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Abstract. Relational data has become increasingly important in decision analysis in recent years, and so
mining knowledge which preserves relationships between objects is an important topic. Graphs can repre-
sent the knowledge which contains objects and relationships between objects. Rough set theory provides
an effective tool for extracting knowledge, but it is not sufficient to extract the knowledge containing the
data on relationships between objects. In order to extend the application scope and enrich the rough set
theory, it is essential to develop a rough set analysis of graphs. This extension is important because graphs
play a crucial role in social network analysis. In this paper, the rough set analysis of graphs based on
general binary relations is investigated. We introduce three types of approximation operators of graphs:
vertex graph approximation operators, edge graph approximation operators, and graph approximation op-
erators. Relationships between approximation operators of graphs and approximation operators of sets are
presented. Then we investigate the approximation operators of graphs within constructive and axiomatic
approaches.

1. Introduction

Rough set theory [17, 18] as a formal tool for representing and dealing with uncertain knowledge
information in database has been applied in knowledge discovery [19, 20], machine learning [13], and
decision analysis [4, 8, 22], etc.

The rough set theory brings about lower and upper approximation operators, and the core idea consists
in approximating an incomplete or inexact concept with a pair of complete or exact concepts—its lower
and upper approximations. With the development of rough set theory, for lower and upper approxima-
tion operators, there are mainly two definition approaches—the constructive approach and the axiomatic
approach. In the constructive approach, the notions of approximation operators are extended to general
binary relations [33, 44], neighborhood systems [11], coverings [30, 42, 43], algebras [26], etc. In the ax-
iomatic approach, the primitive notions are the abstract lower and upper approximation operators which
are characterized by a set of axioms. In the crisp environment, the most important axiomatic studies were
made by Yao and Lin [34, 36], in which various classes of crisp rough set algebras were characterized by
different sets of axioms. Recently, the research of the axiomatic approach has also been extended to fuzzy
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Corresponding author: Ping Zhu
Research supported by the National Natural Science Foundation of China (No. 62172048).
Email addresses: sqiao@sdu.edu.cn (Sha Qiao), pzhubupt@bupt.edu.cn (Ping Zhu), wpedrycz@ualberta.ca (Witold Pedrycz)



S. Qiao et al. / Filomat 36:10 (2022), 3331–3354 3332

environment [12, 21, 28, 29, 31], and furthermore, in the complete residuated lattice [1, 32]. The research on
axiomatic characterizations for the covering based approximation operators is also an important topic [39].

In the above, both the lower and upper approximations of a subset of universe are subsets of universe,
which overlook the relationships between objects although the constructions of approximations are based
on the relation. Scott [25] pointed out that “Relational data, on the other hand, are the contacts, ties and
connections, the group attachments and meetings, which relate one agent to another and so cannot be
reduced to the properties of the individual agents themselves". For example, in a demographic database, it
is more natural to represent the parent–child relationship as a relation between individuals, instead of an
attribute of the parent or the child.

Moreover, in the problem of graph pattern matching, the personalized graph pattern matching via
limited simulation [5] also showed that relation between nodes (objects) cannot be reduced to the properties
of the nodes (objects), which implies the necessity of the relation between nodes (objects). In order to clarify
the motivation of this study more precisely, at first, we recall the definition of personalized graph pattern
matching via limited simulation. In the following definition, we assume that G = (V,E, fV, fE) is a data
graph [14], where V is a finite set of nodes, E ⊆ V × V is a finite set of edges in which (v, v′) ∈ E denotes an
edge from nodes v to v′, fV is a function that maps each node v ∈ V to a node label fV(v) in ΣV, and fE is a
function that maps each edge e ∈ E to an edge label fE(e) in ΣE. We say that the graph G′ = (V′,E′, fV′ , fE′ )
is a subgraph of G if V′ ⊆ V, E′ ⊆ E, fV′ (v) = fV(v) for each v ∈ V′, and fE′ (e) = fE(e) for each edge e ∈ E′.
A pattern graph is a directed node-weighted graph P = (VP,EP, fVP , fEP ,w), where (VP,EP, fVP , fEP ) is a data
graph and w is a weighted function for nodes, which maps each node u ∈ VP to an element in N ∪ {∞}.
Here, by N we denote the set of natural numbers. Let k ∈ N and Gi = (Vi,Ei, fVi , fEi ) be a graph, where
i = 1, 2. We say that v1 ∈ V1 is k-limited similar to v2 ∈ V2 [5], denoted by v1 ≿k v2, if the following hold:

(1) fV1 (v1) = fV2 (v2) when k = 0;
(2) v1 ≿0 v2 and for each edge e2 = (v2, v′2) ∈ E2, there exists an edge e1 = (v1, v′1) ∈ E1 such that fE1 (e1) =,

fE2 (e2), v1 ≿k−1 v2 and v′1 ≿k−1 v′2 when k > 0.

Then we give the definition of personalized graph pattern matching via limited simulation.

