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Abstract. This paper aims to study the dynamical behaviours of a four dimensional food web system
consisting of a bottom prey, two middle predators and a superpredator(top predator) with Holling Type I
and Type II functional responses. A system of four differential equations has been proposed and analyzed.
Positivity, boundedness and extinction criteria of the system are studied. We have discussed the existence
of various equilibrium points and stability of the system at these equilibrium points. We also explore
the system undergoes a Hopf-bifurcation around interior equilibrium point for a parametric values which
has very significant ecological impacts in this work. Computer simulation are carried out to validate our
analytical findings. The biological implications of analytical and numerical findings are discussed critically.

1. Introduction

Most of the plants and animals are correlated to each other by their food habits and are developed
through a unique behavioural system for their nourishment. Foods are the main sources for the living
organisms. Not only foods are transformed into energy to produce food-energy cycle but nutritional re-
lationship are also the essential for the ecological balance between prey and predators. To maintain a
dynamic equilibrium between different organisms, energy should flow from producers to its consumers.
Food chain is one of the probable pronouncement to describe how energy flows from time to time within
various organisms to maintain steady state of equilibrium between biotic and abiotic factors.

Ecological systems with one or two species are very rare in nature. Co-existence of a large number of
species is almost comprehensive in natural communities and ecosystems [12]. After the pioneering works of
Lotka (1925) and Volterra (1926), a large number of works has been carried out on the dynamics of two and
three interacting species in food chains [1, 6, 10, 11, 13–15]. There are very few works done by researchers
for more than three species [18, 19]. The reason may be the insufficiency of mathematical tools to handle the
increasing number of differential equations. However, necessity for incorporating more species has been
felt day by day.

Most of the Arthropods, like Thrips (belonging to the order of Thysanoptera) are minute (1 mm long)
slim insect with fringed wings and symmetrical mouth parts, are very harmful in crop field. It mostly
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enters into the central part of the stem (vascular bundle) and affecting the water and food conducting
tissues (Xylem and Phloem respectively). As a result a enormous lose in crop productivity and economy is
faced by the cultivator (may be farmer or agriculturist). So we need to implement a complete pull down
programme by ensuring its null residual effects on the environment [5, 9].

Another Arthropods belonging to the order of Hemiptera like Orius tristicolour and Anthocoris nemoralis-
are feed on Thrips (psyllids e.g. Cacopsylla sp.). The presence of these two Arthropods in large number inhibit
the ecological balance on the crop field, but never exhibit prey-predator relationship among themselves.
Though it attracts insectivorous animals that could not be expected for crop development. However, an-
other Endo-pathogenic fungi are introduced into the field to stop their action after killing of Thrips. But not
all fungi are good to control the same operation following the pathogenic activity. Endomorpha spp.(belongs
to Zygomycota) are one of the less pathogenic fungi to the crop but lethal pathogens to every kind Arthro-
pods. This fungi hibernate inside the larva of hemipteran Arthropods and asexual mitospores are come
out by killing the larvae. This killer fungi are considered as superpredator and subsequently the complete
ecological balance can be maintained through their prey-predator relationship [2, 17].

Our main task is to focus on suitable non-linear models that can help us to understand the various array
of observed scenarios in the underlying filed. In this paper we have considered a mathematical model
consisting a prey (Thrips), two predators (Orius tristicolour and Anthocoris nemoralisare) which destroy (or
feed on) prey and a superpredator (or parasitoid/ pathogen) (viz. Endomorpha spp.) which is a natural en-
emy to the concerned prey and predators. A small number of models consisting of four species have been
proposed and studied in the ecological literature [3, 4, 7, 16]. The present article deals with the dynamical
study of the underlying four species ‘prey-two predators-superpedator’ model.

The rest of the paper is organized as follows. In Section 2, the basic mathematical model is introduced
together with basic considerations. Boundedness and positivity of the solutions of the proposed model
are established in Section 3. Extinction criteria of the predator-prey population are discussed in Section 4.
Section 5 deals with all possible equilibrium points of the model and their feasibility conditions. Stability of
the model at various equilibrium points is discussed in Section 6, also permanence of the system studied in
Section 7. In Section 8, a detailed study of the Hopf- bifurcation around the interior equilibrium is carried
out. Computer simulations are carried out to validate our analytical findings numerically in Section 9.
Section 10 contains the general discussion and biological significance of our analytical findings.

2. The mathematical model

The model we analyze in this paper describes a food chain composed of a prey, whose population
biomass is denoted by X, two middle predators whose population biomasses are denoted by Y and W,
and a superpredator (or top-predator) whose population biomass is denoted by Z. Before introducing the
model mathematically and its rigorous analysis, let us present a brief sketch of the construction of the model
which may indicate the biological relevance of it.

1. Behaviour of the entire community is assumed to arise from the coupling of these four interacting
species where top predator takes food from all three (a bottom prey and two middle predators) and middle
predators are taking food from only the bottom prey (see Figure 1 ). There is no explicit interaction among
the two middle predators.
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Figure 1: The feeding relationship in the food chain.

2. It is assumed that in the absence of the predators the prey population density grows according to
logistic law with carrying capacity K(K > 0) and with an intrinsic growth rate r(r > 0).

3. We have considered Holling type-II functional response for the species (X,Y),(X,W) and also for the
species (X,Z). For (Y,Z) and (W,Z) Holling Type I (or Volterra) response function is assumed.

The above considerations lead to a food chain model under the framework of the following set of four
nonlinear ordinary differential equations:

dX
dT

= rX(1 −
X
K

) −
B1XY

A1 + X
−

B2XZ
A2 + X

−
B3XW
A3 + X

dY
dT

=
C1B1XY
A1 + X

−D1Y −M1YZ

dW
dT

=
C3B3XW
A3 + X

−D2W −M2WZ

dZ
dT

= ε1M1YZ + ε2M2WZ −D3Z +
C2B2XZ
A2 + X

(1)

with X(0) = X0 > 0,Y(0) = Y0 > 0,W(0) = W0 > 0,Z(0) = Z0 > 0. Here B1,B3 and B2 are the maximal
growth rates of the middle predators and superpredator respectively; A1,A3 and A2 are the half saturation
constants; C1, C3, C2, ε1, ε2 are the conversion rates and D1,D2 and D3 are the per capita death rates of the
middle predators and superpredator respectively. It is assumed that all the parameters are positive.

Let us non-dimensionalize the system (1) with the following scaling:

x =
X
K
, y =

Y
K
, z =

Z
K

and t = rT

Then the system (1) takes the form (after some simplification):
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dx
dt

= x(1 − x) −
αxy

a1 + x
−

βxz
a2 + x

−
γxw

a3 + x

dy
dt

=
α1xy
a1 + x

− d1y −m1yz

dw
dt

=
α2xw
a3 + x

− d2w −m2wz

dz
dt

= µ1yz + µ2wz − d3z +
α3xz

a2 + x

(2)

with x(0) = x0 > 0, y(0) = y0 > 0,w(0) = w0 > 0, z(0) = z0 > 0, where

α =
B1

r
, β =

B2

r
, γ =

B3

r
, a1 =

A1

K
, a2 =

A2

K
, a3 =

A3

K
, α1 =

C1B1

r
, α2 =

C3B3

r
, α3 =

C2B2

r
,

d1 =
D1

r
, d2 =

D2

r
, d3 = D3K,m1 =

M1K
r
,m2 =

M2K
r
, µ1 =

ε1M1K
r

, µ2 =
ε2M2K

r
.

