be the canonical spray on Finsler Lie algebroid (E,F ). It is known that endomorphism h◦ given by
h◦ = 1

2 (1Γ(£πE) + [J,S◦]F−N
£ ) is a homogeneous and horizontal endomorphism on £πE which is called Barthel

endomorphism. The following results are known (see [12]):

Proposition 3.4. Let h be a conservative and homogeneous horizontal endomorphism and h◦ be the Barthel endo-
morphism on a Finsler Lie algebroid (E,F ). Then we have h = h◦ + 1

2 iSt + 1
2 [J, (d£

iStF )]]F−N
£ .

Theorem 3.5. Let h1 and h2 be conservative horizontal endomorphisms on Finsler Lie algebroid (E,F ). If h1 and h2
have common strong torsions, then h1 = h2.

Theorem 3.6. There exists a unique horizontal endomorphism on Finsler Lie algebroid (E,F ) such that it is homo-
geneous, conservative and torsion free.

The first Cartan tensor on a Finsler Lie algebroid (E,F ) is a tensor C : Γ(
◦

£πE) × Γ(
◦

£πE) → Γ(
◦

£πE) which
satisfies in J ◦ C = 0 and

G(C(X̃, Ỹ), JZ̃) =
1
2

(££
JX̃

J∗G)(Ỹ, Z̃), (33)

where X̃, Ỹ, Z̃ ∈ Γ(
◦

£πE). Also, the lowered tensor C[ of C is defined by

C[(X̃, Ỹ, Z̃) = G(C(X̃, Ỹ), JZ̃), ∀X̃, Ỹ, Z̃ ∈ Γ(
◦

£πE).

It is known that the first Cartan tensor and the lowered tensor of it have the following coordinate expressions:

C = C
γ
αβX

α
⊗ X

β
⊗Vγ, C[ = CαβγX

α
⊗ X

β
⊗ X

γ,

where

C
γ
αβ =

1
2
∂Gβλ
∂yα
G
γλ =

1
2

∂3
F

∂yα∂yβ∂yλ
G
γλ, Cαβγ = CλαβGγλ =

1
2

∂3
F

∂yα∂yβ∂yγ
.
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Now, we consider a horizontal endomorphism h on £πE, and the prolongation G̃ of the vertical metric G

along h. The second Cartan tensor (belonging to h) is a tensor C̃ : Γ(
◦

£πE) × Γ(
◦

£πE) → Γ(
◦

£πE) which satisfies

in J ◦ C̃ = 0 and G̃(C̃(X̃, Ỹ), JZ̃) = 1
2 (£hX̃G̃)(JỸ, JZ̃) where X̃, Ỹ, Z̃ ∈ Γ(

◦

£πE). Also, the lowered tensor C̃[ of C̃ is
defined by C̃[(X̃, Ỹ, Z̃) = G̃(C̃(X̃, Ỹ), JZ̃). It is known that the second Cartan tensor and the lowered tensor
of it have the following coordinate expressions:

C̃ = C̃
γ
αβX

α
⊗ X

β
⊗Vγ, C̃[ = C̃αβγX

α
⊗ X

β
⊗ X

γ,

where

C̃
γ
αβ =

1
2

(
(ρi
α ◦ π)

∂Gβµ

∂xi G
γµ +Bλα

∂Gβµ

∂yλ
G
γµ +

∂Bγα
∂yβ

+
∂Bλα
∂yµ
G
γµ
Gβλ

)
, (34)

and

C̃αβγ = C̃λαβGλγ =
1
2

(
(ρi
α ◦ π)

∂Gβγ

∂xi +Bλα
∂Gβγ

∂yλ
+
∂Bλα
∂yβ
Gλγ +

∂Bλα
∂yγ
Gβλ

)
. (35)

Definition 3.7. Let (D, h) be a d-connection on £πE. We call it a h-basic d-connection if there is a linear connection
∇ on E such that

DXh YV = (∇XY)V, ∀X,Y ∈ Γ(E). (36)

A linear connection ∇ in the above definition is called the basic connection belongs to (D, h). Note that the
base connection of a h-basic d-connection is unique.

The canonical map
i

D: Γ(£πE) × Γ(£πE)→ Γ(£πE),
(JX̃, JỸ)→ Di

JX̃
JỸ := [J, JỸ]F−N

£ X̃,

is called the intrinsic or the flat v-connection in v£πE. Let X̃ and Ỹ be two sections of £πE. Then we have

i
DJX̃ JỸ := J[JX̃, Ỹ]£,

i
DvX̃ JỸ := J[vX̃, Ỹ]£.

Now we consider the map
pi
D: Γ(v£πE) × Γ(£πE)→ Γ(v£πE) defined by

pi
DJX̃ JỸ =

i
DJX̃ JỸ,

pi
DJX̃ hỸ = F

i
DJX̃ JỸ.

If D̃ is the map D̃ : Γ(£πE) × Γ(£πE)→ Γ(£πE),

(X̃, Ỹ)→ D̃X̃Ỹ := DhX̃Ỹ+
pi
DvX̃ Ỹ,

(37)

then (D̃, h) is a d-connection on £πE, which is called the d-connection associated to (D, h). It is known that
D̃ has the following coordinate expression:

D̃X̃Ỹ =
(
X̃α(ρi

α ◦ π)
∂Ỹβ

∂xi + X̃α
B
γ
α
∂Ỹβ

∂yγ
+ X̃αỸγFβαγ + X̃ᾱ ∂Ỹβ

∂yα
)
δβ

+
(
X̃α(ρi

α ◦ π)
∂Ỹβ̄

∂xi + X̃α
B
γ
α
∂Ỹβ̄

∂yγ
+ X̃αỸγ̄Fβαγ + X̃ᾱ ∂Ỹβ̄

∂yα
)
Vβ, (38)
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where X̃ = X̃αδα + X̃ᾱ
Vα and Y = Ỹβδβ + Ỹβ̄

Vβ are sections of £πE and (Fγαβ,C
γ
αβ) are the local coefficients

of d-connection D. If we denote the local coefficients of d-connection D̃ by (F̃γαβ, C̃
γ
αβ), then from the above

equation we conclude F̃γαβ = Fγαβ and C̃γαβ = 0. Therefore using (25), (26) and (27) we derive that

R̃ λ
αβγ = (ρi

α ◦ π)
∂Fλβγ
∂xi +B

µ
α

∂Fλβγ
∂yµ

− (ρi
β ◦ π)

∂Fλαγ
∂xi − B

µ
β

∂Fλαγ
∂yµ

+ FµβγFλαµ

− FµαγFλβµ − (Lµαβ ◦ π)Fλµγ,

P̃ λ
αβγ = −

∂Fλαγ
∂yβ

, S̃ λ
αβγ = 0, (39)

where R̃ λ
αβγ , P̃ λ

αβγ and S̃ λ
αβγ are coefficients of the horizontal, mixed and vertical curvatures of d-connection

(D̃, h), respectively.

Proposition 3.8. Let (D, h) be a d-connection on £πE and (D̃, h) be the d-connection associated to (D, h) given by
(37). Then (D, h) is h-basic if and only if the mixed curvature of (D̃, h) is zero.

Proof. Let (D, h) be a h-basic d-connection on £πE and {eα} be a basis of Γ(E). Since ∇eαeβ belongs to Γ(E),
then we can write it as ∇eαeβ = Γ

γ
αβeγ, where Γ

γ
αβ are local functions on M. From (36) we can deduce

DδαVβ = Deh
α
eV
β = (∇eαeβ)

V = (Γγαβ ◦ π)Vγ.

Thus we have Fγαβ = (Γγαβ ◦π), where Fγαβ are local coefficients of DδαVβ. Since Fγαβ are functions with respect

to (xh), then using the first part of (39) we get P λ
αβγ = 0, i.e., the mixed curvature of (D̃, h) is zero. Conversely,

let the mixed curvature of (D̃, h) be zero. Then from (39) we derive that Fγαβ are functions with respect to

(xh), only. Now we define ∇ : Γ(E) × Γ(E)→ Γ(E) by (∇XY)V := DXh YV. Since the vertical lift of a section of
E is unique, then ∇ is well defined. Also, we have

(∇X( f Y))V = DXh ( f Y)V = DXh ( f vYV) = ρ£(Xh)( f v)YV + f vDXh YV,

where X,Y ∈ Γ(E) and f ∈ C∞(M). It is easy to check that ρ£(Xh)( f v) = (ρ(X) f )v. Setting this in the above
equation we get

(∇X( f Y))V = (ρ(X) f )vYV + f vDXh YV = (ρ(X) f )vYV + f v(∇XY)V

= (ρ(X)( f )Y + f∇XY)V,

which gives us ∇X( f Y) = ρ(X)( f )Y + f∇XY, because the vertical lift is unique. Similarly we can obtain
∇ f X+1YZ = f∇XZ + 1∇YZ and ∇X(Y + Z) = ∇XZ + ∇YZ, for all X,Y,Z ∈ Γ(E) and f , 1 ∈ C∞(M). Thus ∇ is a
linear connection on E and consequently (D, h) is h-basic.

Let ∇ be a linear connection on E, {eα} be a basis of Γ(E) and ∇eαeβ = Γ
γ
αβeγ. Then

h∇ = (Xα − yγ(Γβαγ ◦ π)Vβ) ⊗ Xα, (40)

is a horizontal endomorphism on £πE. Indeed we have

(∇XY)V = [Xh∇ ,YV]£, ∀X,Y ∈ Γ(E).

