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The Characterizations of Distances from Bloch Functions to Some
Mbobius Invariant Spaces by High Order Derivatives
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Abstract. We characterized the distances from Bloch functions to some Mobius invariant spaces by
high order derivatives. Moreover, the boundedness and compactness of the products of composition

and differentiation operators from the Bloch space to the closure of some Mobius invariant spaces are
characterized.

1. Introduction

Let D = {z: |z|] < 1} be the unit disk of a complex plane and JID be its boundary. Let H (D) be the space

consisting of all analytic functions on ID. Recall that the Bloch space 8 is the space of all functions f € H(ID)
satisfying

Ifllz = 1fO)] + Su]]}))(l ~1ZPIf (@) < co.

It is well known [20] that for each n € IN we have

n—-1
Il = sup(1 = )1/ + ) FO) = flls,  f & HD)
z€ =0

The closure of the polynomials in the Bloch norm is the little Bloch space, denoted by 8, which consists of
those f € H(ID) with the property that

Jim 1)1~ 12P) = 0.
For a € D, the Green's function with pole at a is defined by

9(z,a) = log(1/l@a(2))),
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where @,(z) = (z —a)/(1 — az) is a Mobius transformation of ID. By the simple calculation, we have

1 = |pa(2)P

|(Pu(z)| = 1 _ |Z|2

ForO0<p<oo,2<g<oo, -1 <qg+s< oo, the space F(p,q,s) consists of those f € H(D) such that

IAIE, =sup | If@P1 - 215 (z, a)dm(z) < eo,
()]
aeD JD

where dm(z) = dxdy/m is the normalized Lebesgue area measure on ID. In addition, f € Fy(p, g, s), if

éghgvﬁwa—umwwmmmw=a

For p > 1, the Besov space B, consists of analytic functions f in ID such that

||f||',;p = fD |f @P (1= 2Py ~2dm(z) < co.

It is obvious that B, can be viewed as F(p, p — 2,0). Moreover, the Besov space B; can be defined as the space
of analytic functions f on D satisfying

1flls, = fD 7 (dm() < oo.

It is known that F(p,q,s) = Qs and Fy(p,q,5) = Qs if p = 2, g = 0, introduced by Aulaskari, Lappan, Xiao,
and Zhao in [2, 4]. It is clear that F(p,q,s) = Q1 = BMOA and Fy(p,q,s) = Q10 = VMOAifp=2,q=0
and s = 1, see [5]. It is easy to know that for 0 < s < oo, F(p,p — 2,5) and Fo(p,p — 2,s) are Mobius invariant
function spaces in [1], and for 0 < s < 1, F(p,p — 2,s) and Fo(p, p — 2, s) are subspaces of BMOA and VMOA,
respectively.

The study of distance from a function to the function space is originated from Jones’ distance formula[6],
which characterized the distance from one function to BMOA. Then many scholars have done a series of
research in this field. Tjani [15] considered the distance from a Bloch function to the little Bloch space 8.
Zhao [18] extend Jones’ theorem from BMOA to the space F(p,p —2,s) for1 <p<oand 0 <s < 1. In[7],
the distance formula from a Bloch function to BMOA by higher order derivatives is obtained. In this paper,
we will give an analogue of this result of distances from Bloch functions to some Mobius invariant spaces
F(p,p —2,5) by higher order derivatives. We also give a characterization of the closure of F(p,p — 2, s) in the
Bloch space by higher order derivatives.

Each analytic self-map ¢ of ID induces the composition operator C, on H(ID) defined by C,f = f o ¢.
These operators have been extensively studied in a variety of function spaces [8, 14]. The differentiation
operator D on H(D) is defined by Df = f’. Furthermore, for n € IN U {0}, we define D"f = f®. The
products of composition operators and n-th differentiation operators C,D" are defined by

CoD"(f) = fPop, feHD).

The products of composition operators and differential operators have been studied on some analytic
function spaces (see [9, 10, 22]). The boundedness and compactness of these operators have attracted a lot
of attention in many analytic function spaces. Zhang [17] characterized the boundedness and compactness
of the operator C,D" from 8%(8;) to Cgs (AP N BP). In this work, we will characterize the boundedness and
compactness of the operator C,D" from B($)) to the closure of some Mobius invariant spaces.