Definition 1.1. [5]. Let P = (VP,EP, fVP , fEP ,w) be a pattern graph and G = (V,E, fV, fE) be a data graph. We
say that G matches P via limited simulation, denoted by G▷P, if there exists two relations SV ⊆ VP ×V and
SR ⊆ EP × E such that:

(1) VP = {u | (u, v) ∈ SV} and EP = {e | (e, e′) ∈ SE};
(2) for each pair (u, v) ∈ SV, v ≿w(u) u;
(3) for each pair (e, e′) ∈ SE with e = (u,u′) and e′ = (v, v′), it holds that fEP (e) = fE(e′) and (u, v), (u′, v′) ∈ SV.

The SV is called a node matching relation from P to G, and SR is called an edge matching relation from P
to G. Let V′ = {v | (u, v) ∈ SV} and E′ = {e′ | (e, e′) ∈ SE}. The graph G′ = (V′,E′, fV |V′ , fE |E′ ) is a subgraph
of G, called a match in G for P via limited simulation. For nodes u ∈ VP and v ∈ V, if v ≿w(u) u, then v is
called a match in G for u. For edges e = (u,u′) ∈ EP and e′ = (v, v′) ∈ E, we call e′ a match in G for e if
fEP (e) = fE(e′), v ≿w(u) u, and v′ ≿w(u′) u′. It should be noted that the relation SE can not be reflected by SV
in the problem of personalized graph pattern matching via limited simulation. For more details, including
examples, we refer the reader to [5]. From the above, we know that the relation SR on edge set cannot be
neglected, which illustrates the importance of edges. The necessity of SR also reveals that the relation on
edge set is indispensable.

In rough set theory, let (U,R) be a generalized approximation space. For any x ∈ U, the set Rp(x) =
{y | (y, x) ∈ R} is called the predecessor neighborhood of x and Rs(x) = {y | (x, y) ∈ R} is called the successor
neighborhood of x. Based on the predecessor neighborhood, for any subset V1 ⊆ U, the lower and upper
approximations of V1 are Rp(V1) = {x ∈ U |Rp(x) ⊆ V1} and Rp(V1) = {x ∈ U |Rp(x)∩V1 , ∅}, respectively. In

terms of rough set theory, we can get that V′ = (SV)p(VP) and E′ = (SR)p(EP). By the property of SV and SR
defined in Definition 1.1, we know that E′ ⊆ V′ × V′. The above demonstrates that matching graph G′ of
P can be represented by the ordered pair of upper approximations of VP and EP based on the predecessor
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neighborhood. By the rough set theory, we can also derive the maximal matching graph in G for subgraph
P1 = (VP1 ,EP1 ) of P: (S)p(P1) = ((SU)p(VP1 ), (SR)p(EP1 )). Sometimes, we would like to obtain the maximal
matching graph G′′1 = (V′′1 ,E

′′

1 ) of P in a target subgraph G1 = (V1,E1) of data graph G to narrow the pattern
area: V′′1 = {v ∈ V1 | (SU)p(v) ∩ VP , ∅} and E′′1 = {e ∈ E1 | (SR)p(e) ∩ EP , ∅}. The above graphs are all based
on the upper approximation operators. There are also many important explanations for the graphs based
on the lower approximation operators. Here, we omit the details.

Relational data between objects has become increasingly important in decision analysis in recent years.
Recently, Fan [6] provided the rough set analysis of relational structures. Besides, there are many examples
can be found in social network analysis, where the principal types of data are attribute data and relational
data. So it is important to extract the knowledge containing the data on objects and the data on relationships
between objects. We know that a graph which is an ordered pair of vertex (object) set and edge (relationship
between the objects) set can contain the data on vertices and the data on edges, and hence it represents
the more complex knowledge than its vertex set. In practice, graphs with irregular structures naturally
occur in social networks [38, 48], knowledge networks [7, 27], and protein networks [15], etc. Many real-
world applications involve the analysis of graphs, such as graph classification, node classification, node
recommendation, link prediction, and node visualization.

Rough set theory provides an effective tool for extracting knowledge which does not preserve the data
on relationships between objects. From the problem of personalized graph pattern matching via limited
simulation, we can get the maximal matching graph of P by the predecessor neighborhood based upper
approximations of VP and EP, which means that we can gain the knowledge represented by graphs by
rough set theory. Although this is a significant application of rough set theory, the rough set analysis of
graphs is rarely studied. Therefore, it is essential to extend the application scope of rough set theory to
graphs, thus enriching and strengthening the rough set theory. The rough approximations of graph not
only can extract the data on objects (vertices) but also on relationships (edges).

There has been some works on analysis of graphs by rough set theory. Chen et al. [2, 3] studied the
testing bipartiteness of simple undirected graphs and minimum vertex cover problem of graphs based on
generalized rough sets. He and Shi [9] applied rough set theory to attributed graphs, which focuses on the
roughness of multigraphs with multiple edges and essentially concentrates only on the roughness in edges.
For simple graphs, Shahzamanian et al. [23] considered the roughness in Cayley graphs, they discussed
lower and upper approximations edge Cayley graphs of a Cayley graph which concentrate on the roughness
in edges, vertex pseudo-Cayley graphs of a pseudo-Cayley graph which focus on the roughness in vertices,
and pseudo-Cayley graphs of a pseudo-Cayley graph which focus on both the roughness in vertices and
in edges with respect to a normal subgroup. They showed that a Cayley graph can be approximated by
two Cayley graphs — the lower and upper approximations edge Cayley graphs of the Cayley graph. In
addition, Liang et al. [10] defined a specific relation over the edge set based on the notion of group, and
then constructed rough graphs based on the relation. They proved that any graph can be approximated
by a pair of Cayley graphs. In the above work, we know that for simple directed graphs, the roughness
in graphs is based on the roughness in vertices or in edges which are based on groups. In this paper, we
mainly also focus on the simple directed graphs. We further investigate the roughness in graphs based on
general binary relations which has not be studied systematically. The roughness in graphs is based on both
the roughness in vertices and roughness in edges which are based on the relations instead of groups. We
investigate the roughness in graphs within the axiomatic approach which has not be studied. This work
fills in the gap in the research of rough graphs. The edge rough graph proposed by Liang et al. [10] and the
rough graph of simple directed graph introduced by He et al. [9] are special cases of this paper.