We call h∇ given by (40) the horizontal endomorphism generated by ∇. It is easy to see that h∇ is homogeneous
and it is smooth on the whole £πE.
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Lemma 3.9. Let ∇ be a linear connection on E and h∇ be the horizontal endomorphism generated by ∇. If K λ
αβγ and

Rλαβ are local coefficients of curvature tensors of ∇ and h∇, respectively, then we have yγ(K λ
αβγ ◦ π) = −Rλαβ.

Proof. Setting Bλα = −yγ(Γλαγ ◦ π) in (11) gives us

Rλαβ = yγ
(
(ρi
β ◦ π)

∂(Γλαγ ◦ π)

∂xi + (Γµαγ ◦ π)(Γλβµ ◦ π) − (ρi
α ◦ π)

∂(Γλβγ ◦ π)

∂xi

− (Γµβγ ◦ π)(Γλαµ ◦ π) − (Lµβα ◦ π)(Γλµγ ◦ π)
)

= −yγ(K λ
αβγ ◦ π).

Corollary 3.10. Let ∇ be a linear connection on E and h∇ be the horizontal endomorphism generated by ∇. Then the
curvature of ∇ is zero if and only if the curvature of h∇ vanishes.

Proposition 3.11. Let (D, h) be a h-basic d-connection with the base connection ∇ and h∇ be the horizontal endo-
morphism generated by ∇. Then DXh C = Xh

− Xh∇ .

Proof. Let Fγαβ be the local coefficients of DδαVβ and Γ
γ
αβ be the local coefficients of ∇eαeβ. In the above

proposition we show that Fγαβ = (Γγαβ ◦ π), because (D, h) is a h-basic d-connection with the base connection
∇. Thus we can obtain

DXh C = (Xα
◦ π)(Bβα + yγFβαγ)Vβ = (Xα

◦ π)(Bβα + yγ(Γβαγ ◦ π))Vβ, (41)

where X = Xαeα, Xh = (Xα
◦ π)δα. (40) and the above equation give us

Xh
− Xh∇ = (Xα

◦ π)(Xα +B
β
αVβ) − (Xα

◦ π)(Xα − yγ(Γβαγ ◦ π)Vβ) = DXh C.

Corollary 3.12. Let (D, h) be a h-basic d-connection with the base connection ∇ and h∇ be the horizontal endomor-
phism generated by ∇. Then h∇ coincides with h if and only if the h-deflection of (D, h) is zero.

Proof. If h∇ = h, then from the above proposition we have DXh C = 0 and in particular DδαC = Deh
α
C = 0.

Therefore we deduce h∗(DC)(δα) = DδαC = 0, i.e., the h-deflection of (D, h) vanishes. Conversely, if the
h-deflection of (D, h) is zero, then we deduce DδαC = 0 and consequently DXh C = 0. Thus from the above
proposition we derive that Xh = Xh∇ and consequently h = h∇.

Corollary 3.13. Let (D, h) be a h-basic d-connection with the base connection ∇ and h∇ be the horizontal endomor-
phism generated by ∇. If the h-deflection of (D, h) is zero, then we have

(i) DhX̃vỸ = v[hX̃, vỸ]£, (ii) DhX̃hỸ = hF[hX̃, JỸ]£,

where X̃, Ỹ ∈ Γ(£πE).

Proof. Let X̃ = X̃αδα + X̃ᾱ
Vα and Ỹ = Ỹβδβ + Ỹβ̄

Vβ be sections of £πE. Since the h-deflection of (D, h) is zero,
then using the above corollary we have h = h∇ and consequently Bβα = −yλ(Γβαλ ◦ π). Thus we can obtain

v[hX̃, vỸ]£ = X̃α
(
(ρi
α ◦ π)

∂Ỹβ̄

∂xi − yλ(Γγλα ◦ π)
∂Ỹβ̄

∂yγ
)
Vβ + XαYβ̄(Γγαβ ◦ π)Vγ = DhX̃vỸ,

because Fγαβ = (Γγαβ ◦ π), where Fγαβ are local coefficients of DδαVβ. Therefore we have (i). Now we prove (ii)
as follows:

DhX̃hỸ = FDhX̃ JỸ = FDhX̃vJỸ = Fv[hX̃, vJỸ]£ = hF[hX̃, JỸ]£.
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Proposition 3.14. Let (D, h) be a h-basic d-connection with the base connection∇ and h be a homogeneous horizontal
endomorphism. Then the h-deflection of (D, h) is zero if and only if the v-mixed torsion of D is zero.

Proof. Using (21) we have

P1(δα, δβ) = DδαVβ − v[δα,Vβ]£ = ((Γγαβ ◦ π) +
∂Bγα
∂yβ

)Vγ. (42)

Thus P1 = 0 if and only if ∂B
γ
α

∂yβ = −(Γγαβ ◦π). But since h is homogeneous, then we have yβ ∂B
γ
α

∂yβ = B
γ
α. Thus we

can deduce P1 = 0 if and only if Bγα = −yβ(Γγαβ ◦ π) (this equation gives us h = h∇). Therefore the vanishing
of P1 is equivalent to the vanishing of the h-deflection of (D, h).

Remark 3.15. Since in Corollaries 3.12, 3.13 and Proposition 3.14 we work on the vanishing of the h-deflection of
(D, h), then we have h = h∇. But h∇ is smooth on the whole £πE. Therefore the horizontal endomorphism h should be
smooth on the whole £πE.

Proposition 3.16. Let (D, h) be a h-basic d-connection with the base connection ∇ and the horizontal endomorphism
h be smooth on whole £πE. Then the h-deflection of (D, h) coincides with the tension of h if and only if the v-mixed
torsion of D is zero.

Proof. Let the v-mixed torsion of D be zero. Then from (42) we can deduce (Γγαβ ◦ π) = −
∂B

γ
α

∂yβ . But from (41)

we have DδαC = (Bβα + yγ(Γβαγ ◦ π))Vβ. Setting (Γγαβ ◦ π) = −
∂B

γ
α

∂yβ in this equation and using (7) we obtain

h∗(DC)(δα) = DδαC = (Bβα − yγ
∂Bαα
∂yγ

)Vβ = H(δα).

Conversely, if h∗(DC) = H and h is smooth on the whole £πE then using (7) and (41) we obtain ∂B
γ
α

∂yβ = −(Γγαβ◦π).
Setting this equation in (42) we deduce P1 = 0.

Theorem 3.17. Let (D, h) be a h-basic d-connection on Finsler Lie algebroid (E,F ) and the first Cartan tensor be
nonzero on (E,F ). Then (D, h) is h-metrical if and only if h is conservative and the h-deflection of (D, h) is zero.

Proof. Let (D, h) be h-metrical. Then we get

Xh
F =

1
2

Xh(G̃(C,C)) = G̃(C,DXh C) = (Xα
◦ π)(Bβα + yγ(Γβαγ ◦ π))

∂F

∂yβ
= (DXh C)F .

But from Proposition 3.11 we have (DXh C)F = Xh
F − Xh∇F . Two above equations give us Xh∇F = 0 and

consequently dh∇F = 0. Thus h∇ is conservative. By direct calculation we obtain

Xh∇G̃(Vβ,Vλ) − G̃(DXhVβ,Vλ) − G̃(Vβ,DXhVλ) = (Xα
◦ π)

(
(ρi
α ◦ π)

∂Gβλ

∂xi

− yγ(Γµαγ ◦ π)
∂Gβλ
∂yµ

− (Γγαβ ◦ π)Gγλ − (Γγαλ ◦ π)Gγβ
)
. (43)

Since h∇ is conservative, then we have (32) with Bλβ = −yµ(Γλµβ ◦ π). Differentiating (32) with respect to yγ

we obtain

(ρi
α ◦ π)

∂2
F

∂xi∂yγ
+
∂B

β
α

∂yγ
∂F

∂yβ
+B

β
α
∂2F

∂yβ∂yγ
= 0. (44)
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Differentiation of the above equation with respect to y gives us

(ρi
β ◦ π)

∂Gγα

∂xi +
∂2
B
λ
β

∂yγ∂yα
∂F

∂yλ
+
∂Bλβ
∂yγ
Gλα +

∂Bλβ
∂yα
Gλγ +Bλβ

∂Gγα

∂yλ
= 0, (45)

(ρi
γ ◦ π)

∂Gβα

∂xi +
∂2
B
λ
γ

∂yβ∂yα
∂F

∂yλ
+
∂Bλγ

∂yβ
Gλα +

∂Bλγ
∂yα
Gλβ +Bλγ

∂Gβα

∂yλ
= 0, (46)

withBλβ = −yµ(Γλµβ◦π). Setting this equation in (45) we can see that the right side of (43) vanishes. Therefore
we have

Xh∇G̃(Vβ,Vλ) = G̃(DXhVβ,Vλ) + G̃(Vβ,DXhVλ). (47)

Moreover, since (D, h) is h-metrical, then we have

Xh
G̃(Vβ,Vλ) = G̃(DXhVβ,Vλ) + G̃(Vβ,DXhVλ).

Two above equations give us

(Xh∇ − Xh)G̃(Vβ,Vλ) = 0. (48)

For the vertical metric G, using (33) we can obtain

G(C(δα, δβ),Xh
− Xh∇ ) = (Xσ

◦ π)(Bλσ + yγ(Γλσγ ◦ π))G(C(δα, δβ),Vλ)

=
1
2

(Xσ
◦ π)(Bλσ + yγ(Γλσγ ◦ π))(£Vα J∗G)(δβ, δλ)

=
1
2

(Xσ
◦ π)(Bλσ + yγ(Γλσγ ◦ π))(VαG(Vβ,Vλ)).