The rest of this paper is organized as follows: In Section 2, we characterize the distances from Bloch
functions to some Mobius invariant spaces by higher order derivatives and we also obtain the characteri-
zations of the closures of these Mébius invariant spaces in the Bloch space by higher order derivatives. In
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Section 3 and Section 4, we give the characterization of boundedness and compactness of the products of
composition and n-th differentiation operators respectively.

For simplicity, we need the following idiomatic notations. Denote by A < B, if there exists a positive
constant C such that A < CB. Similarly, denote by A 2 B, if there exists a positive constant C such that
A > CB. If A and B satisfy both A > B and A < B, or equivalently, there exists a positive constant C such
that C"1B < A < CB, we write A ~ B.

2. Distances from Bloch functions to F(p, p — 2, s) by high order derivatives

We start the notation of s-Carleson is also needed in this part. For a subarc I C JID, the length of I is

defined as .
Il = o fI dc],

SOH={rleD:1-l|<r<1, el

and let

denote the Carleson square in ID. For 0 < s < oo, we say that a positive measure u defined on ID is a bonuded
s-Carleson measure provided

u(s@) = O(Ir)

for all subarcs I of JID, where |I| denotes the arc length of I and S(I) denotes the usual Carleson box based
on . If

llﬂigno p(SM) = o(lIF),
then we say that u is a vanishing s-Carleson measure [3]. For f € H(ID), we define
dy, = |f @F (L = 27 dm(z).

In [19, Theorems 2.4 and 2.5], f € F(p, g, ) if and only if d,,, is a bounded s-Carleson measure. In addition,
f € Fo(p,q,s) if and only if d, is a vanishing s-Carleson measure. For a subspace X of Bloch space 8, we
will denote the distance from a function f € 8 to the space X by distg(f, X). More specifically, we define

dists(f, X) = inf|f - glls.
geX

For f € Band ¢ > 0, set Q,,.(f) = {z € D : (1 - |z1*)"|f"(z)| > &}. For a subspace X of the Bloch space, let
Cg(X) denote the closure of the space X in the Bloch norm.
The following result can be found in [18, Theorem 2].

Theorem A. Let fe Band 0 <s <1, 1 <p < oo, 0 <t < oo. Then the following quantities are equivalent:
1) diStB(f/ F(P/P -2,9));
(2) inf{e : XQ[(f)% is an s-Carleson measure};

(3) inf{e : sup, fgg(f) If @I = 12P)72(1 = lpa(2)P) dm(z) < co};

(4) inf{e : sup,p fQé(f) If' @)1 = |z17)! 2% (z, a)dm(z) < oo}, where Q.(f) ={z € D : |f'(z)I(1 — |zI*) > €}.
The first main result is to generalize the above theorem by higher order derivatives as follows.

Theorem 2.1. Let f€ B,0<s5<1, 1<p <o00<t < ocoandnisa positive integer. Then the following quantities
are equivalent:

(1) distg(f, F(p,p — 2,9));
2) inf{e : xq,.( f)% is a bounded s-Carleson measure};

(
(3) infle : sup,, fy () |FP @I = 221 - lpa(@PYdm(z) < oo}
(4) inf{e : sup, an,t(f) FM @) = 122295z, a)dm(z) < o).
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Proof. Let dy,d,,ds and dy denote the quantities (1), (2), (3) and (4) in Theorem 2.1, respectively. We need to
proved; = dy = d3 = dy.