3. Positivity and boundedness

Positivity and boundedness of a model guarantee that the model is biologically well behaved. For
positivity of the system (2), we have the following theorem.

Theorem 3.1. All solutions of the system (2) that start in R4
+ remain positive forever.

Proof. From the first equation of system (2), we get

x(t) = x(0) exp
[∫ t

0
{1 − x(θ) −

αy(θ)
a1 + x(θ)

−
βz(θ)

a3 + x(θ)
−

γw(θ)
a2 + x(θ)

}dθ
]
⇒ x(t) > 0

From the second equation of system (2), we get

y(t) = y(0) exp
[∫ t

0
{
α1x(θ)

a1 + x(θ)
− d1 −m1z(θ)}dθ

]
⇒ y(t) > 0

From the third equation of system (2), we get

w(t) = w(0) exp
[∫ t

0
{
α2x(θ)

a2 + x(θ)
− d2 −m2z(θ)}dθ

]
⇒ w(t) > 0

From the fourth equation of system (2), we get

z(t) = z(0) exp
[∫ t

0
{µ1y(θ) + µ2w(θ) − d3 +

α3x(θ)
a2 + x(θ)

}dθ
]
⇒ z(t) > 0

This proves the theorem.

Theorem 3.2. All solutions of the system (2) that start in R4
+ are uniformly bounded.
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Proof. Since

dx
dt
≤ x(1 − x)

we have

lim
t→∞

sup x(t) ≤ 1

Now we assume,

W1 = x +
α
α1

y +
γ

α2
w +

β

α3
z

Therefore

dW1

dt
≤ x(1 − x) −

α
α1

d1y −
γ

α2
d2w −

β

α3
d3z + yz(

βµ1

α3
−

m1α
α1

) + wz(
βµ2

α3
−

m2γ

α2
)

∴
dW1

dt
≤ 2x − RW1, where R = min{1, d1, d2, d3},

provided
βµ1

α3
<

m1α
α1

i.e., C1ε1 < C2 and
βµ2

α3
<

m2γ

α2
i.e., C3ε2 < C2

Hence
dW1

dt
+ RW1 ≤ 2x ≤ 2, for large t, since lim

t→∞
sup x(t) ≤ 1.

Applying a theorem on differential inequalities, we obtain

0 ≤W1(x, y,w, z) ≤
2
R

+
W1(x(0), y(0),w(0), z(0))

eRt ⇒ 0 ≤W1 ≤
2
R

as t→∞.

Thus, all solutions of system (2) enter into the region

B =
{
(x, y,w, z) : 0 ≤W1 <

2
R

+ ε for any ε > 0
}
.

This proves the theorem.

4. Extinction scenarios

This section deals with the conditions for which both the species of the underlying system (2) will be
going to extinct in long run. Suppose:

y = lim sup
t→∞

y(t) and y = lim inf
t→∞

y(t).

Here we shall use the following fact (for large time t):

x(t) ≤ 1.

Theorems 4.1,4.2 and 4.3 show the extinction of prey and two middle predator populations also Theorem
4.4 deals with the extinction of top predator population.

Theorem 4.1. If y > a1+1
α , then lim sup

t→∞
x(t) = 0.
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Proof. Let us choose ε such that 0 < ε < y(t) − a1+1
α , then ∃ T > 0 such that y(t) ≥ y(t) − ε,∀ t ≥ T. For t ≥ T:

dx
dt

≤ x − αxy
a1+x

≤ x
{
1 − α

(y−ε)

a1+1

}
= αx

a1+1

{
a1+1
α − (y − ε)

}
< 0.

Hence lim sup
t→∞

x(t) = 0.

Theorem 4.2. If d1 >
α1
a1

, then lim
t→∞

y(t) = 0.

Proof. We have

dy
dt

=
α1xy
a1+x − d1y −m1yz

≤
α1xy
a1+x − d1y

≤
α1
a1

xy − d1y
≤ y

{
α1
a1
− d1

}
, for large time t

⇒
dy
dt

< 0.

Hence, lim sup
t→∞

y(t) = 0, if d1 >
α1
a1

.

Theorem 4.3. If d2 >
α2
a3

, then lim
t→∞

w(t) = 0.

Proof. We have

dw
dt

= α2xw
a3+x − d2w −m2wz

≤
α2xw
a3+x − d2w

≤
α2
a3

xw − d2w
≤ w

{
α2
a3
− d2

}
, for large time t

⇒
dw
dt

< 0.

Hence, lim sup
t→∞

w(t) = 0, if d2 >
α2
a3

.

Theorem 4.4. If d2 >
α3
a2

+ µ1 + µ2, then lim
t→∞

z(t) = 0.

Proof. We have

dz
dt

= µ1yz + µ2wz − d3z + α3xz
a2+x

≤
α3
a2

xz + µ1yz + µ2wz − d3z
≤

α3
a2
χz + µ1χz + µ2χz − d3z

[
∵

{
(x, y,w, z) : 0 ≤W1 < 2

R + ε = χ for any ε > 0
}]

≤ zχ
{
α3
a2

+ µ1 + µ2 − d2

}
,

⇒
dz
dt

< 0.

Hence, lim sup
t→∞

z(t) = 0, if d2 >
α3
a2

+ µ1 + µ2.
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5. Equilibrium points and feasibility conditions

System (2) may have the following equilibrium points:

(A) The trivial equilibrium point E0(0, 0, 0, 0):
This equilibrium always exists.

(B) The axial equilibrium point E1(1, 0, 0, 0):
This predator free equilibrium exists unconditionally.

(C) The boundary equilibrium point E2(x1, y1, 0, 0):
This equilibrium exists only when α1 > d1(a1 +1). This condition yields, x1 = a1d1

α1−d1
and y1 = 1

α (a1 + a1d1
α1−d1

)(1−
a1d1
α1−d1

).

(D) The boundary equilibrium point E3(x2, 0,w2, 0):
This equilibrium exists only when α2 > d2(a3 + 1). In this case, x2 = a3d2

α2−d2
and w2 = 1

γ (a3 + a3d2
α2−d2

)(1 − a3d2
α2−d2

).

(E) The boundary equilibrium point E4(x3, 0, 0, z3):
This equilibrium exists only whenα3 > d3(a2+1). For this situation, x3 = a2d3

α3−d3
and z3 = 1

β (a3+ a3d2
α2−d2

)(1− a2d3
α3−d3

).

(F) The boundary equilibrium point E5(x4, y4,w4, 0) of system (2) is given by

x4 =
a1d1

α1 − d1
,

y4 =
a1 + x4

α
(1 − x4 −

γw4

a3 + x4
),

and w4 =
a3 + x4

γ
(1 − x4 −

αy4

a1 + x4
).

This equilibrium exists only when α1 > d1 and there exists positive values of y4 and w4 in the y−w plane
of the orthant.