Since VαG(Vβ,Vλ) = VλG(Vα,Vβ), then using this equation in the above equation and using (48) we
deduce

G(C(δα, δβ),Xh
− Xh∇ ) =

1
2

(Xσ
◦ π)(Bλσ + yγ(Γλσγ ◦ π))(VλG(Vα,Vβ))

= (Xh∇ − Xh)G(Vα,Vβ)

= (Xh∇ − Xh)G̃(Vα,Vβ) = 0.

From the above equation we derive that G(C(Ỹ, Z̃),Xh
− Xh∇ ) = 0, for all Ỹ, Z̃ ∈ Γ(£πE). Since G is non-

degenerate, then this equation gives us Xh
− Xh∇ = 0 or Xh = Xh∇ and consequently h = h∇. Thus h

is conservative and using Corollary 3.12, the h-deflection of (D, h) vanishes. Conversely, let h be the
conservative horizontal endomorphism and the h-deflection of (D, h) be zero. Then from Corollary 3.12, h
coincides with h∇ and so h∇ is conservative. Therefore we have (47) which gives us

(DXhG̃)(Vα,Vβ) = (Xh
− Xh∇ )G̃(Vα,Vβ) = 0.

Also, since h = h∇ and h is conservative, then using (ii) of Corollary 3.13 and (45) we obtain

Xh
G̃(Vβ,Vλ) − G̃(DXhVβ,Vλ) − G̃(Vβ,DXhVλ) = 0,

which gives us (DXhG̃)(δα, δβ) = 0. Therefore we can deduce DhX̃G̃ = 0, for all X̃ ∈ £πE.
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3.1. Ichijyō connection
Theorem 3.18. Let (E,F ) be a Finsler Lie algebroid,∇ be a linear connection on E, h∇ be the horizontal endomorphism

generated by ∇ and G be the prolongation of vertical metric along h∇. Then there is a unique d-connection (
∇

D, h∇) on
(E,F ) such that

(i)
∇

D is v-metrical,

(ii) The v-vertical torsion of
∇

D is zero,

(iii) The h-deflection of (
∇

D, h∇) is zero,

(iv) The mixed curvature of (
∇̃

D, h∇) is zero,

where (
∇̃

D, h∇) is the d-connection associated to (
∇

D, h∇) given by (37).

Proof. Let there exists a d-connection
∇

D on (E,F ) such that
∇

D satisfies in (i)-(iv). Since
∇

D is v-metrical, then
we have

ρ£(Vα)G̃(Vβ,Vγ) = G̃(
∇

DVαVβ,Vγ) + G̃(Vβ,
∇

DVαVγ), (49)

ρ£(Vβ)G̃(Vγ,Vα) = G̃(
∇

DVβVγ,Vα) +G(Vγ,
∇

DVβVα), (50)

−ρ£(δγ)G̃(Vα,Vβ) = −G̃(
∇

DVγVα,Vβ) − G̃(Vα,
∇

DVγVβ). (51)

Since the v-vertical of
∇

D is zero, then we have

∇

DVαVβ−
∇

DVβVα = [Vα,Vβ]£ = 0.

Summing (49)-(51) and using the above equation we get

G̃(
∇

DVαVβ,Vγ) =
1
2

(∂Gβγ
∂yα

+
∂Gαγ

∂yβ
−
∂Gαβ
∂yγ

)
=

1
2
∂Gβγ
∂yα

,

which gives us

∇

DVαVβ =
1
2
∂Gβγ
∂yα
G
γµ
Vµ = C

µ
αβVµ. (52)

Also, since
∇

D is d-connection, then using the above equation we obtain

∇

DVαδβ =
1
2
∂Gβγ
∂yα
G
γµδµ = C

µ
αβδµ. (53)

Condition (iv) together Proposition 3.8 told us that (
∇

D, h∇) is h-basic. Thus there exists a unique linear

connection ∇̃ on E such that (∇̃XY)V =
∇

DXh∇ YV. But using (iii) and Corollary 3.12 we deduce that ∇̃ coincides
with ∇. Thus we have

∇

DXh∇ YV = (∇XY)V, ∀X,Y ∈ Γ(E).

From the above equation we obtain

∇

Dδα Vβ = (Γγαβ ◦ π)Vγ, (54)
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where Γ
γ
αβ are local coefficients of the linear connection ∇. The above equation gives us

∇

Dδα δβ = (Γγαβ ◦ π)δγ, (55)

because
∇

D is a d-connection. Relations (52)-(55) prove the existence and uniqueness of
∇

D

We call d-connection (
∇

D, h∇) introduced in the above theorem, Ichijyō connection induced by ∇ on the Finsler
algebroid (E,F ).

Let X̃ and Ỹ be sections of
◦

£πE. Then using (52)-(55) we can obtain the following formula for the Ichijyō
connection:

∇

DX̃ Ỹ =
∇

Dv∇X̃ v∇Ỹ+
∇

Dv∇X̃ h∇Ỹ+
∇

Dh∇X̃ v∇Ỹ+
∇

Dh∇X̃ h∇Ỹ,

where

∇

Dh∇X̃ h∇Ỹ = h∇F∇[h∇X̃, JỸ]£, (56)
∇

Dv∇X̃ v∇Ỹ = J[v∇X̃,F∇Ỹ]£ + C(F∇X̃,F∇Ỹ), (57)
∇

Dv∇X̃ h∇Ỹ = h∇[v∇X̃, Ỹ]£ + F∇C(F∇X̃, Ỹ), (58)
∇

Dh∇X̃ v∇Ỹ = v∇[h∇X̃, v∇Ỹ]£. (59)

Using the above equations we can obtain

∇

DXh∇ Yh∇ =
(
(Xα
◦ π)(ρi

α ◦ π)
∂(Yγ

◦ π)
∂xi + (Xα

◦ π)(Yβ
◦ π)(Γγαβ ◦ π)

)
δγ

= (∇XY)h∇ , (60)
∇

DXV YV = (Xα
◦ π)(Yβ

◦ π)CµαβVµ = C(Xh∇ ,Yh∇ ), (61)

∇

DXV Yh∇ = (Xα
◦ π)(Yβ

◦ π)Cµαβδµ = FC(Xh∇ ,Yh∇ ), (62)

∇

DXh∇ YV =
(
(Xα
◦ π)(ρi

α ◦ π)
∂(Yγ

◦ π)
∂xi + (Xα

◦ π)(Yβ
◦ π)(Γγαβ ◦ π)

)
Vγ

= (∇XY)V, (63)

where X,Y ∈ Γ(E).

Proposition 3.19. Let (E,F ) be a Finsler Lie algebroid, ∇ be a linear connection on E and (
∇

D, h∇) be the d-connection
induced by ∇. Then

(
∇

DJX̃ C)(Ỹ, Z̃) = (
∇

DJỸ C)(X̃, Z̃), ∀X̃, Ỹ, Z̃ ∈ Γ(
◦

£πE).

Proof. It is sufficient to show that (
∇

DVα C)(δβ, δγ) = (
∇

DVβ C)(δα, δγ). Using the local expression of the first
Cartan tensor and (53) we get

(
∇

DVα C)(δβ, δγ) =
1
4

(
2
∂2
Gγλ

∂yα∂yβ
G
λµ + 2

∂Gγλ

∂yβ
∂Gλµ

∂yα
+
∂Gγλ

∂yβ
G
λσ ∂Gνσ
∂yα
G
µν

−
∂Gβλ
∂yα
G
νλ
∂Gγσ
∂yν
G
σµ
−
∂Gγλ
∂yα
G
νλ
∂Gβσ
∂yν
G
σµ

)
Vµ. (64)
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Since Gλσ ∂Gνσ∂yα = −Gνσ
∂Gλσ

∂yα , then we get

∂Gγλ

∂yβ
G
λσ ∂Gνσ
∂yα
G
µν = −

∂Gγλ

∂yβ
∂Gλµ

∂yα
.

Similarly we obtain

∂Gγλ
∂yα
G
νλ
∂Gβσ
∂yν
G
σµ =

∂Gγλ
∂yα
G
νλ ∂Gνσ
∂yβ
G
σµ = −

∂Gγλ
∂yα

∂Gλµ

∂yβ
.

Setting two above equations in (64) give us

(
∇

DVα C)(δβ, δγ) =
1
4

(
2
∂2
Gγλ

∂yα∂yβ
G
λµ +

∂Gγλ

∂yβ
∂Gλµ

∂yα
−
∂Gβλ
∂yα
G
νλ
∂Gγσ
∂yν
G
σµ

+
∂Gγλ
∂yα

∂Gλµ

∂yβ
)
Vµ.

Similarly we can obtain

(
∇

DVβ C)(δα, δγ) =
1
4

(
2
∂2
Gγλ

∂yβ∂yα
G
λµ +

∂Gγλ
∂yα

∂Gλµ

∂yβ
−
∂Gαλ
∂yβ
G
νλ
∂Gγσ
∂yν
G
σµ

+
∂Gγλ

∂yβ
∂Gλµ

∂yα
)
Vµ.

Two above equations show that (
∇

DVα C)(δβ, δγ) = (
∇

DVβ C)(δα, δγ).