For the case of d, < dy, we prove it by contradiction. If d; < dy, then there are two constants € > &1 > 0
and a function f,, € F(p,p — 2,s) such that xq, f)% is not an s-Carleson measure and ||f — f;,|lz < €1.
For z € D, we have

A - 2P @)) = A = 2B D@ = f = falls = A = 2P 1fP@)] - e1.
This gives Q,, (f) € Qpe—e, (fe,). Therefore,

dm@) I @PA - Py
YD ppps < oy @

For f., € F(p,p — 2,5), we have | fé")(z)lp(l — |zI%)""=2*dm(z) is an s-Carleson measure. This implies that

Xl f)% is an s-Carleson measure. This is a contradiction. Thus d, < d;. On the other hand, we need
to prove that d; < d. Without loss of generality, we assume that f(0) = f/(0) = --- = f*=Y(0) = 0. Since
f € B by the hypothesis, then by [21, Lemma 4.2.8], we see that for any z € D, f(z) = fi(z) + f2(z), where

_ n £(n)
P f (1 - [w)" £ (w)dm(a)
Qe (f)

n! W' (1 - zw)?
and
1 (1 = [wP)" £ (w)dm(w)
f2(2)=—,f _nf — .
1! Jo\a,. () w (1 - zw)
We have

1-— 2\n| £(n)
(1= B2 @) < (n+ 1) - 12P)" f Sl " A [ P

D\Q,.(H 1 —zwl"?

< (m+1e(l - zP)" f !

pT=zor "

< E.

~

Hence ||f - fillgn = llf2llgn < €. Since f € B by the hypothesis, we also have f; € 8. Now we are going to
prove that f; € F(p,p — 2,5). Using Fubini’s theorem, we obtain that

I=sup fD FO@PA = 12721 - lpa(2) P dm(z)

acD

< Al sup f FP @I = 12221 = lpa2)P) dm(z)
acD JD

p-1 1- |W|2)”|f(")(w)|d (1 —laPy@ - |Z|2)n—2+sd
<AL sup fD fQ » () o

aeD 1 - zzw|*+2 |1 —az*

-1 e (1 _ |Z|2)n—2+s
< IAllg, Ifllgn sup (1 —lal) i dm(z)dm(w).
D

€D JQ,.(f) — zw|"*?|1 - az|*

Using [18, Lemma 1], we have

f (1 — |22+ dm(z) < 1
D 1

11— zw|"*2|1 — 2z —aw(1 - [wP)>=s"
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By the hypothesis and [3, Lemma 2.1], we have
- 1 - |a|2) ’ XQné(f)
IS 1l 1 lls ( g .
< il 1l sup fD (|1 0| o) <o

Thus, [13, Theorem 3.2] shows f; € F(p,p — 2,s). Thus d; is bounded by d,.
We next prove dy ~ d3. Using [3, Lemma 2.1], we can obtain that xq, (f) % is a bounded s-Carleson
measure, namely,

lps(2)l°
su — L ——dm(z) < oo,
up fom.(f) T - [y

1- ; 2\s
supf Mdm(z) < oo,
Qe (f)

aeD (1 - zP)?

This is the case t = 0 in (3). For t > 0, by noticing that for any z € Q,, .(f),
e < IfP@IA-12P)" < liflls.

which is equivalent to

Thus d, ~ ds.
We now show d3 =~ d,. Since

1
(1- |qo,1(z)|2)s < Clog’ e = Cg’(z,a),

ithas ds < dy. Fordy < ds,

M= f FOI - P25 (2, a)dm(z)
Que(f)
_ f FO@I - "2, a)dm(z)
Qe (f)ND1y4

+ f |f(”)(Z)|t(1 _ |Z|2)nt—zgs(zl a)dm(z)
Qn,é‘(f)\Dl/-’l
=M +M,,

where Dy ={z€D:|z] < i}. By the following inequalities:

S ]' S
g°(z,a) = log PE] >log’4>1, l|pa(z)l <

N

and

1
#°(z,a) = log’ S 41 - lpa@)PY,  1pa2)l = T

|9a(2)]
we can get that

M < 4 f FPGE — 221~ [pa@)PY dm(z),
Qe (f)

and

M < f FO@E = 225 (2, a)dm(z)
Qe (f)

Wiy, [ Q=B PG o
Qe (f)
<K< oo,

where K is a constant independent of a. Therefore, dy < d3. The proof is completed. O
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From Theorem 2.1 we immediately obtain the following corollary.