(G) The boundary equilibrium point E6(x5, y5, 0, z5) of system (2) is given by

R1x5
5 + R2x4

5 + R3x3
5 + R4x2

5 + R5x5 + R6 = 0

y5 =
1
µ1

(d3 −
α3x5

a2 + x5
),

and

z5 =
1

m1
(
α1x5

a1 + x5
− d1),

where
R1 = −µ1m1,
R2 = µ1m1(1 − 2a2 − 2a1),
R3 = µ1m1(1 − a2 − a1)(a1 + a2) + µ1m1(a2 − 2a1a2 + a1) + βµ1(d1 − α1) + αm1(α3 − d3),
R4 = 2a1a2µ1m1 −

αa2d3µ1m1

µ2
+ βµ1a1d1 + µ1m1(a2 − 2a1a2 + a1 −

αd3
µ1

+
βd1

m1
)(a1 + a2) + (αα3m1 − βα1µ1)(a2 + a1),

R5 = µ1m1a1a2(a2 − a1a2 + a1) + a2a1(µ1d1β −m1d3α),
R6 = µ1m1a1a2(a1a2 −

αa2d3
µ2

+
βa1d1

m1
).
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This equilibrium exists only when R1 < 0, a1a2 +
βa1d1

m1
> αa2d3

µ2
and a1d1

α1−d1
< x5 <

a2d3
α3−d3

.

(H) The boundary equilibrium point E7(x6, 0,w6, z6) of system (2) is given by

R7x5
6 + R8x4

6 + R9x3
6 + R10x2

6 + R11x6 + R12 = 0

w6 =
1
µ2

(d3 −
α3x6

a2 + x6
),

and

z6 =
1

m2
(
α2x6

a3 + x6
− d2),

where
R7 = −µ2m2,
R8 = µ2m2(1 − a3 − a2),
R9 = µ2m2(a3 − 2a2a3 + a2) + µ2β(d2 + α2) + γm2(d3 + α3) + µ2m2(a2 + a3)(1 − a3 − a2),
R10 = 2a2a3µ2m2 + (µ2m1a3−2µ2m2a2a3 +a2µ2m2 +βµ2d1 +γd3m2)(a2 +a3)+a2(βα2µ2−γm2d3)+γα3m2(a3−a2),
R11 = µ2m2a2a3(a3 − a2a3 + a2 +

βd2

m2
+

γd3

µ2
) + (µ2m2a2a3 + µ2α2βa3 −m2a2d3γ)(a2 + a3) − a3a2(µ2βα2 + γα3m2),

R12 = µ2m2a2a3(a2a3 +
βα2a3

m2
−

γa2d3

µ2
).

This equilibrium exists only when R7 < 0, a2 + a3 < 1 and a3d2
α2−d2

< x6 <
a2d3
α3−d3

.

(I) The interior equilibrium point E∗(x∗, y∗,w∗, z∗) of system (2) is given by

P1 + P2x∗ + P3x∗2 = 0,

y∗ =
µ2(1 − x∗ − P4) − γ

a3+x∗P5

P6
,

w∗ =
−µ1(1 − x∗ − P4) + α

a1+x∗P5

p6
,

z∗ =
1

m1
(
α1x∗

a1 + x∗
− d1),

where
P1 = a1a3(m1d2 − d1m2), P2 = α1a3m2 − α2a1m1 + (a1 + a3)(m1d2 − d1m2)

P3 = α1m2 − α2m1 + (m1d2 − d1m2), P4 =
β( α1x∗

a1+x∗ − d1)

m1(a2 + x∗)
,

P5 = d3 −
α3x∗

a2 + x∗
, P6 =

αµ2

a1 + x∗
−

γµ1

a3 + x∗
.

This interior equilibrium exists only when
(i) α1m2 + m1d2 < d1m2 + α2m1,

(ii) x∗ > max{
a1d1

a1 − d1
,

a1γµ1 − a3αµ2

αµ2 − γµ1
} and

(iii)
γ

µ2(a3 + x∗)
<

1 − x∗ − P1

P2
<

α
µ1(a1 + x∗)

.
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6. Stability Analysis

6.1. Local Stability
The variational matrix of the system (2) is

V(x, y,w, z) =


v11 v12 v13 v14
v21 v22 0 v24
v31 0 v33 v34
v41 v42 v43 v44


where v11 = 1 − 2x − a1αy

(a1+x)2 −
a2βz

(a2+x)2 −
a3γw

(a3+x)2 , v12 = − αx
a1+x , v13 = −

γx
a3+x , v14 = −

βx
a2+x , v21 =

a1α1 y
(a1+x)2 , v22 =

α1x
a1+x − d1 − m1z, v24 = −m1y, v31 = a3α2w

(a3+x)2 , v33 = α2x
a3+x − d2 − m2z, v34 = −m2w, v41 = a2α3z

(a2+x)2 , v42 = µ1z, v43 =

µ2z, v44 = µ1y + µ2w − d3 + α3x
a2+x .

Case I: Equilibrium point E0(0, 0, 0, 0)
At E0, the variational matrix V(E0) becomes

V(E0) =


1 0 0 0
0 −d1 0 0
0 0 −d2 0
0 0 0 −d3


The corresponding eigenvalues are 1,−d1,−d2,−d3 and hence we have the following theorem:

Theorem 6.1. E0 is unstable.

Case II: Equilibrium point E1(1, 0, 0, 0)

At E1, the variational matrix V(E1) is given by

V(E1) =


−1 −

α
a1+1 −

γ
a3+1 −

β
a2+1

0 α1
a1+1 − d1 0 0

0 0 α2
a3+1 − d2 0

0 0 0 α3
a2+1 − d3


The corresponding eigenvalues are −1, α1

a1+1 − d1,
α2

a3+1 − d2 and α3
a2+1 − d3.

Theorem 6.2. E1 is locally asymptotically stable if α1
a1+1 < d1,

α2
a3+1 < d2 and α3

a2+1 < d3.

Case III: Equilibrium point E2(x1, y1, 0, 0)

At E2, the variational matrix V(E2) is given by

V(E2) =


1 − 2x1 −

a1αy1

(a1+x)2 −
αx1

a1+x1
−

γx1

a3+x1
−

βx1

a2+x1a1α1 y1

(a1+x1)2
α1x1

a1+x1
− d1 0 −m1y1

0 0 α2x1
a3+x1

− d2 0
0 0 0 µ1y1 − d3 + α3x1

a2+x1


If the corresponding eigenvalues are λ1, λ2, λ3 and λ4, then

λ1 =
α2a1d1

a3α1 − a3d1 + a1d1
− d2; λ2 =

α3a1d1

a2α1 − a2d1 + a1d1
+
µ1a1α1(α1 − d1 − a1d1)

α(α1 − d1)2 − d3
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and λ3, λ4 are the roots of the quadratic equation:

λ2 + A1λ + A2 = 0,

where

A1 =
a1d1α1 + d2

1 + a1d2
1 − α1d1

α1(α1 − d1)
and A2 =

d1(α1 − d1 − a1d1)
α1

.

Theorem 6.3. E2 exists and locally asymptotically stable if α1(1− a1) < d1(1 + a1) < α1; d2 >
α2a1d1

a3α1−a3d1+a1d1
and d3 >

α3a1d1
a2α1−a2d1+a1d1

+
µ1a1α1(α1−d1−a1d1)

α(α1−d1)2 .