Let t∇ be the weak torsion of h∇ and T∇ be the torsion of ∇. Then using the locally expression of tγαβ and (40)
we deduce

tγαβ = (Γγαβ − Γ
γ
βα − Lγαβ) ◦ π = (T∇(eα, eβ))h∇ ,

where tγαβ are coefficients of t∇. If we denote by
∇

T, the torsion of the Ichijyō connection (
∇

D, h∇) then we get

∇

T (δα, δβ) =
(
(Γγαβ − Γ

γ
βα − Lγαβ) ◦ π

)
δγ − RγαβVγ

= tγαβδγ + Ω(δα, δβ) = F∇t∇(δα, δβ) + Ω∇(δα, δβ)

= (T∇(eα, eβ))h∇ + Ω∇(δα, δβ),
∇

T (δα,Vβ) = −
1
2
∂Gαγ

∂yβ
G
γµδµ = −F∇C(δα, δβ) = −F∇C(δα,F∇Vβ),

∇

T (Vα,Vβ) = 0,

where Ω∇ is the curvature tensor of h∇. From the above equations we can conclude the following:

Proposition 3.20. Let (
∇

D, h∇) be the Ichijyō connection on a Finsler Lie algebroid (E,F ) with the base connection

∇. Then the torsion tensor of
∇

D satisfies

∇

T (X̃, Ỹ) = F∇t∇(h∇X̃, h∇Ỹ) + Ω(h∇X̃, h∇Ỹ) − F∇C(h∇X̃,F∇v∇Ỹ)

+ F∇C(F∇v∇X̃, h∇Ỹ), ∀X̃, Ỹ ∈ Γ(
◦

£πE).
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Corollary 3.21. Let (
∇

D, h∇) be the Ichijyō connection on a Finsler Lie algebroid (E,F ) with the base connection ∇.
Then for all X,Y ∈ Γ(E) we have

∇

T (Xh∇ ,Yh∇ ) = (T∇(X,Y))h∇ + Ω∇(Xh∇ ,Yh∇ ),
∇

T (Xh∇ ,YV) = −F∇C(Xh∇ ,F∇YV),
∇

T (XV,YV) = 0.

Let
∇

R
λ

αβγ ,
∇

P
λ

αβγ and
∇

S
λ

αβγ be coefficients of horizontal, mixed and vertical curvatures of the Ichijyō connection

(
∇

D, h∇), respectively. Then using (25)-(26) and (52)-(55) we get

∇

R
λ

αβγ = (ρi
α ◦ π)

∂(Γλβγ ◦ π)

∂xi − (ρi
β ◦ π)

∂(Γλαγ ◦ π)

∂xi + (Γµβγ ◦ π)(Γλαµ ◦ π)

− (Γµαγ ◦ π)(Γλβµ ◦ π) − (Lµαβ ◦ π)(Γλµγ ◦ π) − R µ
αβC

λ
µγ

= −
∂Rλαβ
∂yγ

− R µ
αβC

λ
µγ, (65)

∇

P
λ

αβγ = (ρi
α ◦ π)

∂Cλβγ

∂xi − yν(Γµαν ◦ π)
∂Cλβγ
∂yµ

+ C
µ
βγ(Γλαµ ◦ π) − (Γµαγ ◦ π)Cλβµ

− (Γµαβ ◦ π)Cλµγ, (66)

∇

S
λ

αβγ =
∂Cλβγ
∂yα

+ C
µ
βγC

λ
αµ −

∂Cλαγ

∂yβ
− C

µ
αγC

λ
βµ. (67)

Using the above equations we conclude the following proposition which gives us global expressions of
horizontal, mixed and vertical curvatures of the Ichijyō connection.

Proposition 3.22. Let (
∇

D, h∇) be the Ichijyō connection on a Finsler Lie algebroid (E,F ) with the base connection
∇. Then we have

∇

R (X̃, Ỹ)Z̃ = [J,Ω∇(X̃, Ỹ)]F−N
£ (h∇Z̃) + C(F∇Ω∇(X̃, Ỹ), Z̃),

∇

P (X̃, Ỹ)Z̃ = (
∇

Dh∇X̃ C)(h∇Ỹ, h∇Z̃),
∇

Q (X̃, Ỹ)Z̃ = C(F∇C(X̃, Z̃), Ỹ) − C(X̃,F∇C(Ỹ, Z̃)),

where X̃, Ỹ, Z̃ ∈ Γ(
◦

£πE).

Corollary 3.23. The horizontal curvature of the Ichijyō connection is zero if and only if the curvature of h∇ or the
curvature of the base connection ∇ is zero.

Proof. If the curvature of h∇ vanishes, then we have Rλαβ = 0. Therefore from (65) we deduce
∇

R
λ

αβγ = 0, i.e.,

the horizontal curvature of the Ichijyō connection is zero. Conversely, if
∇

R
λ

αβγ = 0, then from (65) we derive
that

∂Rλαβ
∂yγ

+ R µ
αβC

λ
µγ = 0.
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Multiplying yγ in the above equation and using yγCλµγ = 0, give us yγ
∂Rλαβ
∂yγ = 0. But it is easy to see that

yγ
∂Rλαβ
∂yγ = Rλαβ. Thus we deduce Rλαβ = 0, i.e., the curvature of h∇ is zero. Note that from Corollary 3.10,

we deduce that the vanishing of the horizontal curvature of the Ichijyō connection is equivalent to the
vanishing of the curvature of the base connection ∇.

From the second relation of Proposition 3.22 we conclude

Corollary 3.24. The mixed curvature of the Ichijyō connection is zero if and only if the h-covariant derivative of the

first Cartan tensor with respect to
∇

D (i.e.,
∇

Dh∇ C) vanishes.

If we denote by
∇

A,
∇

B,
∇

R1,
∇

P1,
∇

Q1 the components of the torsion of the Ichijyō connection, then using (23),
(24) and (52)-(55) we obtain

∇

A (δα, δβ) =
(
(Γγαβ − Γ

γ
βα − Lγαβ) ◦ π

)
δγ = tγαβδγ = F∇t∇(δα, δβ)

= (T∇(eα, eβ))h∇ , (68)
∇

B (δα, δβ) = −C
γ
αβδγ = −F∇C(δα, δβ), (69)

∇

R1 (δα, δβ) = −RγαβVγ = Ω∇(δα, δβ), (70)

∇

P1= 0,
∇

Q1 = 0. (71)

From the above equation we conclude the following

Proposition 3.25. Let (
∇

D, h∇) be the Ichijyō connection on a Finsler Lie algebroid (E,F ) with the base connection
∇. Then for all sections X and Y of E we have

∇

A (Xh∇ ,Yh∇ ) = (T∇(X,Y))h∇ = F∇t∇(Xh∇ ,Yh∇ ),
∇

B (Xh∇ ,Yh∇ ) = −F∇C(Xh∇ ,Yh∇ ),
∇

R1 (Xh∇ ,Yh∇ ) = Ω∇C(Xh∇ ,Yh∇ ),
∇

P1= 0,
∇

Q1 = 0.

From the first equation of the above proposition we have:

Corollary 3.26. The h-horizontal torsion of the Ichijyō connection is zero if and only if the torsion tensor of ∇ ( or
the weak torsion of h∇) vanishes.

3.2. Generalized Berwald Lie algebroid
Definition 3.27. Let (E,F ) be a Finsler Lie algebroid and ∇ be a linear connection on E. Then (E,F ,∇) is called
generalized Berwald Lie algebroid, if the horizontal endomorphism h∇ is conservative.

Proposition 3.28. Let (E,F ) be a Finsler Lie algebroid and ∇ be a linear connection on E. Then the following items
are equivalent:

(i) (E,F ,∇) is a generalized Berwald Lie algebroid.
(ii) The second Cartan tensor C̃∇ belonging to ∇ is zero.

(iii) The Ichijyō connection (
∇

D, h∇) is h∇-metrical.
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Proof. (i)⇒ (ii). Since h∇ is conservative, then we have (32). Setting Bλα = −yσ(Γλασ ◦ π) in this equation we
have

(ρi
α ◦ π)

∂F

∂xi − yσ(Γλασ ◦ π)
∂F

∂yλ
= 0. (72)

Differentiating the above equation with respect to yβ and yµ gives us

(ρi
α ◦ π)

∂3
F

∂xi∂yβ∂yµ
− (Γλαβ ◦ π)

∂2
F

∂yµ∂yλ
− (Γλαµ ◦ π)

∂2
F

∂yβ∂yλ

− yσ(Γλασ ◦ π)
∂3
F

∂yµ∂yβ∂yλ
= 0. (73)

If we multiply 1γµ in the above equation, then we obtain C̃γαβ = 0, where C̃γαβ are coefficients of the second

Cartan tensor C̃∇ given by (34).
(ii) ⇒ (i). Since the second Cartan tensor C̃∇ belonging to ∇ is zero, then we have C̃γαβ = 0. Thus setting
B
λ
α = −yσ(Γλασ ◦ π) in (34) and multiplying 1γµ in it, we deduce (73). Since the Finsler function F is

homogeneous of degree 2, then we can obtain

∂F
∂yγ

= yλ
∂2
F

∂yγ∂yλ
, (74)

which gives us

yµ
∂3
F

∂yγ∂yλ∂yµ
= 0. (75)

Multiplying yβyµ in (73) and using (75) and (74) we obtain (72). Thus h∇ is conservative.

(iii)⇒ (ii). Since
∇

D is h-metrical, then we have
∇

Dh∇ G̃ = 0. Thus we get

0 = (
∇

Dh∇δα G̃)(δβ, δγ) = (ρi
α ◦ π)

∂Gβγ

∂xi − (Γλαβ ◦ π)Gλγ − (Γλαγ ◦ π)Gβλ

− yσ(Γλασ ◦ π)
∂2
Gβγ

∂yλ
.