Corollary 2.2. Let f € 8,0 <s <1, 1 <p <oo, 0 <t < coandn isa positive integer. Then the following
quantities are equivalent:

(1) f € CB(F(PIP - 2/ S))/

(2) XQ,,lE(f)% is a bounded s-Carleson measure for every € > 0;

(3) sup,cp fQ * IFM @)1 = [22)"2(1 — |pa(z)P)dm(z) < oo for every e > 0;

(4) sup,.p fQ " IFM @)1 - [22)"2g°(z, a)dm(z) < oo for every € > 0.

For the distance from a Bloch function to the Fy(p, p — 2, s) space, combining [18, Theorem 6] and the proof
of Theorem 2.1, we have the following theorem.

Theorem 23. Let f € B,0<s <1, 1 <p<oo, 0<t<ooandn isa positive integer. Then the following
quantities are equivalent:

(1) dists(f, Bo);

(2) dists(f, Fo(p, p — 2,9));

(3) inf{e : xq,, (f)uﬂ:% is a vanishing s-Carleson measure};

(@) infle : limgpn [, 1FO @I = 2221 = lpa@)PYdm(z) = 0);

(

5) inf{e : limyy 1 fQ " FO@I - R)" 2z, a)dm(z) = 0},
From the Theorem 2.3, we easily obtain the following corollary.

Corollary 2.4. Let 0 < s <1, f € H(D). Then f € By if and only if}(QM(f)% is a vanishing s-Carleson
measure for every € > 0.

For the case s = 0, we give the following result:

Theorem 2.5. Let f € B,1 < p < oo, and n be a positive integer. Then the following quantities are equivalent:
(1) distg(f, Bo);
(2) dists(f, By);

(3) infle : A(Qye(f)) < o0}, where A(Qy(f)) = fu " (1dn|72fz))z is the hyperbolic area of the set Qy, .(f).

Proof. By [18, Theorem 8], we can get that quantity (1) is equivalent to quantity (2). Next, we show that
quantity (2) and quantity (3) are equivalent. Suppose that f; and f, are the same as the proof of Theorem 1.
We need only prove that f; € B, for 1 < p < co. Since

. (1 = [w)" O (w)dm(a)
D) = (n+1) fQ P = )

By Fubini’s theorem and [21, Lemma 4.2.2], we have

f FO@DPA — 2RyP2dm(z)
D

(n) _ 2\n
< IAlG f f ” P = o) )1 — 2Ry—2dm(z)

|1 — Za)|”+2

_|~2\n—2
< WAL | P fD e s n(z)in(a)

S IR 1l f (1 = [0P) 2dm(w)

e

= lIfill, 1l AQ e (£)-
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Thus, [13, Theorem 3.2] shows f; € B, if A(Q,(f)) < co. Thus dists(f, B,) is bounded by a multiple of
quantity (3).

Suppose that there are two constants ¢ > ¢; > 0 and a function f,, € B, (1 < p < o0) such that
MQye(f)) = o and ||f — fe,llg < €1. As before, we have

dm(z) Ifé”)(Z)IP(l |22y
XQn,z (f) (1 _ |Z|2)2 = (S — gl)p

dm(z).
Since f;, € By, we have
f PP = 272 (z) < .

Thus

d
/\(Qn,e(f)) = f XQn/E(f)%

f|fg”)<z)|*7 ~PYP2dm(z)

(8 8)”

which contradicts A(Q,¢(f)) = co. O
As immediate, we get the following corollary from Theorem 2.5.

Corollary 2.6. Let f € H(ID), and n is a positive integer. Then f € By if and only if A(Q,, (f)) < oo for every & > 0.

3. The boundedness of the product of composition and n-th differentiation operators

In this part, we consider the boundedness of the product of composition and n-th differentiation opera-
tors. Firstly, we start with the case from 5 to Cg(F(p, p — 2,5)).

Theorem 3.1. Let 0 <s <1,1<p <oo. Let ¢ be an analytic self-map of ID. Then C,D" is bounded from the Bloch
space B to Cg(F(p,p — 2,5)) if and only if

aeD

supf 1- |(pﬂ(z)|2)5d/\(z) < oo (3.1)
Ql(p)

for every & > 0, where Ql(p) = {z€D: (H(p—lz),,ﬂ(l %) > €.