Case IV: Equilibrium point E3(x2, 0,w2, 0)

At E3, the variational matrix V(E3) is given by

V(E3) =


1 − 2x2 −

a3γw2

(a3+x2)2 −
αx2

a1+x2
−

γx2

a3+x2
−

βx2

a2+x2

0 α1x2
a1+x2

− d1 0 0
a3α2w2

(a3+x2)2 0 α2x2
a3+x2

− d2 −m2w2

0 0 0 µ2w2 − d3 + α3x2
a2+x2


If the corresponding eigenvalues are λ1, λ2, λ3 and λ4, then

λ1 =
α1a3d2

a1α2 − a1d2 + a3d2
− d1; λ2 =

α3a3d2

a2α2 − a2d2 + a3d2
+
µ2a3α2(α2 − d2 − a3d2)

γ(α2 − d2)2 − d3;

and λ3, λ4 are the roots of the quadratic equation:

λ2 + B1λ + B2 = 0,

where

B1 =
a3d2α2 + d2

2 + a3d2
2 − α2d2

α2(α2 − d2)
and B2 =

d2(α2 − d2 − a3d2)
α2

.

Theorem 6.4. E3 exists and locally asymptotically stable if α2(1− a3) < d2(1 + a3) < α2; d1 >
α1a3d2

a1α2−a1d2+a3d2
and d3 >

α3a3d2
a2α2−a2d2+a3d2

+
µ2a3α2(α2−d2−a3d2)

γ(α2−d2)2 .

Case V: Equilibrium point E4(x3, 0, 0, z3)

At E4, the variational matrix V(E4) is given by

V(E4) =


1 − 2x3 −

a2βz3

(a2+x3)2 −
αx3

a1+x3
−

γx3

a3+x3
−

βx3

a2+x3

0 α1x3
a1+x3

− d1 −m1z3 0 0
0 0 α2x3

a3+x3
− d2 −m2z3 0

a2α3z3
(a2+x3)2 µ1z3 µ2z3 −d3 + α3x3

a2+x3


If the corresponding eigenvalues are λ1, λ2, λ3 and λ4, then

λ1 =
α1a2d3

a1α3 − a1d3 + a2d3
− d1 −

m1a2α3(α3 − d3 − a2d3)
β(α3 − d3)2 ;

λ2 =
α2a2d3

a2α3 − a3d3 + a2d3
− d2 −

m2a2α3(α3 − d3 − a2d3)
β(α3 − d3)2

and λ3, λ4 are the roots of the quadratic equation:

λ2 + C1λ + C2 = 0,
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where

C1 =
a2d3α3 + d2

3 + a2d2
3 − α3d3

α3(α3 − d3)
and C2 =

d3(α3 − d3 − a2d3)
α3

.

Theorem 6.5. E4 exists and locally asymptotically stable if α3(1 − a2) < d3(1 + a2) < α3; d1 >
α1a2d3

a1α3−a1d3+a2d3
−

m1a2α3(α3−d3−a2d3)
β(α3−d3)2 andd2 >

α2a2d3
a2α3−a3d3+a2d3

−
m2a2α3(α3−d3−a2d3)

β(α3−d3)2 .

Case VI: Equilibrium point E5(x4, y4,w4, 0)

At E5, the variational matrix V(E5) is given by

V(E5) =


a11 a12 a13 a14
a21 a22 0 a24
a31 0 a33 a34
0 0 0 a44


where a11 = 1 − 2x4 −

a3γw4

(a3+x4)2 −
a1αy4

(a1+x4)2 , a12 = − αx4
a1+x4

, a13 = −
γx4

a3+x4
, a14 = −

βx4

a2+x4
, a21 =

a1α1 y4

(a1+x4)2 , a22 = α1x4
a1+x4

−

d1, a24 = −m1y4, a31 = a2α2w4
(a3+x4)2 , a33 = α2x4

a3+x4
− d2, a34 = −m2w4, a44 = µ1y4 + µ2w4 − d3 + α3x4

a2+x4
.

If the corresponding eigenvalues are λ1, λ2, λ3 and λ4, then

λ1 = µ1y4 + µ2w4 − d3 +
α3x4

a2 + x4

and λ2, λ3, λ4 are the roots of the cubic equation:

λ3 + D1λ
2 + D2λ + D3 = 0,

where

D1 = −1 + 2x4 +
a3γw4

(a3 + x4)2 +
a1αy4

(a1 + x4)2 −
α1x4

a1 + x4
−

α2x4

a3 + x4
+ d1 + d2,

D2 =

(
1 − 2x4 −

a3γw4

(a3 + x4)2 −
a1αy4

(a1 + x4)2

) (
α1x4

a1 + x4
− d1

)
+

(
−1 + 2x4 +

a3γw4

(a3 + x4)2 +
a1αy4

(a1 + x4)2 −
α1x4

a1 + x4
+ d1

) (
d2 −

α2x4

a3 + x4

)
+

a1αα1x4y4

(a1 + x4)3 +
a2γα3x4y4

(a3 + x4)3

and D3 =

(
1 − 2x4 −

a3γw4

(a3 + x4)2 −
a1αy4

(a1 + x4)2

) (
d1 −

α1x4

a1 + x4

) (
α2x4

a3 + x4
− d2

)
+

a1αα1x4y4

(a1 + x4)3 (d2 −
α2x4

a3 + x4
) +

γa2α3x4y4

(a3 + x4)3 (d1 −
α1x4

a1 + x4
).

If (a2 + x4)(µ1y4 + µ2w4) + α3x4 < d3(a2 + x4), then λ1 is negative.

Routh-Hurwitz criterion for local stability: Suppose the characteristic polynomial of a square matrix V of
order n is given by

det(V − λIn) = λn + a1λ
n−1 + a2λ

n−2 + ... + an = 0,
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where ai ∈ R for i = 1, 2, ....,n, an , 0 and In is the identity matrix of order n. The necessary and sufficient

conditions for the eigenvalues of the matrix V to have negative real parts are D1 = a1 > 0, D2 =

∣∣∣∣∣ a1 a3
1 a2

∣∣∣∣∣ > 0

D3 =

∣∣∣∣∣∣∣∣
a1 a3 a5
1 a2 a4
0 a1 a3

∣∣∣∣∣∣∣∣ > 0, ...

Dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣
a1 a3 a5 ... .
1 a2 a4 ... .
0 a1 a3 ... .
.. .. .. ... .
0 0 .. ... ak

∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0, k = 1, 2, 3, ...n These conditions are derived, used complex variable

methods in standard texts on the theory of dynamical systems. As an example, for the equilibrium

λ3 + a1λ
2 + a2λ

1 + a3 = 0

and the conditions for Re(λ) < 0 are a1 > 0, a3 > 0, a1a2 − a3 > 0.

So by Routh Hurwitz’s criterion, other eigenvalues have negative real parts if D1 > 0,D3 > 0 and D1D2−

D3 > 0. Thus we have the following theorem:

Theorem 6.6. E5 is locally asymptotically stable if (a2 + x4)(µ1y4 + µ2w4) + α3x4 < d3(a2 + x4),D1 > 0,D3 >
0 and D1D2 −D3 > 0.