Therefore we have (73), i.e., the second Cartan tensor C̃∇ belonging to ∇ is zero.

(ii) ⇒ (iii). If (ii) holds, then we have (73). Using this equation, it is easy to check that (
∇

Dh∇δα G̃)(δβ, δγ) =

(
∇

Dh∇δα G̃)(Vβ,Vγ) = 0. Also, we have (
∇

Dh∇δα G̃)(δβ,Vγ) = 0. Thus the Ichijyō connection (
∇

D, h∇) is h∇-
metrical.

Proposition 3.29. Let (E,F ,∇) be a generalized Berwald Lie algebroid. Then the mixed curvature of the Ichijyō

connection (
∇

D, h∇) is zero.

Proof. It is sufficient to show that
∇

P
λ

αβγ = 0. Using (66) we have

∇

P
λ

αβγ =
1
2

(ρi
α ◦ π)(

∂2
Gβσ

∂xi∂yγ
G
σλ +

∂Gβσ
∂yγ

∂Gσλ

∂xi ) −
1
2

yν(Γµαν ◦ π)(
∂2
Gβσ

∂yµ∂yγ
G
σλ

+
∂Gβσ
∂yγ

∂Gσλ

∂yµ
) +

1
2
∂Gβσ
∂yγ
G
σµ(Γλαµ ◦ π) −

1
2
∂Gβσ
∂yµ
G
σλ(Γµαγ ◦ π)

−
1
2
∂Gµσ
∂yγ
G
σλ(Γµαβ ◦ π). (76)
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Since the Ichijyō connection is h-metrical, then we have

0 =
∇

Dh∇δα G
σλ = (ρi

α ◦ π)
∂Gσλ

∂xi − yν(Γµαν ◦ π)
∂Gσλ

∂yµ
+Gσµ(Γλαµ ◦ π) +Gλµ(Γσαµ ◦ π),

which gives us

(ρi
α ◦ π)

∂Gσλ

∂xi − yν(Γµαν ◦ π)
∂Gσλ

∂yµ
+Gσµ(Γλαµ ◦ π) = −Gλµ(Γσαµ ◦ π).

Setting the above equation in (76) we get

∇

P
λ

αβγ =
1
2

(ρi
α ◦ π)

∂2
Gβσ

∂xi∂yγ
G
σλ
−

1
2

yν(Γµαν ◦ π)
∂2
Gβσ

∂yµ∂yγ
G
σλ

−
1
2
∂Gβσ
∂yµ
G
σλ(Γµαγ ◦ π) −

1
2
∂Gµσ
∂yγ
G
σλ(Γµαβ ◦ π)

−
1
2
∂Gβσ
∂yγ
G
λµ(Γσαµ ◦ π).

Since h∇ is conservative, then using (73) the right side of the above equation vanishes. Thus we have
∇

P
λ

αβγ = 0.

Let (E,F ,∇) be a generalized Berwald Lie algebroid and f be a non-constant smooth function on E. We
define h̄∇ := h∇ − d f∨ ⊗ C. Since d f∨ = (ρi

α ◦ π) ∂( f◦π)
∂xi X

α, then using (40) we can see that h̄∇ has the local
expression:

h̄∇ = (Xα +B
β
αVβ) ⊗ Xα, (77)

where

B
β
α = −(yβ(ρi

α ◦ π)
∂( f ◦ π)
∂xi + yλ(Γβαλ ◦ π)). (78)

Using two above equations it is easy to check that h̄∇ is an everywhere smooth function and h̄2
∇

= h̄∇,
ker h̄∇ = Γ(v£πE). Thus h̄∇ is an everywhere smooth, horizontal endomorphism on £πE. Moreover we can

obtain yγ ∂B
β
α

∂yγ = B
β
α, i.e., h̄∇ is a homogeneous horizontal endomorphism.

Lemma 3.30. Let (E,F ,∇) be a generalized Berwald Lie algebroid and {eα} be a basis of sections of E. Then h̄∇ is
conservative if and only if ρ(eα)( f ) = 0.

Proof. Using (32), h̄∇ is conservative, if and only if

(ρi
α ◦ π)

∂F

∂xi +B
β
α
∂F

∂yβ
= 0, (79)

where Bβα are given by (78). Setting (78) in the above equation give us

(ρi
α ◦ π)

∂F

∂xi − yβ(ρi
α ◦ π)

∂( f ◦ π)
∂xi

∂F

∂yβ
− yλ(Γβαλ ◦ π)

∂F

∂yβ
= 0.

Also, since h∇ is conservative, then we have

(ρi
α ◦ π)

∂F

∂xi − yλ(Γβαλ ◦ π)
∂F

∂yβ
= 0.
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Two above equations give us

yβ(ρi
α ◦ π)

∂( f ◦ π)
∂xi

∂F

∂yβ
= 0,

and consequently

(ρi
α ◦ π)

∂( f ◦ π)
∂xi F = 0,

because F is homogeneous of degree 2. But since F is non-zero, then from the above equation we deduce
(ρi
α ◦ π) ∂( f◦π)

∂xi = 0 or (ρ(eα) f )∨ = 0. Thus h∇̄ is conservative if and only if ρ(eα)( f ) = 0.

Corollary 3.31. Let (E,F ,∇) be a generalized Berwald Lie algebroid and the anchor map ρ be injective. Then h̄∇ is
not conservative.

Now we consider the linear connection ∇̄eαeβ = Γ̄
γ
αβeγ, where

(Γ̄γαβ ◦ π) = −
∂Bγα
∂yβ

= δγβ(ρi
α ◦ π)

∂( f ◦ π)
∂xi + (Γγαβ ◦ π),

or

Γ̄
γ
αβ = δγβρ

i
α

∂ f
∂xi + Γ

γ
αβ, (80)

and we call it the linear connection generated by h̄∇.

Proposition 3.32. Let (E,F ,∇) be a generalized Berwald Lie algebroid and ∇̄ be the linear connection generated by

h̄∇. Then the mixed curvature of the Ichijyō connection (
∇̄

D, h̄∇) vanishes.

Proof. Using (66) and (80) we get

∇̄

P
λ

αβγ =
∇

P
λ

αβγ −
1
2

yµ(ρi
α ◦ π)

∂( f ◦ π)
∂xi (

∂2
Gβσ

∂yµ∂yγ
G
σλ

+
∂Gβσ
∂yγ

∂Gσλ

∂yµ
) +

1
2
∂Gβσ
∂yγ
G
σλ(ρi

α ◦ π)
∂( f ◦ π)
∂xi

−
1
2
∂Gβσ
∂yγ
G
σλ(ρi

α ◦ π)
∂( f ◦ π)
∂xi −

1
2
∂Gβσ
∂yγ
G
σλ(ρi

α ◦ π)
∂( f ◦ π)
∂xi . (81)

Since (E,F ,∇) is a generalized Berwald Lie algebroid, then h∇ is conservative. Thus according to Proposition

3.29,
∇

P
λ

αβγ = 0. Moreover, we have

yµ
∂2
Gβσ

∂yµ∂yγ
= −

∂Gβσ
∂yγ

, yµ
∂Gσλ

∂yµ
= 0,

because ∂Gβσ
∂yγ and Gσλ are homogeneous functions of degree -1 and 0, respectively. Therefore, (81) reduces

to the following

∇̄

P
λ

αβγ =
1
2

(ρi
α ◦ π)

∂( f ◦ π)
∂xi

∂Gβσ
∂yγ
G
σλ +

1
2
∂Gβσ
∂yγ
G
σλ(ρi

α ◦ π)
∂( f ◦ π)
∂xi

−
1
2
∂Gβσ
∂yγ
G
σλ(ρi

α ◦ π)
∂( f ◦ π)
∂xi −

1
2
∂Gβσ
∂yγ
G
σλ(ρi

α ◦ π)
∂( f ◦ π)
∂xi

= 0.



E. Peyghan, L. Popescu / Filomat 36:1 (2022), 39–71 61

Definition 3.33. A generalized Berwald Lie algebroid (E,F ,∇) is called Berwald Lie algebroid, if ∇ is a torsion free
linear connection on E.

Proposition 3.34. Let (E,F ) be a Finsler Lie algebroid and h◦ be the Barthel endomorphism of it. Then (E,F ) is a
Berwald Lie algebroid if and only if there is a linear connection on E such that

(∇XY)V = [Xh◦ ,YV]£, ∀X,Y ∈ Γ(E).

Proof. Let (E,F ) be a Finsler Lie algebroid. Then there is a torsion free linear connection ∇ on E such
that h∇ is conservative. From the torsion freeness of ∇ we conclude that t∇ is zero and consequently h∇
is homogeneous. Thus h∇ is the Barthel horizontal endomorphism and consequently h∇ = h◦, because the
Barthel connection is unique. Therefore we have (∇XY)V = [Xh∇ ,YV]£ = [Xh◦ ,YV]£. Conversely, let there
is a linear connection on E such that (∇XY)V = [Xh◦ ,YV]£, for all X,Y ∈ Γ(E). Since (∇XY)V = [Xh∇ ,YV]£,
then we deduce [Xh◦ ,YV]£ = [Xh∇ ,YV]£ and consequently h∇ = h◦. Thus h∇ is conservative and ∇ is torsion
free, because the Barthel connection is conservative and torsion free. Therefore (E,F ) is a Berwald Lie
algebroid.