As we know, there are many different kinds of approximation operators of sets which have different
meanings. Therefore, rough set theory can help us obtain different knowledges from the data graph to
satisfy different requirements. In this paper, we center on four types of approximation operators of sets, for
other types, we will investigate them in the future.

In this paper, we introduce vertex graph approximation operators, edge graph approximation operators,
and graph approximation operators. All of them are constructed based on approximation operators of
vertex sets and approximation operators of edge sets of graphs. The vertex graph approximation operators
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first calculate the approximation of vertex set of the graph considered, and then determined the edge set
of the approximation of the graph of which the set of induced vertices is contained in the approximation
of the vertex set, which implies that the property of vertices is more important than that of edges in a
sense. The edge graph approximation operators first calculate the approximation of the edge set, and then
determine the vertex set of the approximation of the graph of which the set of induced edges contains the
approximation of the edge set, which in a way means that the property of edges is more important than that
of vertices. By graph approximation operators, we can obtain approximations of the graph which do not
contain isolated vertices. Based on four types of approximation operators of sets, we obtain four types of
vertex graph, edge graph, graph approximation operators. We provide characterizations in the constructive
approach and the axiomatic approach, and give relationships between approximation operators of graphs
and approximation operators of sets.

The paper is organized as follows. In Section 2, we first review some concepts in rough set theory
and graph theory, and then recall four types of approximation operators of sets and show their properties.
In Section 3, we introduce four types of vertex graph, edge graph, and graph approximation operators
and give characterizations in the constructive approach. The axiomatic characterizations of vertex graph
approximation operators and edge graph approximation operators are given in Sections 4 and 5, respec-
tively. In Section 6, the axiomatic characterizations of 0-type, 1-type, and 3-type graph lower approximation
operators are presented. Finally, Section 7 concludes this paper.

2. Preliminaries

In this section, we first recall some concepts and notations in rough set theory and graph theory, and
then review four types of approximation operators of set.

A graph is an ordered pair G = (V,E) of sets V and E, where V is a set of vertices and E is a set of edges
such that E ⊆ V×V. The sets of vertices and edges of a graph G are denoted by V(G) and E(G), respectively.
If E(G) = ∅, we say that G is an empty graph, and if V(G) = ∅ and E(G) = ∅, we denote it by G = ∅. A
graph can be referred to as a data graph with singleton vertex label and singleton edge label, which we
omit for the convenience of representation. A graph G1 is a subgraph of G if V(G1) ⊆ V and E(G1) ⊆ E. A
directed edge e from x to y is denoted by e = (x, y), and vertices x and y are called the ends of the edge
e. An isolated vertex is a vertex that is not an end of any edge. For any V1 ⊆ V and any E1 ⊆ E, graph
G[V1] is the vertex-induced subgraph of G with the vertex set V1 and the set of edges of which the two ends
are in V1 and G[E1] is the edge-induced subgraph of G with the edge set E1 and the set of vertices which
are associate to the edges in E1. Let E′(V1) = E(G[V1]) be the set of edges of which the ends are in V1 and
V′(E1) = V(G[E1]) be the set of vertices which are associate to the edges in E1. Formally, we have that

E′(V1) = {e ∈ E | e = (x, y) with x, y ∈ V1} and V′(E1) = {x ∈ V | ∃y ∈ V such that (x, y) or (y, x) ∈ E1}.

We know that (U,R) is a generalized approximation space, where U is a non-empty finite universe of
discourse (states or vertices) and R ⊆ U × U is a general binary relation on U. The relation R is reflexive
if (x, x) ∈ R for any x ∈ U; symmetric if (x, y) ∈ R, then (y, x) ∈ R for any x, y ∈ U; predecessor serial if for
any x ∈ U, there exists y ∈ U such that (y, x) ∈ R. A reflexive and symmetric relation is called a tolerance
relation, and we call a reflexive, symmetric, and transitive relation an equivalence relation. Actually, the
concept of generalized approximation space and the concept of simple directed graph are equivalent to each
other. We denote by G((U,R)) the set of all the subgraphs of (U,R) and P(U) the power set of U. We know
that x is an isolated vertex if and only if Rp(x) ∪ Rs(x) = ∅. Let X ⊆ U. The inequality (Rp(x) ∪ Rs(x)) ∩X , ∅
means that x is connected to a vertex in X, and ∪y∈Rp(x)Rs(y) ∩ X , ∅ means that x and a vertex in X are in
the same successor neighborhood of some vertex in U. Based on the concepts of predecessor neighborhood
and successor neighborhood, the universe U can be partitioned into ten parts Yi ∩ X, Yi ∩ (U − X) with
respect to X, where i = 0, 1, 2, 3, and