Case VII: Equilibrium point E6(x5, y5, 0, z5)

At E6, the variational matrix V(E6) is given by

V(E6) =


b11 b12 b13 b14
b21 b22 0 b24
0 0 b33 0

b41 b42 b43 b44


where b11 = 1 − 2x5 −

a1αy5

(a1+x5)2 −
a2βz5

(a2+x5)2 , b12 = − αx5
a1+x5

, b13 = −
γx5

a3+x5
, b14 = −

βx5

a2+x5
, b21 =

a1α1 y5

(a1+x5)2 , b22 = α1x5
a1+x5

−

d1 −m1z5, b24 = −m1y5, b33 = α2x5
a3+x5

− d2 −m2z5, b41 = a2α3z5
(a2+x5)2 , b42 = µ1z5, b43 = µ2z5, b44 = µ1y5 − d3 + α3x5

a2+x5
.

If the corresponding eigenvalues are λ1, λ2, λ3 and λ4, then

λ1 =
α2x5

a3 + x5
− d2 −m2z5

and λ2, λ3, λ4 are the roots of the cubic equation:

λ3 + G1λ
2 + G2λ + G3 = 0,
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where

G1 = −1 + 2x5 +
a1αy5

(a1 + x5)2 +
a2βz5

(a2 + x5)2 −
α1x5

a1 + x5
−

α3x5

a2 + x5
+ d1 + d3 − µ1y5,

G2 =

(
1 − 2x5 −

a1αy5

(a1 + x5)2 −
a2βz5

(a2 + x5)2

) (
α1x5

a1 + x5
− d1

)

+

(
−1 + 2x5 +

a1αy5

(a1 + x5)2 +
a2βz5

(a2 + x5)2 −
α1x5

a1 + x5
+ d1

) (
d3 − µ1y5 −

α3x5

a2 + x5

)
+

a1αα1x5y5z5

(a1 + x5)3 −
a1µ1βα1x5y5z5

(a2 + x5)(a1 + x5)2 +
βa2α3x5z5

(a2 + x5)3 and

G3 =

(
1 − 2x5 −

a1αy5

(a1 + x5)2 −
a2βz5

(a2 + x5)2

) (
d1 −

α1x5

a1 + x5

) (
α3x5

a2 + x5
− d3 − µ1y5

)
+

a1αα1x5y5z5

(a1 + x5)3

(
d2 −

α2x5

a3 + x5

)
−

αm1a2α3x5y5z5

(a3 + x5)(a2 + x5)2

+
α1µ1a1βx5y5z5

(a2 + x5)(a1 + x5)2

(
α2x5

a3 + x5
− d2

)
+
βa2α3x5z5

(a2 + x5)2

(
d2 + m2z5 −

α2x5

a3 + x5

)
.

If (d2 + m2z5)(a3 + x5) > α2x5, then λ1is negative. By Routh Hurwitz’s criterion,other eigenvalues have
negative real parts if G1 > 0,G3 > 0 and G1G2 − G3 > 0. Thus we have the following theorem.

Theorem 6.7. E6 is locally asymptotically stable if (d2 + m2z5)(a3 + x5) > α2x5,G1 > 0,G3 > 0 and G1G2 −G3 > 0.

Case VIII: Equilibrium point E7(x6, 0,w6, z6)

At E7, the variational matrix V(E7) is given by V(E7) =


c11 c12 c13 c14
0 c22 0 0

c31 0 c33 c34
c41 c42 c43 c44


where c11 = 1 − 2x6 −

a2βz6

(a2+x6)2 −
a3γw6

(a3+x6)2 , c12 = − αx6
a1+x6

, c13 = −
γx6

a3+x6
, c14 = −

βx6

a2+x6
, c22 = α1x6

a1+x6
− d1 − m1z6,

c31 = a3α2w6
(a3+x6)2 , c33 = α2x6

a3+x6
−d2−m2z6, c34 = −m2w6, c41 = a2α3z6

(a2+x6)2 , c42 = µ1z6, c43 = µ2z6, c44 = µ1y6+µ2w6−d3+
α3x6

a2+x6
.

If the corresponding eigenvalues are λ1, λ2, λ3 and λ4, then

λ1 =
α1x6

a1 + x6
− d1 −m1z6

and λ2, λ3, λ4 are the roots of the cubic equation:

λ3 + F1λ
2 + F2λ + F3 = 0,



A. Mondal et al. / Filomat 36:1 (2022), 99–123 112

where

F1 = −1 + 2x6 +
a2βz6

(a2 + x6)2 +
a3γw6

(a3 + x6)2 −
α2x6

a3 + x6
−

α3x6

a2 + x6
+ d2 + d3

−µ1y6 + m2z6 − µ2w6,

F2 =

(
1 − 2x6 −

a2βz6

(a2 + x6)2 −
a3γw6

(a3 + x6)2

) (
α2x6

a3 + x6
− d2 −m2z6

)
−

(
µ1y6 + µ2w6 − d3 +

α3x6

a2 + x6

)
(
−1 + 2x6 +

a2βz6

(a2 + x6)2 +
a2γw6

(a3 + x6)2 −
α2x6

a3 + x6
+ d2 + m2z6

)

+
γa3α2x6w6

(a3 + x6)3 −
βa2α3x6z6

(a2 + x6)3

F3 =

(
1 − 2x6 −

a2βz6

(a2 + x6)2 −
a3γw6

(a3 + x6)2

) (
m2z6 + d2 −

α2x6

a3 + x6

)
(
µ1y6 + µ2w6 − d3 −

α3x6

a2 + x6

)
−

a3γα2x6w6

(a3 + x6)3(
µ1y6 + µ2w6 − d3 −

α3x6

a2 + x6

)
−

γm2a2α3x6w6z6

(a3 + x6)(a2 + x6)2 −
α2µ2a3βx6w6z6

(a2 + x6)(a3 + x6)2

+
βa2α3x6z6

(a2 + x6)3

(
α2x6

a3 + x6
− d2 −m2z6

)
.

If (d1 + m1z6)(a1 + x6) > α1x6, then λ1is negative. By Routh Hurwitz’s criterion, other eigenvalues have
negative real parts if F1 > 0,F3 > 0 and F1F2 − F3 > 0. Thus we have the following theorem:

Theorem 6.8. E7 is locally asymptotically stable if (d1 + m1z6)(a1 + x6) > α1x6,F1 > 0,F3 > 0 and F1F2 − F3 > 0.