If h is the Barthel endomorphism of Finsler Lie algebroid (E,F ), then the d-connection
H

D given by
H

DVαVβ = 1
2
∂Gβγ
∂yα G

γµ
Vµ,

H

DVαδβ = 1
2
∂Gβγ
∂yα G

γµδµ,
H

Dδα Vβ = −
∂B

µ
α

∂yβVµ,
H

Dδα δβ = −
∂B

µ
α

∂yβ δµ,
(82)

is called the Hashiguchi connection of (E,F ).

Theorem 3.35. A Finsler Lie algebroid is a Berwald Lie algebroid if and only if the Hashiguchi connection of it, is
the Ichijyō connection.

Proof. Let (E,F ) be a Berwald Lie algebroid. Then from the above proposition, h∇ = h◦, where h∇ is
a horizontal endomorphism generated by ∇ and h◦ is the Barthel endomorphism. Thus we have Bµα =
−yγ(Γµαγ ◦ π). Setting this equation in (82) we obtain

H

Dδα Vβ = (Γµαβ ◦ π)Vµ =
∇

Dδα Vβ,
H

Dδα δβ = (Γµαβ ◦ π)δµ =
∇

Dδα δβ.

Also, from (82), (52) and (53) we have

H

DVα Vβ =
∇

DVα Vβ,
H

DVα δβ =
∇

DVα δβ.

Thus
H

D=
∇

D. Conversely, if the Hashiguchi connection of a Finsler algebroid (E,F ) is the Ichijyō connection,
then it is easy to see that h∇ = h◦. Thus according to the above proposition we conclude that (E,F ) is a
Berwald Lie algebroid.

Let (E,F ,∇) be a Berwald Lie algebroid. If ∇ is a flat connection then we call (E,F ,∇), the locally Minkowski
Lie algebroid.

Theorem 3.36. A Finsler Lie algebroid (E,F ) is a locally Minkowski Lie algebroid if and only if there is a torsion

free and flat linear connection on E such that the Ichijyō connection (
∇

D, h∇) is h∇-metrical.

Proof. Let (E,F ) be a locally Minkowski Lie algebroid. Then there exists the torsion free and flat linear
connection ∇ on E such that (E,F ,∇) is a generalized Berwald Lie algebroid. Therefore, from Proposition

3.28, we deduce that the Ichijyō connection (
∇

D, h∇) is h∇-metrical. Using Proposition 3.28, the proof of the
converse of the theorem is obvious.
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Proposition 3.37. Let (E,F ,∇) be a generalized Berwald Lie algebroid. Then we have

S∇ = S◦ + (d£
iS∇ t∇F )], (83)

h∇ = h◦ +
1
2

iS∇ t∇ +
1
2

[J, (d£
iS∇ t∇F )]]F−N

£ . (84)

Proof. Since (E,F ,∇) be a generalized Berwald Lie algebroid, then h∇ is conservative. Thus from Proposi-
tions 3.3 and 3.4 the proof is obvious.

Theorem 3.38. Let (E,F ,∇1) and (E,F ,∇2) be generalized Berwald Lie algebroids. Then ∇1 is equal to ∇2 if and
only if torsion tensor fields of these, are equal.

Proof. If ∇1 = ∇2, then T∇1 = T∇2 . Conversely, if T∇1 = T∇2 then the horizontal endomorphisms h∇1 and
h∇2 have same weak torsions and since these horizontal endomorphisms are homogeneous, then they have
same strong torsions. Therefore using Theorem 3.5 we deduce that h∇1 = h∇2 and consequently ∇1 = ∇2.

Proposition 3.39. Let (E,F ,∇) be a generalized Berwald Lie algebroid. If the spray S∇ generated by ∇ is the
projective change of spray S◦, then S∇ = S◦ and consequently (E,F ) is a Berwald manifold.

Proof. Since S∇ is the projective change of S◦, then there exists a function f̃ : E→ R that is smooth on E− {0}
such that S∇ = S◦ + f̃ C. Then using (83) we have (d£

iS∇ t∇
F )] = f̃ C. Thus using (iii) of Proposition 3.1 we

obtain iS∇−S◦ω = i(d£
iS∇

t∇
F )]ω = i f̃ Cω = f̃ iCω = f̃ d£

JF . Also, we have iS∇−S◦ω = d£
iS∇ t∇
F . These equations give us

d£
iS∇ t∇F = f̃ d£

JF . (85)

Thus we have

d£
iS∇ t∇F (S) = d£

F (iS∇ t∇(S)) = d£
F (t∇(S∇,S))

= d£
F (t∇(S,S)) = d£

F (0) = 0.

Also from (28) we have d£
JF (S) = yα ∂F∂yα = 2F . Setting this equation and the above equation in (85) we

deduce f̃F = 0 and consequently f̃ = 0. Therefore we have S∇ = S.

3.3. Wagner-Ichijyō connection

Let ∇ be a linear connection on E and f be a smooth function on M. If (
∇

D, h∇) is the Ichijyō connection

such that the h-horizontal torsion of
∇

D satisfies in

∇

A= d£ f∨ ∧ h∇ = d£ f∨ ⊗ h∇ − h∇ ⊗ d£ f∨, (86)

then we call (
∇

D, h∇, f ) the Wagner-Ichijyō connection generated by ∇.

From (86) we deduce that
∇

A (Vα,Vβ) =
∇

A (δα,Vβ) = 0 and

∇

A (δα, δβ) = d£ f∨(δα)h∇(δβ) − h∇(δα)d£ f∨(δβ)
= ρ£(δα)( f ◦ π)δβ − ρ£(δβ)( f ◦ π)δα

=
(
(ρi
α ◦ π)

∂( f ◦ π)
∂xi δγβ − (ρi

β ◦ π)
∂( f ◦ π)
∂xi δγα

)
δγ. (87)
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Lemma 3.40. Let (
∇

D, h∇, f ) be a Wagner-Ichijyō connection on Finsler Lie algebroid (E,F ). Then we have

T∇(X,Y) = dE f (X)Y − dE f (Y)X, ∀X,Y ∈ Γ(E),

t∇ = d£ f∨ ∧ J = d£ f∨ ⊗ J − J ⊗ d£ f∨,

iS∇ t∇ = f c J − d£ f∨ ⊗ C.

Proof. Using (87) we obtain

∇

A (δα, δβ) =
(
(ρi
α

∂ f
∂xi δ

γ
β − ρ

i
β

∂ f
∂xi δ

γ
α)eγ

)h
=

(
ρ(eα)( f )eβ − ρ(eβ)( f )eα

)h

=
(
dE f (eα)eβ − dE f (eβ)eα

)h
.

Also, from (68) we have
∇

A (δα, δβ) = (T∇(eα, eβ))h. Therefore we obtain

T∇(eα, eβ) = dE f (eα)eβ − dE f (eβ)eα,

that gives us the first equation of the lemma. Also, from (68) and (87) we obtain

F∇t∇(δα, δβ) =
∇

A (δα, δβ) = d£ f∨(δα)h∇(δβ) − h∇(δβ)d£ f∨(δα).

Applying F∇ to the above equation and using F∇h∇ = −J and F∇F∇ = −1 we derive that

t∇(δα, δβ) = d£ f∨(δα)J(δβ) − J(δα)d£ f∨(δβ),

which gives us the second equation of the lemma. Using the above equation and (1) we get

iS∇ t∇(δβ) = t∇(S∇, δβ) = yαt∇(δα, δβ) = yαd£ f∨(δα)Vβ − yαVαd£ f∨(δβ)

= yαρ£(δα)( f∨)Vβ − Cd£ f∨(δβ)

= yα(ρi
α ◦ π)

∂( f ◦ π)
∂xi J(δβ) − Cd£ f∨(δβ)

= f c J(δβ) − d£ f∨(δβ)C,

which gives us the third equation of the lemma.

Definition 3.41. Let (E,F ,∇) be a generalized Berwald Lie algebroid and f be a smooth function on E. Then
(E,F ,∇, f ) is called Wagner Lie algebroid if the torsion of linear connection ∇ satisfies in the following relation

T∇(X,Y) = dE f (X)Y − dE f (Y)X, ∀X,Y ∈ Γ(E). (88)

Theorem 3.42. Let (E,F ) be a Lie algebroid, f be a smooth function on M and ∇ be a linear connection on E. Then
the following items are equivalent:

(i) (E,F ,∇, f ) is a Wagner Lie algebroid.

(ii) The Wagner-Ichijyō connection (
∇

D, h∇, f ) generated by ∇, is h-metrical.
(iii) The horizontal endomorphism h∇ satisfies in the following

h∇ = h◦ + f c J − F [J, grad f∨]F−N
£ − d£

JF ⊗ grad f∨. (89)

Proof. From Proposition 3.28 the equivalence of (i) and (ii) is obvious. Thus it is sufficient to prove that (i) is
equivalent to (iii). Let (i) holds. Since (E,F ,∇, f ) is a Wagner Lie algebroid, then (E,F ,∇) is a generalized
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Berwald Lie algebroid and consequently from Proposition 3.37 we have the formula (84) for h∇. Using the
third equation of Lemma 3.40 and the definition of gradient, we obtain

(d£
iS∇ t∇F )(δβ) = (d£

F ◦ iS∇ t∇)(δβ) = d£
F (t∇(S∇, δβ))

= d£
F ( f c J(δβ) − d£ f∨(δβ)C)

= f cd£
F (J(δβ)) − d£ f∨(δβ)d£

F (C)

= f cd£
F (J(δβ)) − (igrad f∨ω)(δβ)d£

F (C). (90)

Since F is homogeneous of degree 2, then we deduce

d£
F (C) = ρ£(C)(F ) = yα

∂F
∂yα

= 2F .