Y0 = {x ∈ U |Rp(x) ∪ Rs(x) = ∅},
Y1 = {x ∈ U |Rp(x) ∪ Rs(x) , ∅, (Rp(x) ∪ Rs(x)) ∩ X , ∅ and ∪y∈Rp(x) Rs(y) ∩ X = ∅},
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Y2 = {x ∈ U |Rp(x) ∪ Rs(x) , ∅, (Rp(x) ∪ Rs(x)) ∩ X , ∅ and ∪y∈Rp(x) Rs(y) ∩ X , ∅},

Y3 = {x ∈ U |Rp(x) ∪ Rs(x) , ∅, (Rp(x) ∪ Rs(x)) ∩ X = ∅ and ∪y∈Rp(x) Rs(y) ∩ X , ∅},

Y4 = {x ∈ U |Rp(x) ∪ Rs(x) , ∅, (Rp(x) ∪ Rs(x)) ∩ X = ∅ and ∪y∈Rp(x) Rs(y) ∩ X = ∅}.

There are also other ways to partition the universe U. For example, replacing ∪y∈Rp(x)Rs(y) in the above with
∪y∈Rs(x)Rp(y), ∪y∈Rp(x)Rp(y), or ∪y∈Rp(x)Rs(y), and so we can obtain different partitions. We mainly consider
the partition in this paper. The existing approximation operators in rough set theory are about sets. Now
we give four types of approximation operators. For any X ⊆ U, the sets

R0(X) = {x ∈ U |Rs(x) ⊆ X} and R0(X) = {x ∈ U |Rs(x) ∩ X , ∅}

are called 0-type lower and upper approximations of X [24, 34, 37], respectively; the sets

R1(X) = ∪{Rs(x) |Rs(x) ⊆ X} and R1(X) = ∪{Rs(x) |Rs(x) ∩ X , ∅}

are called 1-type lower and upper approximations of X [39], respectively, which are based on granules; we
call the sets

R2(X) = {x ∈ X | ∃y ∈ X such that (x, y) or (y, x) ∈ R},

R2(X) = R2(X) ∪ {x ∈ U − X | ∃y ∈ X such that(x, y) or (y, x) ∈ R}

2-type lower and upper approximations of X [16], respectively. For any X ⊆ U, let

BRL(X) = {x ∈ X | ∃y ∈ Xc such that (x, y) or (y, x) ∈ R},
BRH(X) = {x ∈ Xc

| ∃y ∈ X such that (x, y) or (y, x) ∈ R}.

Then let BR(X) = BRL(X)∪BRH(X) = {x ∈ U | ∃y ∈ U, (x, y) or (y, x) ∈ R, (x ∈ X and y ∈ Xc) or (x ∈ Xc and y ∈
X)} be the boundary of the set X based on R, where Xc is the complement of X in U. Based on the boundary,
3-type lower and upper approximations of X [16] are defined by

R3(X) = X − BR(X) and R3(X) = X ∪ BR(X),

respectively. We have that R3(X) ⊆ X ⊆ R3(X) for any R ⊆ U ×U, which remains the basic properties of the
classical approximation operators. There are many other types of approximation operators of sets, in this
paper, we mainly concentrate on the four types of approximation operators of sets which have different
meanings. Ma et al. [16] discussed them from different aspects. In addition, by the definitions, we have
that

• if we care about the part Y0 ∩ (U − X), we can employ the 0-type lower approximation operator

because Y0 ∩ (U−X) is only contained in R0(X);
• if we care about the part Y0 ∩ X, we can employ 3-type approximation operators because Y0 ∩ X

is only contained in R3(X) and R3(X);
• if we care about the part Y1 and do not care about isolated vertices, we can employ 2-type
approximation operators which are more suitable than the other three types.
• if we care about the part Y3 ∩ (U − X), we can employ the 1-type approximation operators, while
the other three types of approximation operators are invalid;
• The part Y4 ∩ (U − X) is the set of vertices that we do not care about at all.

As presented in [16], the 0-type and 3-type approximation operators are equivalent to each other when
R is a tolerance relation and four types of approximation operators of sets are equivalent to each other when
R is an equivalence relation. Four types of approximation operators of sets have the following properties.
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Proposition 2.1. [33] Let (U,R) be a generalized approximation space. For any X1,X2 ⊆ U and any R1,R2 ⊆

R, the 0-type approximation operators have the following properties.