Case IX: Equilibrium point E∗(x∗, y∗,w∗, z∗)

At E∗, the variational matrix V(E∗) given by

V(E∗) =


−x∗ +

αx∗y∗

(a1+x∗)2 +
βx∗z∗

(a2+x∗)2 +
γx∗w∗

(a3+x∗)2 −
αx∗

a1+x∗ −
γx∗

a3+x∗ −
βx∗

a2+x∗
a1α1 y∗

(a1+x∗)2 0 0 −m1y∗
a3α2w∗

(a3+x∗)2 0 0 −m2w∗
a2α3z∗

(a2+x∗)2 µ1z∗ µ2z∗ 0


The corresponding characteristic equation is given by

λ4 + Q1λ
3 + Q2λ

2 + Q3λ + Q4 = 0, (3)

where
Q1 = −S∗0,
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Q2 = S∗1S∗4 + S∗2S∗5 + S∗3S∗6 + m1µ1y∗z∗ −m2µ2w∗z∗,

Q3 = S∗0m2µ2w∗z∗ − S∗0m1µ1y∗z∗ − S∗1S∗6 − S∗2S∗6m2w∗ + S∗3S∗4µ1z∗ + S∗3S∗5µ2z∗

Q4 = S∗1S∗4µ2m2w∗z∗ − S∗1S∗5µ2m1y∗z∗ − S∗2S∗4µ1m2w∗z∗ + S∗2S∗5µ1m1y∗z∗

and

S∗0 = −x∗ +
αx∗y∗

(a1 + x∗)2 +
βx∗z∗

(a2 + x∗)2 +
γx∗w∗

(a3 + x∗)2 ,

S∗1 =
αx∗

a1 + x∗
, S∗2 =

γx∗

a3 + x∗
, S∗3 =

βx∗

a2 + x∗
, S∗4 =

a1α1y∗

(a1 + x∗)2 ,

S∗5 =
a3α2w∗

(a3 + x∗)2 , S∗6 =
a2α3z∗

(a2 + x∗)2 .

By Routh Hurwitz’s criterion, all the eigenvalues of V(E∗) have negative real parts if
(i) Q1 > 0,
(ii) Q3 > 0,
(iii) Q4 > 0 and
(iv) Q1Q2Q3 > Q2

3 + Q2
1Q4.

Thus we have the following theorem:

Theorem 6.9. E∗ is locally asymptotically stable if Q1 > 0,Q3 > 0,Q4 > 0 and Q1Q2Q3 > Q2
3 + Q2

1Q4.

6.2. Global Stability
Theorem 6.10. Existence of positive interior equilibrium of the system of equations (2) implies its global stability
around the positive interior equilibrium provided the following two conditions are fulfilled:
(i) µ2β

α3
=

m1γ
α2

;

(ii) x∗ < x < max{ x
∗z
z∗ ,

x∗w
w∗ ,

x∗y
y∗ } or x∗ > x > min{ x

∗z
z∗ ,

x∗w
w∗ ,

x∗y
y∗ } for all x.

Proof. Let us consider the following positive definite function about E∗:

V(x, y,w, z) =
(
x − x∗ − x∗ ln

x
x∗

)
+ L

(
y − y∗ − y∗ ln

y
y∗

)
+ M

(
w − w∗ − w∗ ln

w
w∗

)
+N

(
z − z∗ − z∗ ln

z
z∗

)
where L,M,N are positive constants to be specified later on. Differentiating V with respect to t along

the solution of (2), a little algebraic manipulation yields

dV
dt

= −(x − x∗)2 +
a2(x − x∗)(z − z∗)(Nα3 − β)

(a2 + x)(a2 + x∗)
+

a3(x − x∗)(w − w∗)(Mα2 − γ)
(a3 + x)(a3 + x∗)

+

(x − x∗)(y − y∗)(Nµ1 − Lm1) + (z − z∗)(w − w∗)(Nµ2 −Mm1) −
β(x − x∗)(x∗z − xz∗)

(a2 + x)(a2 + x∗)

−
γ(x − x∗)(x∗w − xw∗)

(a3 + x)(a3 + x∗)
−

a1α(x − x∗)(y − y∗)
(a1 + x)(a1 + x∗)

−
α(x − x∗)(x∗y − xy∗)

(a1 + x)(a1 + x∗)
.

Let us choose L =
βµ1

m1α3
,M =

γ
α2
,N =

β
α3
. Then using the condition, we see that dV

dt is negative definite.
Consequently, V is a Lyapunov function and the theorem is established. Hence the theorem.
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7. Permanence of the system

To prove the permanence of the system (2), we shall use the Average Liapunov functions [8].

Theorem 7.1. Suppose that system (2) satisfies the following conditions:

(i)
α1

a1 + 1
− d1 > 0; and / or

α2

a3 + 1
− d2 > 0; and / or

α3

a2 + 1
− d1 > 0;

(ii) α2x1
a3+x1

− d2 > 0; and / or α3x1
a2+x1

+ µ1y1 − d3 > 0;

(iii) α1x2
a1+x2

− d1 > 0; and / or α3x2
a2+x2

+ µ2w2 − d3 > 0;

(iv) α1x3
a1+x3

− d1 > 0; and / or α2x3
a3+x3

− d2 > 0;

(v) α3x4
a2+x4

+ µ1y4 + µ2w4 − d3 > 0; (vi) α2x5
a3+x5

−m2z5 − d2 > 0; (vii) α1x6
a1+x6

−m1z6 − d1 > 0,

then system (2) is permanence.

Proof. Let us consider the average Lyapunov function in the form V(x, y,w, z) = xθ1 yθ2 wθ3 zθ4 where each
θi(i = 1, 2, 3, 4) is assumed to be positive. In the interior of R4

+, we have

V̇
V

= ψ(x, y,w, z) = θ1

[
(1 − x) −

αy
a1 + x

−
βz

a2 + x
−

γw
a3 + x

]
+ θ2

[
α1x

a1 + x
− d1 −m1z

]
+θ3

[
α2x

a3 + x
− d2 −m2z] + θ4[µ1y + µ2w − d3 +

α3x
a2 + x

]
.

To prove permanence of the system we shall have to show that ψ(x, y,w, z) > 0, for all boundary equilibria
of the system. The values of ψ(x, y,w, z), at the boundary equilibria E0,E1,E2,E3,E4,E5,E6 and E7 are the
following:

E0 : θ1 − θ2d1 − θ3d2 − θ4d3.

E1 : θ2(
α1

a1 + 1
− d1) + θ3(

α2

a3 + 1
− d2) + θ4(

α3

a2 + 1
− d1).

E2 : θ3(
α2x1

a3 + x1
− d2) + θ4(

α3x1

a2 + x1
+ µ1y1 − d3).

E3 : θ2(
α1x2

a1 + x2
− d1) + θ4(

α3x2

a2 + x2
+ µ2w2 − d3).

E4 : θ2(
α1x3

a1 + x3
− d1) + θ3(

α2x3

a3 + x3
− d2).

E5 : θ4(
α3x4

a2 + x4
+ µ1y4 + µ2w4 − d3).

E6 : θ3(
α2x5

a3 + x5
−m2z5 − d2).

E7 : θ2(
α1x6

a1 + x6
−m1z6 − d1).

Now, ψ(0, 0, 0, 0) > 0 is automatically satisfied for some θi > 0(i = 1; 2; 3; 4). Also, if the inequalities (i)− (vii)
hold, is positive at E1,E2,E3,E4,E5,E6 and E7. Therefore, system (2) is permanence [8] if the conditions of
(i) − (vii) are fulfilled. Hence the theorem.