Also, from (iii) of Proposition 3.1 we get

d£
F (J(δβ)) = (d£

JF )(δβ) = (iCω)(δβ).

Setting two above equations in (90) we obtain d£
iS∇ t∇
F = i f cC−2F grad f vω, which gives us

(d£
iS∇ t∇F )] = f cC − 2F grad f∨. (91)

Setting the third equation of Lemma 3.40 and the above equation in (84) we get

h∇ = h◦ +
1
2

( f c J − d£ f∨ ⊗ C) +
1
2

[J, f cC]F−N
£ − [J,F grad f∨]F−N

£ . (92)

By direct calculation we can obtain the following equations

[J, f cC]F−N
£ = f c J + d£

J f c
⊗ C,

[J,F grad f∨]F−N
£ = F [J,grad f∨]F−N

£ + d£
JF ⊗ grad f∨.

Setting two above equations in (92) give us

h∇ = h◦ +
1
2

( f c J − d£ f∨ ⊗ C) +
1
2

f c J +
1
2

d£
J f c
⊗ C

− F [J,grad f∨]F−N
£ − d£

JF ⊗ grad f∨. (93)

But we have

(dJ f c)(δα) = d f c(Vα) =
∂ f c

∂yα
= (ρi

α ◦ π)
∂( f ◦ π)
∂xi = (d£ f∨)(δα),

and (dJ f c)(Vα) = 0 = (d£ f∨)(Vα). Thus we have dJ f c = d£ f∨. Setting this equation in (93) we obtain (89),
i.e., (iii) holds. Now we let (iii) holds and we prove (i). Let

h◦ = (Xα +B
β
αVβ) ⊗ Xα, h∇ = (Xα + B̃

β
αVβ) ⊗ Xα.

Then using (31) and (89) we can obtain

B̃
β
α = B

β
α + yγ(ρi

γ ◦ π)
∂( f ◦ π)
∂xi δ

β
α − F

∂Gβγ

∂yα
(ρi
γ ◦ π)

∂( f ◦ π)
∂xi

−
∂F
∂yα
G
βγ(ρi

γ ◦ π)
∂( f ◦ π)
∂xi . (94)
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Since h◦ is conservative, then using (32) we have (ρi
α ◦π) ∂F∂xi +B

β
α
∂F
∂yβ = 0. Thus using the above equation we

get

(ρi
α ◦ π)

∂F

∂xi + B̃
β
α
∂F

∂yβ
= yγ(ρi

γ ◦ π)
∂( f ◦ π)
∂xi

∂F
∂yα
− F

∂Gβγ

∂yα
(ρi
γ ◦ π)

∂( f ◦ π)
∂xi

∂F

∂yβ
(95)

−
∂F
∂yα
G
βγ(ρi

γ ◦ π)
∂( f ◦ π)
∂xi

∂F

∂yβ
.

From (74) we obtain

∂F
∂yγ

= yλGγλ. (96)

Using the above equation in (95), the sum of the first and third sentences of the right side of the above
equation vanishes. Thus the above equation reduces to

(ρi
α ◦ π)

∂F

∂xi + B̃βα
∂F

∂yβ
= −F

∂Gβγ

∂yα
(ρi
γ ◦ π)

∂( f ◦ π)
∂xi

∂F

∂yβ
.

But from (75) and (96) we deduce

∂Gβγ

∂yα
∂F

∂yβ
= yλ

∂Gβγ

∂yα
Gλβ = −yλ

∂Gλβ
∂yα
G
βγ = 0.

Two above equations give us (ρi
α ◦ π) ∂F∂xi + B̃βα ∂F∂yβ = 0. Thus h∇ is conservative and consequently (E,F ,∇) is

a generalized Berwald Lie algebroid. Now we show that the torsion of ∇ satisfies in (88). Differentiating of
(94) with respect to yµ we obtain

∂B̃
β
α

∂yµ
=
∂B

β
α

∂yµ
+ (ρi

µ ◦ π)
∂( f ◦ π)
∂xi δ

β
α −

∂F
∂yµ

∂Gβγ

∂yα
(ρi
γ ◦ π)

∂( f ◦ π)
∂xi

− F
∂2
G
βγ

∂yµ∂yα
(ρi
γ ◦ π)

∂( f ◦ π)
∂xi −

∂2
F

∂yµ∂yα
G
βγ(ρi

γ ◦ π)
∂( f ◦ π)
∂xi

−
∂F
∂yα

∂Gβγ

∂yµ
(ρi
γ ◦ π)

∂( f ◦ π)
∂xi .

Changing α and µ in the above equation we can obtain
∂B̃

β
µ

∂yα . Therefore we can obtain

t̃βµα =
∂B̃

β
α

∂yµ
−
∂B̃

β
µ

∂yα
− (Lβµα ◦ π) =

∂B
β
α

∂yµ
−
∂B

β
µ

∂yα
− (Lβµα ◦ π) + (ρi

µ ◦ π)
∂( f ◦ π)
∂xi δ

β
α

− (ρi
α ◦ π)

∂( f ◦ π)
∂xi δ

β
µ = tβµα + (ρi

µ ◦ π)
∂( f ◦ π)
∂xi δ

β
α − (ρi

α ◦ π)
∂( f ◦ π)
∂xi δ

β
µ,

where t̃βµα are coefficients of the weak torsion t∇ of h∇ and tβµα are coefficients of the weak torsion t◦ of the

Barthel endomorphism h◦. But the Barthel endomorphism is torsion free. So tβµα = 0. Therefore from the
above equation we obtain

t∇(δµ, δα) = t̃βµαVβ = (ρi
µ ◦ π)

∂( f ◦ π)
∂xi Vα − (ρi

α ◦ π)
∂( f ◦ π)
∂xi Vµ. (97)

But from (68) and the above equation we deduce

(T∇(eµ, eα))h∇ = F∇t∇(δµ, δα) = (ρi
µ ◦ π)

∂( f ◦ π)
∂xi δα − (ρi

α ◦ π)
∂( f ◦ π)
∂xi δµ

=
(
ρ(eµ)( f )eα − ρ(eα)( f )eµ

)h∇
=

(
dE f (eµ)eα − dE f (eα)eµ

)h∇
,
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which gives us T∇(eµ, eα) = dE f (eµ)eα − dE f (eα)eµ. Therefore (88) holds and consequently (E,F ,∇, f ) is a
Wagner Lie algebroid.

Corollary 3.43. If (E,F ,∇, f ) is a Wagner Lie algebroid, then the spray S∇ generated by h∇ satisfies in the following
relation

S∇ = S◦ + f cC − 2F grad f∨.

Proof. Since (E,F ,∇, f ) is a Wagner Lie algebroid, then we have (91). Setting (91) in (83) the proof com-
pletes.

4. Applications to optimal control

We consider the following optimal control problem in R3 with positive homogeneous cost of Randers
type:


ẋ1 = u1 + u2x1

ẋ2 = u2x2

ẋ3 = u2
(98)

min
1
2

∫ T

0

(√
(u1)2 + (u2)2 + εu1

)2
dt, 0 ≤ ε < 1,

where ẋi = dxi

dt , i = 1, 3 and u1, u2 are real control variables. We are looking for the trajectories starting from
the point (1, 1, 0)t and parameterized by arclength (minimum time problem) and free endpoint. From the
system (98) we obtain u2 = ẋ3 and u1 = ẋ1

− ẋ3x1 and it results the Lagrangian

L =
1
2

(√
(ẋ1 − ẋ3x1)2 + (ẋ3)2 + ε

(
ẋ1
− ẋ3x1

))2
,

with holonomic constraint

ẋ2 = x2ẋ3,

which, by integration leads to the equation

ln x2 = x3 + c, c ∈ R,

The total Lagrangian, including the constrain has the form

L = L(x, ẋ) + λ(x)
(
ẋ2
− x2ẋ3

)
,

where λ = λ(x) is the Lagrange multiplier and it results

L =
1
2

(√
(ẋ1 − ẋ3x1)2 + (ẋ3)2 + ε

(
ẋ1
− ẋ3x1

))2
+ λ(x)

(
ẋ2
− x2ẋ3

)
.

We have to mention that the total Lagrangian L is degenerate on the tangent bundle TR3 (the Hessian
matrix ∂2L

∂ẋi∂ẋ j is singular) and the corresponding Euler-Lagrange equations yield a complicated system of
second-order differential equations. Moreover, the Legendre transformation is not well defined and thus
no straightforward Hamiltonian formulation can be related. In addition, we can not obtain the explicit
coefficients of the semispay S from the symplectic equation iSωL = −dEL, because the total Lagrangian L is
not regular.
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We can try to use the Pontryagin Maximum Principle in order to solve this optimal control problem and
the Hamiltonian function on the cotangent bundle has the form

H(u, x, p) = piẋi
− L = p1

(
u1 + u2x1

)
+ p2u2x2 + p3u2

−
1
2

(√
(u1)2 + (u2)2 + εu1

)2
,

where p are momentum variable. From the conditions ∂H
∂ui = 0, i = 1, 2 is difficult to find the control variables

u1, u2 as a smooth function of (x, p) and we can not write the Hamiltonian H without dependence on control
variables, using this way. For these reasons, we will use a different approach, involving the geometry and
framework of a Lie algebroid.