(L1) R(∅) ⊇ ∅, (H1) R(∅) = ∅,

(L2) R(U) = U, (H2) R(U) ⊆ U,

(L3) X1 ⊆ X2 ⇒ R(X1) ⊆ R(X2), (H3) X1 ⊆ X2 ⇒ R(X1) ⊆ R(X2),

(L4) R(X1 ∩ X2) = R(X1) ∩ R(X2), (H4) R(X1 ∩ X2) ⊆ R(X1) ∩ R(X2),

(L5) R(X1 ∪ X2) ⊇ R(X1) ∪ R(X2), (H5) R(X1 ∪ X2) = R(X1) ∪ R(X2),

(L6) R1 ⊆ R2 ⇒ R1(X1) ⊇ R2(X1), (H6) R1 ⊆ R2 ⇒ R1(X) ⊆ R2(X1),

(L7) R1 ∩ R2(X1) ⊇ R1(X1) ∪ R2(X1), (H7) R1 ∩ R2(X1) ⊆ R1(X1) ∩ R2(X1),

(L8) R1 ∪ R2(X1) = R1(X1) ∩ R2(X1), (H8) R1 ∪ R2(X1) = R1(X1) ∪ R2(X1).

Proposition 2.2. Let (U,R) be a generalized approximation space. For any X1,X2 ⊆ U and any R1,R2 ⊆ R,
we have the following.

(1) The 1-type approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition 2.1, and

(L1) R(∅) = ∅, (L2) R(X) ⊆ X,
(L4) R(X1 ∩ X2) ⊆ R(X1) ∩ R(X2), (L8) R1 ∪ R2(X1) ⊆ R1(X1) ∪ R2(X1).

(2) The 2-type approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition 2.1, and

(L1) R(∅) = ∅, (L2) R(X) ⊆ X,
(L4) R(X1 ∩ X2) ⊆ R(X1) ∩ R(X2), (L6) R1 ⊆ R2 ⇒ R1(X1) ⊆ R2(X1),

(L7) R1 ∩ R2(X1) ⊆ R1(X1) ∩ R2(X1), (L8) R1 ∪ R2(X1) = R1(X1) ∪ R2(X1).

(3) [16] The 3-type approximation operators have properties (L3)–(L8), (H1), (H3)–(H8) in Proposition
2.1, and

(L1) R(∅) = ∅, (H2) X1 ⊆ R(X1),
(L2) R(X1) ⊆ X1.

Proof. The (1) and (2) can be obtained by definitions of 1-type and 2-type approximation operators, respec-
tively.

Remark 2.1. For the 1-type lower approximation operator, it is easy to verify that there is no relationship
among R1 ∩ R2(X1), R1(X1), and R2(X1).

3. Vertex graph, edge graph, and graph approximation operators

The lower and upper approximations of subset X of U, both of which are empty graphs, defined in
general do not contain the edges, this may result in the loss of information represented by edges. Moreover,
the general approximations of X ignore the relationships between the edges in R, and we can not obtain
the lower and upper approximations of non-empty graphs by approximation operators of sets defined in
general. As presented in Introduction, knowledge represented by graphs naturally occur in the real world
[7, 15, 27, 38, 48]. In order to fill in the gap and enrich the rough set theory, as shown in Introduction, He and
Shi [9] proposed rough graph which focuses on the relationships between edges, Shahzamanian et al. [23]
introduced rough graph with respect to group, and Liang et al. [10] presented rough graph based on the
group induced relation. Furthermore, Zafar and Akram [45] investigated fuzzy rough graphs, and Zhan et
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al. [46] studied intuitionistic fuzzy rough graphs, both of which concentrate on properties in graph theory
and the application in decision analysis. In this paper, we mainly focus on the numeric (crisp) environment,
we will propose the concept of rough graph based on the ordered pair of relation between vertices and
relation between edges which is different from the above concepts of rough graphs. In order to study the
rough graph easily, we propose a concept of generalized approximation space on graph, and via it we give
lower and upper approximation operators of graph.

Definition 3.1. Let U be a non-empty finite universe of discourse, R,SU ⊆ U × U be two binary relations
on set U and SR ⊆ R × R be a binary relation on set R. We call the quadruple (U,R,SU,SR) a generalized
approximation space on graph (U,R).

In the sequel, we call (U,R,SU,SR) a generalized approximation space on graph and denote (SU,SR)
by S when there is no confusion. If both SU and SR are equivalence relations, then we call (U,R,SU,SR)
an approximation space on graph. We say that S′ = (S′U,S

′

R) ⊆ S if S′U ⊆ SU and S′R ⊆ SR. Based on the
generalized approximation space on graph, we give vertex graph, edge graph, and graph approximation
operators.

3.1. Vertex graph approximation operators

In this subsection, we give four types of vertex graph approximation operators and their properties.

Definition 3.2. Let (U,R,SU,SR) be a generalized approximation space on graph. For any graph G1 =

(V1,E1) ∈ G((U,R)), the i-type vertex graph lower approximation Si
v(G1) and upper approximation Si

v(G1)
of G1 based on S, where i = 0, 1, 2, 3, are defined by

Si
v(G1) = (Si

U(V1),Si
R(E1) ∩ E′(Si

U(V1))) and Si
v(G1) = (Si

U(V1),Si
R(E1) ∩ E′(Si

U(V1))),

respectively.