Remark: The conditions
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(i)
α1

a1 + 1
− d1 > 0; and / or

α2

a3 + 1
− d2 > 0; and / or

α3

a2 + 1
− d1 > 0;

(ii) α2x1
a3+x1

− d2 > 0; and / or α3x1
a2+x1

+ µ1y1 − d3 > 0;

(iii) α1x2
a1+x2

− d1 > 0; and / or α3x2
a2+x2

+ µ2w2 − d3 > 0;

(iv) α1x3
a1+x3

− d1 > 0; and / or α2x3
a3+x3

− d2 > 0;

(v) α3x4
a2+x4

+ µ1y4 + µ2w4 − d3 > 0; (vi) α2x5
a3+x5

−m2z5 − d2 > 0; (vii) α1x6
a1+x6

−m1z6 − d1 > 0,

guarantee that the boundary equilibrium points E1,E2,E3,E4,E5,E6 and E7. are unstable.

8. Hopf Bifurcation at E∗

Now, we shall find out the conditions for which the equilibrium point E∗ enters into Hopf bifurcation
as α2 varies overR. The Routh-Hurwitz criterion and Hopf bifurcation are as follows: let ψ : (0,∞)→ R be
the following continuously differentiable function of α2 :

ψ(α2) = Q1(α2)Q2(α2)Q3(α2) −Q2
3(α2) −Q2

1(α2)Q4(α2)

The assumption for Hopf bifurcation to occur are the usual ones, and these require that the spectrum
Q(α2) =

{
ρ : D(ρ) = 0

}
of the characteristic equation is such that the following hold.

(I) There exists α∗2 ∈ (0,∞), at which a pair complex of complex eigenvalues ρ(α∗2), ρ̄(α∗2) ∈ Q(α2) are such
that

Reρ(α∗2) = 0, Imρ(α∗2) = ω0 > 0

and the transversality condition
d

dα2
(Re(ρ(α2)))

∣∣∣∣∣
α∗2

, 0.

(II) All other elements of Q(α2) have negative real parts. Now, we present a theorem of Hopf bifurcation.

Theorem 8.1. The Hopf bifurcation of the interior equilibrium E∗ at α2 = α∗2 ∈ (0,∞) if an only if

(i) ψ(α∗2) = 0,
(ii) Q3

1Q́2Q3(Q1 − 3Q3) > 2(Q2Q2
1 − 2Q2

3)(Q́3Q2
1 − Q́1Q2

3)
and (iii) all other eigenvalues are of negative real parts, whereρ(α2)is purely imaginary at α2 = α∗2.

Proof. By the condition ψ(α∗2) = 0, the characteristic equation can be written as(
ρ2 +

Q3

Q1

) (
ρ2 + Q1ρ +

Q1Q4

Q3

)
= 0.

If it has four roots, say Qi(i = 1, 2, 3, 4), with the pair of purely imaginary roots at α2 = α∗2 as ρ1 = ρ̄2, then
we have

ρ3 + ρ4 = −Q1 (4)

ω2
0 + ρ3ρ4 = Q2 (5)



A. Mondal et al. / Filomat 36:1 (2022), 99–123 116

ω2
0(ρ3 + ρ4) = −Q3 (6)

ω2
0ρ3ρ4 = Q4 (7)

where ω0 = Imρ1(α∗2). By the aforementioned equations, ω0 =
√

Q3
Q1

. Now, if ρ3 and ρ4 are complex
conjugate, then from (4), it follows that 2Reρ3 = −Q1; if they are real roots, then by (4) and (5), ρ3 < 0 and
ρ4 < 0. To complete the proof; it remains to verify the transversality condition.

As ψ(α∗2) is a continuous function of all its roots, there exists an open interval α2 ∈ (α∗2 − ε, α
∗

2 + ε),where
ρ1 and ρ2 are complex conjugate for α2. Suppose their general forms in this neighbourhood are

ρ1(α2) = ξ(α2) + iη(α2)

ρ2(α2) = ξ(α2) − iη(α2).

Now we shall verify the transversality conditions:

d
dα2

(Re(ρi(α2)))
∣∣∣∣∣
α2=α∗2

, 0, i = 1, 2.

Substituting ρi(α2) = ξ(α2) + iη(α2) into the characteristic equation (3), and calculating the derivative,
we have

G(α2)ξ́(α2) −H(α2)ή(α2) + K(α2) = 0

H(α2)ξ́(α2) − G(α2)ή(α2) + L(α2) = 0
(8)

where G(α2) = 4ξ3
− 12ξη2 + 3Q1(ξ2

− η2) + 2Q2ξ + Q3
H(α2) = 12ξ2η + 6Q1ξη − 4ξ3 + 2Q2ξ

K(α2) = Q1ξ3
− 3Q́1ξη2 + Q́2(ξ2

− η2) + Q́3ξ
L(α2) = 3Q́1ξ2η − Q́1ξ3 + 2Q́2ξη + Q́3ξ.

Solving for ξ́(α∗2), we have [
dRe(ρ j(α2))

dα2

]
α2=α∗2

= ξ́(α2)α2=α∗2

= −
H(α∗2)L(α∗2)+K(α∗2)G(α∗2)

G2(α∗2)+H2(α∗2)

=
Q3

1Q́2Q3(Q1−3Q3)−2(Q2Q2
1−2Q2

3)(Q́3Q2
1−Q́1Q2

3)
Q4

1(Q1−3Q3)2+4(Q2Q2
1−2Q2

3)2 > 0

if Q3
1Q́2Q3(Q1 − 3Q3) > 2(Q2Q2

1 − 2Q2
3)(Q́3Q2

1 − Q́1Q2
3). Thus, the transversality conditions hold, and

hence, hopf bifurcation occurs at α2 = α∗2.
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9. Numerical simulation

Numerical simulations are equally important beside the analytical findings to verify them. In this
section, we present computer simulations of different solutions of the system (2) using MATLAB.

First we take the parameters of the system as α = 0.15, a1 = 0.1, β = 0.01, a2 = 1.0, γ = 1.2, a3 = 0.76, α1 =
0.6, d1 = 0.8,m1 = 1.4, α2 = 1.4, d2 = 0.9,m2 = 1.3, µ1 = 1.2, µ2 = 1.8, d3 = 1.5, α3 = 0.3. Then the conditions
of Theorem 6.2 are satisfied and consequently E1(1, 0, 0, 0) is locally asymptotically stable(LAS) (see Figure
2). Next we take the parameters of the system as α = 0.5, a1 = 0.2, β = 0.46, a2 = 0.6, γ = 1.6, a3 = 0.75, α1 =
0.84, d1 = 0.58,m1 = 1.8, α2 = 1.95, d2 = 0.79,m2 = 1.5, µ1 = 0.5, µ2 = 3.0, d3 = 1.4, α3 = 0.5. Then the
conditions of Theorem 6.3 are satisfied and consequently E2(x2, y2, 0, 0) is LAS (see Figure 2).
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Figure 2: Local asymptotic stability of E1(1, 0, 0, 0) and E2(x2, y2, 0, 0).