Proof. Assume that (3.1) is true for any ¢ > 0. Let f € B, then

1 2
(CpD" Y N1 = |2) = | V()| %a ~ lp@P)"™!
o’ (2|1 - [zP)
< Wl (o e
For any fixed € > 0, [(C,D"f) (z)I(1 - Iz*) > ¢, then
@A) e

> =¢,
1= le@Py*t ~ lIfllann
that is, we have Q.(C,D" f) C QZ, (). Thus

sup f (1 = |pa(2)?)’dA(z) < sup f (1 = lpa(2)P)°dA(z) < oo.
Q.(CyD"f) Ql(p)

acD acD
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By [12], C,D" f € Cg(F(p, p —2,5)). The Schwarzian-Pick Lemma implies that ||C,D" ||z < ||fll. Thus C,D"
is bounded from the Bloch space B to Cg(F(p,p — 2, 5)).

Conversely, assume that C,D" : 8 — Cg(F(p,p —2,5)) is bounded. According to [16, Theorem 2.2.1] and
[11, Theorem 2.1], for any positive integer n, there exist two functions fi, f, € B such that

@1+ @1 g 62

|Z|2)n+1 '
Owing to the hypothesis, we obtain f{” 0 ¢, f;"” 0 ¢ € C5(F(p,p ~2,5)). Givenany ¢ > 0, letz € Q(¢), then
(1 - 12P) 2 . By (3.2),
I’ @)1 - 12P)

(A" @I+ 15" @ El) I @I - 12 2 T o 2 ¢

Thus
(D" Ay @]+ [(CoD" oY @) (A — 12P) = &

Therefore, either

(D Ay @A - =5
or
(D" ) ()] (1 - I2P) =

N ™

So we have

sup f (1 - o)) dA(z)
Ql(p)

aeD

< sup (1~ lp@P) i)

aeD f(;s/Z(C(pD”fl)UQE/Z(C(panZ)
< sup f (1 - lp@)*)*dA(z) + sup f (1 - o)) dA(z)
aelD Q, 12 (C[/)D”f‘l ) aelD Q, /z(C([,D”fz)

< 00,

The proof of Theorem 3.1 is complete. []

Theorem 3.2. Let 0 <s < 1,1 < p < co. Let ¢ be an analytic self-map of ID. Then C,D" is bounded from By to
Cg(F(p,p —2,5)) ifand only if ¢ € Cg(F(p,p — 2,5)) and

(1-1zP)

sup ————————|¢’(2)| < co. 3.3
> T ppr @ &)
Proof. To prove the necessity. Suppose that C,D" : By — Cg(F(p,p —2,s)) is bounded. Notice f,(z) = %

By, then we have ¢ = C,D"(f,) € Cg(F(p,p - 2,5)). Since C,D" : By — Cg(F(p,p — 2,s)) is bounded and
Cgs(F(p,p—2,s)) € B, then C,D" : By — Bisbounded. Itis easy to see (3.3) holds according to [22, Theorem
2].

Conversely, assume that ¢ € Cg(F(p,p—2,s)) and sup, a (lzt)

TPy |p’(z)| < co. Let f € By. Forany ¢ > 0,

there exists a constant 0 < r < 1 such that
I3

1-1zP) !
SupZED (1_|(p(zz)'|2)n+1 |(P’ (Z)l

F@IA - 12" <

z| > 7.
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Let z € Q.(C,D"f). It is obvious that we have

(1 -z ’ (n+1) _ 2yn+1
sup Tyl @I @ - pE)P)

> f" (@)1 - 2P’ @)] = (CoD" Y @)1 — |z) > e.
This implies that |p(z)| < r. Therefore

£l 1
(1 — 7"2)"+1

> | D(p(2)] (1 - o))"
= (CoD" ) @)I(1 = |2P) = e.