The Si
v and Si

v are called the i-type vertex graph lower and upper approximation operators, respectively,
where i = 0, 1, 2, 3. The vertex graph lower approximation operator first calculates the approximation
Si

U(V1), and then determines the edge set Si
R(E1) ∩ E′(Si

U(V1)) of Si
v(G1) of which the set of induced vertices

is contained in Si
U(V1), which can be interpreted as that the property of vertices is more important than that

of edges. The similar analysis is applied to vertex graph upper approximation operators. From the above
definition, we know that both Si

v(G1) and Si
v(G1) are subgraphs of (U,R), the ordered pair (Si

v(G1),Si
v(G1))

is called the i-type vertex rough graph of G1, where i = 0, 1, 2, 3. In this paper, we omit the subscript v and
superscript i when there is no confusion.

Rough graphs contain the information represented by edges which are more general than rough sets. In
addition, for the relationships between vertex graph approximation operators and approximation operators
of set, we have the following.

Proposition 3.1. Let (U,R) be a generalized approximation space on graph. Let V1 ⊆ U and E1 ⊆ R. For
the relationship between i-type vertex graph approximation operators and i-type approximation operators,
where i = 0, 1, 2, 3, we have

V(S0
v((V1, ∅))) = S0

U(V1), E(S0
v((U,E1))) = S0

R(E1), V(S0
v((V1, ∅))) = S0

U(V1), E(S0
v((U,E1))) ⊆ S0

R(E1);

V(S1
v((V1, ∅))) = S1

U(V1), E(S1
v((U,E1))) ⊆ S1

R(E1), V(S1
v((V1, ∅))) = S1

U(V1), E(S1
v((U,E1))) ⊆ S1

R(E1);

V(S2
v((V1, ∅))) = S2

U(V1), E(S2
v((U,E1))) ⊆ S2

R(E1), V(S2
v((V1, ∅))) = S2

U(V1), E(S2
v((U,E1))) ⊆ S2

R(E1);

V(S3
v((V1, ∅))) = S3

U(V1), E(S3
v((U,E1))) = S3

R(E1), V(S3
v((V1, ∅))) = S3

U(V1), E(S3
v((U,E1))) = S3

R(E1).
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For the special case that SU = R, we have V(Si
v((V1, ∅))) = Ri(V1) and V(Si

v((V1, ∅))) = Ri(V1), where
i = 0, 1, 2, 3, thus the concept of the new approximation space on graph is a proper generalization of the
generalized approximation space, and the vertex graph approximation operators are more general than
approximation operators of sets.

Now we give an example to illustrate the above vertex graph approximation operators.

Example 3.1. Let (U,R,SU,SR) be a generalized approximation space on graph where U = {x, y, z, v,w},
R = {(x, y), (x,w), (z, x), (z, v), (v, w)}, SU = R, and SR = {{(x, y), (x,w), (z, x)}, {(z, v), (v,w)}}which is an equiva-
lence relation on R. Let G1 = (V1,E1) = ({x, y,w}, {(x,w)}). Since

S0
U(V1) = {x, y, v,w}, S0

R(E1) = ∅ and S0
U(V1) = {x, z, v}, S0

R(E1) = {(x, y), (x,w), (z, x)},

we have S0
v(G1) = ({x, y, v,w}, ∅) and S0

v(G1) = ({x, z, v}, {(z, x)}), respectively. Then the 0-type vertex rough
graph of G1 is (({x, y, v,w}, ∅), ({x, z, v}, {(z, x)})) and the 0-type rough set of V1 is ({x, y, v,w}, {x, z, v}). By

S1
U(V1) = {y,w}, S1

R(E1) = ∅ and S1
U(V1) = {x, y, v,w}, S1

R(E1) = {(x, y), (x,w), (z, x)},

we obtain S1
v(G1) = ({y,w}, ∅) and S1

v(G1) = ({x, y, v,w}, {(x, y), (x,w)}), respectively. Then the 1-type vertex
rough graph of G1 is (({y,w}, ∅), ({x, y, v,w}, {(x, y), (x,w)})) and the 1-type rough set of V1 is ({y,w}, {x, y, v,w}).
Since

S2
U(V1) = {x, y,w}, S2

R(E1) = {(x,w)} and S2
U(V1) = U, S2

R(E1) = {(x, y), (x,w), (z, x)},

we get that S2
v(G1) = ({x, y,w}, {(x,w)}) and S2

v(G1) = (U, {(x, y), (x,w), (z, x)}). Then the 2-type vertex rough
graph of G1 is (({x, y,w}, {(x,w)}), (U, {(x, y), (x,w), (z, x)})) and the 2-type rough set of V1 is ({x, y,w},U).
Finally, because

(BSU)L(V1) = {x,w}, (BSR)L(E1) = {(x,w)},
(BSU)U(V1) = {z, v}, (BSR)U(E1) = {(x, y), (z, x)},

we have

BSU(V1) = (BSU)L(V1) ∪ (BSU)U(V1) = {x, z, v,w},
BSR(E1) = (BSR)L(E1) ∪ (BSR)U(E1) = {(x, y), (x,w), (z, x)},

and further,

S3
U(V1) = V1 − (BSU)(V1) = {y}, S3

R(E1) = E1 − (BSR)(E1) = ∅,

S3
U(V1) = V1 ∪ (BSU)(V1) = U, S3

R(E1) = E1 ∪ (BSR)(E1) = {(x, y), (x,w), (z, x)},

we thus obtain S3
v(G1) = ({y}, ∅) and S3

v(G1) = (U, {(x, y), (x,w), (z, x)}). Then the 3-type vertex rough graph of
G1 is (({y}, ∅), (U, {(x, y), (x,w), (z, x)})), and the 3-type rough set of V1 is ({y},U).