If we take the parameters of the system as α = 0.15, a1 = 0.1, β = 0.01, a2 = 1.0, γ = 1.5, a3 = 0.7, α1 =
0.7, d1 = 0.58,m1 = 1.3, α2 = 1.95, d2 = 0.8,m2 = 0.15, µ1 = 1.8, µ2 = 2.1, d3 = 1.2, α3 = 0.3. Then the
conditions of Theorem 6.4are satisfied and consequently E3(x2, 0,w2, 0) is LAS (see Figure 3 ). Also we
take the parameters of the system as α = 0.15, a1 = 0.3, β = 0.5, a2 = 0.61, γ = 1.5, a3 = 0.7, α1 = 0.75, d1 =
0.45,m1 = 1.3, α2 = 1.95, d2 = 0.7,m2 = 1.5, µ1 = 1.8, µ2 = 1.7, d3 = 0.85, α3 = 1.4. Then the conditions of
Theorem 6.5 are satisfied and consequently E4(x3, 0, 0, z3) is LAS (see Figure 3).
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Figure 3: Local asymptotic stability of E3(x2, 0,w2, 0) and E4(x3, 0, 0, z3).

Let us take the parameters of the system as α = 0.15, a1 = 0.1, β = 0.01, a2 = 1.0, γ = 1.5, a3 = 0.7, α1 =
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0.7, d1 = 0.58,m1 = 1.3, α2 = 1.95, d2 = 0.8,m2 = 1.5, µ1 = 1.8, µ2 = 2.1, d3 = 1.2, α3 = 0.3, then the conditions
of Theorem 6.6 are satisfied and consequently E5(x4, y4,w4, 0) is locally asymptotically stable (see Figure 4
). Now if we take the parameters of the system as α = 0.15, a1 = 0.1, β = 0.5, a2 = 0.5, γ = 1.5, a3 = 0.7, α1 =
1.5, d1 = 0.2,m1 = 1.3, α2 = 1.95, d2 = 0.7,m2 = 1.5, µ1 = 0.5, µ2 = 3.0, d3 = 0.85, α3 = 1.4, then the conditions
of Theorem 6.7 are satisfied and consequently E6(x5, y5, 0, z5) is LAS (see Figure 4).
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Figure 4: Local asymptotic stability of E5(x4, y4,w4, 0) and E6(x5, y5, 0, z5).

Let us take the parameters of the system as α = 0.15, a1 = 0.3, β = 0.01, a2 = 0.2, γ = 1.5, a3 = 0.6, α1 =
0.75, d1 = 0.45,m1 = 1.3, α2 = 1.95, d2 = 0.8,m2 = 1.5, µ1 = 1.8, µ2 = 2.1, d3 = 0.8, α3 = 0.3. Then the
conditions of Theorem 6.8 are satisfied and consequently E7(x6, 0,w6, z6) is LAS (see Figure 5).
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Figure 5: Local asymptotic stability of E7(x6, 0,w6, z6).

Next, we take the parameters as α = 0.21, a1 = 0.1, β = 0.01, a2 = 0.8, γ = 1.5, a3 = 0.4, α1 = 0.75, d1 =
0.45,m1 = 1.3, α2 = 1.6, d2 = 0.8,m2 = 1.5, µ1 = 1.8, µ2 = 2.1, d3 = 0.9, α3 = 0.3. Then conditions are
satisfied, and hence E∗(0.7524, 0.2544, 0.1413, 0.1631) exists. Also the conditions of Theorem 6.9 are satisfied.
Consequently, E∗ is locally asymptotically stable. The stable behaviour of x, y,w, z with t and the phase
portrait are presented in Figures 6 and 7 respectively. In the second figure of Figure 7 ’label z’ stands for
’population w’.
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Figure 6: Local asymptotic stability of E∗, where x∗ = 0.7524, y∗ = 0.2544,w∗ = 0.1413, z∗ = 0.1631.
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Figure 7: Bifurcating periodic solution near E∗ w.r.to populations (x, y, z) and (x, y,w).

In this context it is also mentioned that the biological parameterα2 has an important role on the dynamics
the underlying system. If α2 = 1.6, then it is seen that E∗ is LAS. Now, if we increase the value of parameter
α2, keeping other parameters fixed, the stability behaviour of the system (2) changes i.e. system undergoes
a Hopf-bifurcation around E∗ at α∗2 = 1.9632. For α2 = 2.2 > α∗2, we see that E∗ is unstable. Figures 8 and
9,10,11 depicts the stable behaviour and unstable populations in finite time respectively. The corresponding
bifurcation diagram is depicted in Figures 12,13.
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Figure 8: Keeping other parameters fixed, if we take α2 = 1.5 < α∗2, it shows that E∗ is stable and the phase portrait of the solution being a stable
spiral.
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Figure 9: Keeping other parameters fixed, if we take α2 = 2.2 > α∗2, it shows that E∗ is unstable.
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Figure 10: Keeping other parameters fixed, if we take α2 = 2.2 > α∗2, it shows that E∗ is unstable.
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Figure 11: Occurrence of limit cycle and oscillatory behaviour of E∗ when$α2 = 2.2 > α∗2 with respect to populations (x, y, z) and (x, y,w)
respectively.

Figure 12: Bifurcation diagram for the parameter α2 with respect to x(t) and y(t).

Figure 13: Bifurcation diagram for the parameter α2 with respect to w(t) and z(t)
.
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10. Conclusion

In this paper, we have formulated a mathematical model with a four-dimensional food-web system
consisting of one prey population, two-middle predators feeding on the prey and one superpredator
feeding on all three other species. The two-middle predators have no competition between them, though
they are in implicit competition through the shared predation on the bottom prey. Here it is assumed that
the interaction of the prey species (X) with the two middle predators (Y and W) and the top predator (Z)
according to Holling-Type II response function. Also middle predators (Y and W) are predated by the top
predator (Z) according to Holling-Type I (or Volterra) response function. The details of the construction
of the model is presented in section 2. Positivity and boundedness of the system are shown in section 3.
Extinction criteria of the predator-prey population are discussed. Stability behaviour of the equilibrium
points are studied and validated by computer simulations. Also permanence of the system is discussed in
section 6.

Here we have analyzed all the boundary equilibrium points extensively. Local stability behaviour of
each of the boundary equilibrium points are shown in section 5. The interior equilibrium points E∗ also
exist under certain conditions. Further we have studied the local and global stability behaviour of the
interior equilibrium point E∗. Numerical simulations suggest the co-existence of all four species for some
hypothetical set of parameteric values.

The important mathematical findings for the dynamical behaviour of the underlying food-web model are
also numerically verified using MATLAB. Each boundary equilibrium point as well as interior equilibrium
point satisfying existence criteria are shown graphically. The Hopf-bifurcation condition has been derived
in terms ofα2 as bifurcation parameter. Here it is observed that asα2 increases the system exhibits oscillatory
behaviour around coexistence equilibrium E∗.

Finally, our model can be applicable in various fields of ecological as well as epidemiological systems.
In this context it is mentioned that our numerical simulations depicted in the Figures 2 and 3 are in good
agreement with the results of Yodzis (1998) [20] experiments (using field data): if fur seals are culled, there is
a significant probability that two of three commercial fishes (hake, anchovy, and horse mackerel) will have
negative responses. Further studies are required to analyze the dynamics of more realistic but complex
systems such as considering different response functions and also applying time delays in different species.

Acknowledgment: We are grateful to the anonymous referees and Prof. Maria Alessandra Ragusa, Editor
for their careful reading, valuable comments and helpful suggestions which have helped us to improve the
presentation of this work significantly.
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