The control system (98) can be written in the form [16]:

ẋ = u1X1 + u2X2, x =

 x1

x2

x3

 ∈ R3, X1 =

 1
0
0

 , X2 =

 x1

x2

1

 ,
min

∫ T

0 F (u(t))dt, F (u) = 1
2

(√
(u1)2 + (u2)2 + εu1

)2
, 0 ≤ ε < 1.

which is a driftless control affine system. The associated distribution D = 〈X1,X2〉 , generated by the vector
fields X1, X2 is a holonomic distribution, that is [Xi,X j] ∈ D for every i, j = 1, 2, i , j, with constant rank,
rankD = 2. Indeed, in the canonical basis

(
∂
∂x1 ,

∂
∂x2 ,

∂
∂x3

)
of TR3 we have

X1 =
∂

∂x1 , X2 = x1 ∂

∂x1 + x2 ∂

∂x2 +
∂

∂x3 ,

and therefore, the Lie bracket is given by [X1,X2] = X1. From the well known Frobenius theorem it results
that the distribution D is integrable, it determines a foliation on R3, given by surfaces ln x2 = x3 + c, c ∈ R
and two points can be joined by a optimal trajectory if and only if they are situated on the same leaf.

We will consider the Lie algebroid, being just the holonomic distribution E = D = 〈X1,X2〉 and the
anchor ρ : E→ TR3 has the components

ρi
α =

 1 x1

0 x2

0 1

 , (99)

with nonzero structure functions [Xα,Xβ]E = LγαβXγ given by L1
12 = 1, L1

21 = −1. The cost F (u) =

1
2

(√
(u1)2 + (u2)2 + εu1

)2
is positive and homogeneous of degree 2. It results that F is a Finsler function on

Lie algebroid E and we obtain that the pair (E,F ) is a Finsler Lie algebroid. The matrix

Gαβ =
∂2
F

∂uα∂uβ
,

is non-degenerate. The canonical spray S◦ = uαXα + Sα◦Vα of this Finsler algebroid has the components
given by

Sα◦ = GαβuγLεγβ
∂F
∂uε

, α, β, γ, ε ∈ 1, 2,

where Gαβ is the inverse matrix of Gαβ. The coefficients of the homogeneous horizontal endomorphism
(Barthel endomorphism) h◦ =

(
Xα +BαβVα

)
⊗ X

β generated by the canonical spray has the form

B
α
β =

1
2

(
∂Sα◦
∂uβ
− uεLαβε

)
.
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The expressions of the tension, weak torsion and strong torsion of h◦ are given by (7), (8), (9) and have the
expressions:

H =

Bαβ − uγ
∂Bαβ
∂uγ

Vα ⊗ X
β = 0,

t =
1
2

∂B
γ
β

∂uα
−
∂Bγα
∂uβ
− Lγαβ

Xα ∧ Xβ ⊗Vγ,

T =

(
B
α
β − uγ

∂Bαγ

∂uβ
− uγLαγβ

)
Vα ⊗ X

β.

The components of the curvature tensor of h◦ have the expressions given in (11), which leads to

Rγαβ = Bλα

∂Bγβ

∂uλ
− B

λ
β

∂Bγα
∂uλ

+ LλβαB
γ
λ.

The first Cartan tensor C and second Cartan tensor C̃ of Finsler Lie algebroid have the expressions given by

C =
1
2
∂Gβλ
∂uα
G
γλ
X
α
∧ X

β
⊗Vγ

C̃ =

(
B
λ
α

∂Gβµ

∂uλ
G
γµ +

∂Bγα
∂uβ

+
∂Bλα
∂uµ
G
γµ
Gβλ

)
X
α
∧ X

β
⊗Vγ.

In the following, we will use the Pontryagin Maximum Principle at the level of Finsler Lie algebroid E, in
order to solve the optimal control problem. The extreme trajectories satisfy the Hamilton-Jacobi-Belmann
equations on Lie algebroids given by [9]

dxi

dt
= ρi

α
∂H
∂µα

,
dµα
dt

= −ρi
α
∂H

∂xi − µγLγαβ
∂H
∂µβ

. (100)

Using Finsler function F (u) = 1
2

(√
(u1)2 + (u2)2 + εu1

)2
and the result from [6] we can find the Hamiltonian

function on E∗ in the form

H(µ) =
1
2


√

(µ1)2

(1 − ε2)2 +
(µ2)2

1 − ε2 −
εµ1

1 − ε2


2

.

From (100) we deduce that

ẋ1 =
∂H
∂µ1

+ x1 ∂H
∂µ2

, ẋ2 = x2 ∂H
∂µ2

, ẋ3 =
∂H
∂µ2

,

µ̇1 = −µ1
∂H
∂µ2

, µ̇2 = µ1
∂H
∂µ1

,

with

∂H
∂µ1

=

(
1 + ε2

)
µ1

(1 − ε2)2 −
ε
√

(µ1)2

(1−ε2)2 +
(µ2)2

1−ε2

1 − ε2 −
εµ2

1

(1 − ε2)3
√

(µ1)2

(1−ε2)2 +
(µ2)2

1−ε2

,
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∂H
∂µ2

=
µ2

1 − ε2 −
εµ1µ2

(1 − ε2)2
√

(µ1)2

(1−ε2)2 +
(µ2)2

1−ε2

.

We use the following change of variables

µ1(t) = (1 − ε2)
r(t)

coshθ(t)
,

µ2(t) =
√

1 − ε2r(t) tanhθ(t),

where

sinhθ =
eθ − e−θ

2
, coshθ =

eθ + e−θ

2
, tanhθ =

sinhθ
coshθ

=
eθ − e−θ

eθ + e−θ
,

and it results√
(µ1)2

(1 − ε2)2 +
(µ2)2

1 − ε2 = |r| .

The equations

µ̇1 = −µ1
∂H
∂µ2

, µ̇2 = µ1
∂H
∂µ1

,

lead to
√

1 − ε2
( ṙ

r
− θ̇ tanhθ

)
= r(− tanhθ +

ε
coshθ

tanhθ), (101)

respectively

√

1 − ε2

(
ṙ
r

tanhθ +
θ̇

cosh2 θ

)
= r

(
(1 + ε)2

cosh2 θ
−

ε
coshθ

−
ε

cosh3 θ

)
. (102)

Reducing θ̇ and ṙ
r from the relations (101) and (102), we get

√

1 − ε2ṙ = r2ε
1

coshθ
tanhθ(

ε
coshθ

− 1), (103)

and

√

1 − ε2θ̇ = r
(

ε
coshθ

− 1
)2
. (104)

The equations (103) and (104) lead to

ṙ
θ̇

=
rε

coshθ tanhθ
ε

coshθ − 1
,

with the solution

ln |r| = − ln
(

ε
coshθ

− 1
)
− ln c.

and we obtain

|r| =
1

c
(

ε
coshθ − 1

) .
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Since the geodesics are parameterized by arclength (minimum time problem) the the Hamiltonian is exactly
1/2 and it results

H =
r2

2

(
1 −

ε
coshθ

)2
=

1
2c2 .

We obtain c = ±1 and

r = ±
1

ε
coshθ − 1

.

The equation

µ̇1 = −µ1ẋ3,

leads to

x3(θ) = ln
c1

(
1 − ε

coshθ

)
(1 − ε2) 1

coshθ

, c1 ∈ R.

In addition, we are looking for the trajectories starting from the point (1, 1, 0)t and it results x3(0) = 0 which
yields ln c1

1+ε = 0 and c1 = 1 + ε, which gives the solution

x3(θ) = ln
1 − ε

coshθ

(1 − ε) 1
coshθ

= ln
coshθ − ε

1 − ε
.

The equation

ẋ2

x2 = −
µ̇1

µ1
,

yields

x2(θ) =
c2(1 − ε

coshθ )

(1 − ε2) 1
coshθ

,

and using that x2(0) = 1 we get c2 = 1 + ε. These lead to the solution

x2(θ) =
coshθ − ε

1 − ε
.

By direct computation we obtain

µ̇2 = µ1

(
ẋ1
− x1 ∂H

∂µ2

)
= µ1ẋ1 + x1µ̇1,

and, consequently, by integration it results µ2 = µ1x1 + c3. Next,

x1(θ) =
sinhθ
√

1 − ε2
+

c3(1 − ε
coshθ )

(1 − ε2) 1
coshθ

.

From x1(0) = 1 it results that c3 = 1 + ε and we obtain the solution

x1(θ) =
sinhθ
√

1 − ε2
+

coshθ − ε
1 − ε

.

The solution is optimal because the Hamiltonian function is convex. Finally, the optimal solution is given
by

x1(θ) =
sinhθ
√

1 − ε2
+

coshθ − ε
1 − ε

, x2(θ) =
coshθ − ε

1 − ε
, x3(θ) = ln

coshθ − ε
1 − ε

.

The control variables are given by u1 = ẋ1
− ẋ3x1, u2 = ẋ3 and it results

u1 =
coshθ
1 − ε2 −

sinh2 θ
√

1 − ε2 (coshθ − ε)
, u2 =

sinhθ
coshθ − ε

.



E. Peyghan, L. Popescu / Filomat 36:1 (2022), 39–71 71

References

[1] D. Bao, S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlag, New York, 2000.
[2] J. Cortez, M. de Leon, J. Marrero, M. de Diego, E. Martinez, A survey of Lagrangian mechanics and control on Lie algebroids and

groupoids, Int. J. Geom. Methods Mod. Phys. 3 (509) (2006).
[3] J. Grabowski, P. Urbański, Tangent and cotangent lift and graded Lie algebra associated with Lie algebroids, Ann. Global Anal.

Geom. 15 (1997) 447–486.
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