Now we study properties of four types of vertex graph approximation operators.

Proposition 3.2. Let (U,R,SU,SR) be a generalized approximation space on graph. For any G1,G2 ∈ G((U,R))
and any S1,S2 ⊆ S, the 0-type vertex graph approximation operators have the following properties.

(L1) S(∅) ⊇ ∅, (H1) S(∅) = ∅,



S. Qiao et al. / Filomat 36:10 (2022), 3331–3354 3339

(L2) S((U,R)) = (U,R), (H2) S((U,R)) ⊆ (U,R),

(L3) G1 ⊆ G2 ⇒ S(G1) ⊆ S(G2), (H3) G1 ⊆ G2 ⇒ S(G1) ⊆ S(G2),

(L4) S(G1 ∩ G2) = S(G1) ∩ S(G2), (H4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2),

(L5) S(G1 ∪ G2) ⊇ S(G1) ∪ S(G2), (H5) S(G1 ∪ G2) ⊇ S(G1) ∪ S(G2),

(L6) S1 ⊆ S2 ⇒ S1(G1) ⊇ S2(G1), (H6) S1 ⊆ S2 ⇒ S1(G1) ⊆ S2(G1),

(L7) S1 ∩ S2(G1) ⊇ S1(G1) ∪ S2(G1), (H7) S1 ∩ S2(G1) ⊆ S1(G1) ∩ S2(G1),

(L8) S1 ∪ S2(G1) = S1(G1) ∩ S2(G1), (H8) S1 ∪ S2(G1) ⊇ S1(G1) ∪ S2(G1).

Proof. We mainly prove (L4), (H4) and (H5), since the rest can be obtained directly by Proposition 2.1 and
Definition 3.2.

Suppose that G1 = (V1,E1) and G2 = (V2,E2). By Proposition 2.1, we have SU(V1∩V2) = SU(V1)∩SU(V2)
and SR(E1 ∩ E2) = SR(E1) ∩ SU(E2), and so

S(G1 ∩ G2) = S(V1 ∩ V2,E1 ∩ E2)
= (SU(V1 ∩ V2),SR(E1 ∩ E2) ∩ E′(SU(V1 ∩ V2)))

= (SU(V1) ∩ SU(V2), (SR(E1) ∩ SR(E2)) ∩ E′(SU(V1) ∩ SU(V2)))

= (SU(V1) ∩ SU(V2), (SR(E1) ∩ SR(E2)) ∩ (E′(SU(V1)) ∩ E′(SU(V2)))

= (SU(V1),SR(E1) ∩ E′(SU(V1))) ∩ (SU(V2),SR(E2) ∩ E′(SU(V2)))

= S(G1) ∩ S(G2).

Hence (L4) holds.
By Proposition 2.1 again, we obtain SU(V1 ∩ V2) ⊆ SU(V1) ∩ SU(V2) and SR(E1 ∩ E2) ⊆ SR(E1) ∩ SR(E2),

and then

S(G1 ∩ G2) = S(V1 ∩ V2,E1 ∩ E2)

= (SU(V1 ∩ V2),SR(E1 ∩ E2) ∩ E′(SU(V1 ∩ V2)))

⊆ (SU(V1) ∩ SU(V2), (SR(E1) ∩ SR(E2)) ∩ E′(SU(V1) ∩ SU(V2)))

= (SU(V1) ∩ SU(V2),SR(E1) ∩ SR(E2) ∩ E′(SU(V1)) ∩ E′(SU(V1)))

= (SU(V1),SR(E1) ∩ E′(SU(V1))) ∩ (SU(V2),SR(E2) ∩ E′(SU(V2)))

= S(G1) ∩ S(G2).

Thus (H4) holds.
For (H5), also by Proposition 2.1, we have SU(V1∪V2) = SU(V1)∪SU(V2) and SR(E1∪E2) = SR(E1)∪SR(E2),

and so

S(G1 ∪ G2) = (SU(V1 ∪ V2),SR(E1 ∪ E2) ∩ E′(SU(V1 ∪ V2)))

= (SU(V1) ∪ SU(V2), (SR(E1) ∪ SR(E2)) ∩ E′(SU(V1) ∪ SU(V1)))

⊇ (SU(V1) ∪ SU(V2), (SR(E1) ∪ SR(E2)) ∩ (E′(SU(V1)) ∪ E′(SU(V1))))

⊇ (SU(V1),SR(E1) ∩ E′(SU(V1))) ∪ (SU(V2),SR(E2) ∩ E′(SR(V2)))

= S(G1) ∪ S(G2).

The following proposition provides properties of 1-type, 2-type, and 3-type vertex graph approximation
operators.



S. Qiao et al. / Filomat 36:10 (2022), 3331–3354 3340

Proposition 3.3. Let (U,R,SU,SR) be a generalized approximation space on graph. For any G1,G2 ∈ G((U,R))
and any S1,S2 ⊆ S, we have the following.

(1) The 1-type vertex graph approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition
3.2, and

(L1) S(∅) = ∅, (L2) S(G1) ⊆ G1,

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2).