(1~ 12P)lg’ 2)l

1-P)

(1 — |(p(Z)|2)”+1 |(p’(Z)|

Let 6 = & Thus we have lo’(2)I(1 = |z*) > 6. This means that Q:(CyD"f) € Qs(p). Due to

1fll8.+1

@ € Cg(F(p,p — 2,5)), we can obtain

swp [ (a-lpu@Prire <sup [ @ -lp@Prae)
aeD JQ,(C,D"f) a€D JQs(¢p)

By [12], we know that C,D" f € Cg(F(p,p — 2,s)). Therefore C,D" : By — Cg(F(p,p — 2,5)) is bounded. The
proof is complete. [J

4. The compactness of the product of composition and n-th differentiation operators

In this part, we consider the compactness of the product of composition and n-th differentiation opera-
tors.

Theorem 4.1. Let 0 <s < 1,1 < p < oo. Let ¢ be an analytic self-map of ID. Then the following conditions are
equivalent.
(1) C,D" is compact from B to Cg(F(p,p — 2,5));
(2) C,D" is compact from By to Cg(F(p,p — 2,5));
(3) @ € Cg(F(p,p —2,5)) and
1-]zf?

lim ——— /() =0.
o1 A= fppy ¥ @)

Proof. Since By C B, the implication (1) = (2) is obvious.

To prove that (2) implies (3), assume that C,D" : By — Cg(F(p,p — 2,5)) is compact. Then C,D" :
By — Cg(F(p,p —2,5)) is bounded. By Theorem 3.2, we obtain ¢ € Cg(F(p,p — 2,5)). It is well known that
Cs(F(p,p — 2,5)) € B. Thus C,D" : By — B is compact. This implies that limp,) -1 m&%l@’(z)l =0 by
[22, Theorem 2].

It remains to show that (3) implies (1).By the hypothesis, there exists 0 < r < 1 such that

1—|z2

Let z € Q. (@), then |p(z)| < r. Therefore,

lp’(z)] < %, whereever |p(z)| > r.

1— |z

A=yt lp'(2)] > e.

, 1-[zP
lp"(2)] = A= lp@py
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Thus |’ (2)I(1 — |z*) > (1 — r?)"*1e. Set 6 = (1 — r?)"*¢, then z € Qs(¢). Since ¢ € Cs(F(p, p — 2,5)), we have

00 > sup (1- I(pﬂ(z)lz)sd/\(z) > sup 1- I(pa(z)lz)sd/\(z).
aelD JQs(p) aelD JQ.(p)

By Theorem 3.1, C,D" : By — Cg(F(p,p —2,5)) is bounded. It is easy to know that C,D" : 8 — B is compact
by [22, Theorem 2] with & = g = 1. Therefore, C,D" : By — Cg(F(p,p — 2,5)) is compact. We finished the
proof. O

Theorem 4.2. Let 0 <s < 1,1 < p < oo. Let ¢ be an analytic self-map of D. Then C,D" : Cg(F(p,p - 2,5)) —
Cg(F(p,p — 2,5)) is compact if and only if ¢ € Cg(F(p,p —2,s)) and

im — L= 1)
lp@I-1 (1 = [p(z)2)"+1

Proof. The necessity of the conditions can be proved immediately. Assume that C,D" : Cg(F(p,p - 2,5)) —

Zn+1

Cs(F(p,p —2,5)) is compact. Thus C,D" : Cg(F(p,p —2,5)) — Cg(F(p,p —2,5)) is bounded. Since f, = oD €
Cg(F(p,p — 2,5)), we obtain ¢ € Cg(F(p,p — 2,5)). It is well known that By is the closure of all polynomials
in 8. Therefore, C,D" : By — Cg(F(p,p — 2,5)) is compact.

To prove the sufficiency, assume that ¢ € Cg(F(p,p — 2,5)) and (1) holds. By [22, Theorem 2], we see that
CyD" : B — B is compact. From the theorem above, we get C,D" is compact from B to Cg(F(p,p — 2,5)).
Since Cg(F(p,p — 2,5)) € 8, we obtain C,D" : Cg(F(p,p — 2,5)) = Cg(F(p,p — 2,5)) is compact. We finish the
proof. O
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