(2) The 2-type vertex graph approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition
3.2, and

(L1) S(∅) = ∅, (L2) S(G1) ⊆ G1,

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2), (L6) S1 ⊆ S2 ⇒ S1(G1) ⊆ S2(G1),

(L7) S1 ∩ S2(G1) ⊆ S1(G1) ∩ S2(G1), (L8) S1 ∪ S2(G1) ⊇ S1(G1) ∪ S2(G1).

(3) The 3-type vertex graph approximation operators have properties (L3)–(L8), (H1), (H3)–(H8) in
Proposition 3.2, and

(L1) S(∅) = ∅, (H2) G1 ⊆ S(G1).
(L2) S(G1) ⊆ G1,

Proof. It follows immediately from Proposition 2.2 and Definition 3.2.

Remark 3.1. It is not difficult to obtain that for the 1-type vertex graph lower approximation operator, there
is no relationship among S1 ∩ S2(G1), S1(G1), and S2(G1), and no relationship among S1 ∪ S2(G1), S1(G1), and
S2(G1).

3.2. Edge graph approximation operators

The vertex graph approximation operators can be used to handle the case that the property of vertices
has precedence over that of edges. For the opposite side, we give edge graph approximation operators,
and further provide their properties.

Definition 3.3. Let (U,R,SU,SR) be a generalized approximation space on graph. For any graph G1 =

(V1,E1) ∈ G((U,R)), the i-type edge graph lower approximation Si
e(G1) and upper approximation Si

e(G1) of
G1 based on S, where i = 0, 1, 2, 3, are defined by

Si
e(G1) = (Si

U(V1) ∪ V′(Si
R(E1)),Si

R(E1)) and Si
e(G1) = (Si

U(V1) ∪ V′(Si
R(E1)),Si

R(E1)),

respectively.

The Si
e and Si

e are called i-type edge graph lower and upper approximation operators, respectively, where
i = 0, 1, 2, 3. The edge graph lower approximation operator first calculates the approximation Si

R(E1), and

then determines the vertex set Si
U(V1) ∪ V′(Si

R(E1)) of Si
e(G1) of which the set of induced edges contains the

approximation Si
R(E1), which can be regarded as that the property of edges has priority over that of vertices.

We can give the similar explanation to the edge graph upper approximation operators. From the above
definition, we know that both Si

e(G1) and Si
e(G1) are subgraphs of (U,R), the ordered pair (Si

e(G1),Si
e(G1)) is

called the i-type edge rough graph of G1, where i = 0, 1, 2, 3. We drop the subscript e and superscript i if it
is clear from the context. Besides, we have the following.
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Proposition 3.4. Let (U,R) be a generalized approximation space on graph. Let V1 ⊆ U and E1 ⊆ R. For
the relationship between i-type edge graph approximation operators and i-type approximation operators,
where i = 0, 1, 2, 3, we have

V(S0
e ((V1, ∅))) ⊇ S0

U(V1), E(S0
e ((U,E1))) = S0

R(E1), V(S0
e ((V1, ∅))) = S0

U(V1), E(S0
e ((U,E1))) = S0

R(E1);

V(S1
e ((V1, ∅))) = S1

U(V1), E(S1
e ((U,E1))) = S1

R(E1), V(S1
e ((V1, ∅))) = S1

U(V1), E(S1
e ((U,E1))) = S1

R(E1);

V(S2
e ((V1, ∅))) = S2

U(V1), E(S2
e ((U,E1))) = S2

R(E1), V(S2
e ((V1, ∅))) = S2

U(V1), E(S2
e ((U,E1))) = S2

R(E1);

V(S3
e ((V1, ∅))) = S3

U(V1), E(S3
e ((U,E1))) = S3

R(E1), V(S3
e ((V1, ∅))) = S3

U(V1), E(S3
e ((U,E1))) = S3

R(E1).

Try to show example that is explanation-oriented.

Example 3.2. We revisit Example 3.1. We have that

S0
e (G1) = ({x, y, v,w}, ∅) and S0

e (G1) = (U, {(x, y), (x,w), (z, x)}).

Then the 0-type edge rough graph of G1 is (({x, y, v,w}, ∅), (U, {(x, y), (x,w), (z, x)})) and the 0-type rough set
of E1 is (∅, {(x, y), (x,w), (z, x)}). The 1-type edge graph lower and upper approximations of G1 are

S1
e (G1) = ({y,w}, ∅) and S1

e (G1) = (U, {(x, y), (x,w), (z, x)}),

respectively. Then the 1-type edge rough graph of G1 is (({y,w}, ∅), (U, {(x, y), (x,w), (z, x)})) and the 1-type
rough set of E1 is (∅, {(x, y), (x,w), (z, x)}). The 2-type edge graph lower and upper approximations are

S2
e (G1) = ({x, y,w}, {(x,w)}) and S2

e (G1) = (U, {(x, y), (x,w), (z, x)}),

respectively. Then the 2-type edge rough graph of G1 is (({x, y,w}, {(x,w)}), (U, {(x, y), (x,w), (z, x)})) and the 2-
type rough set of E1 is ({(x,w)}, {(x, y), (x,w), (z, x)}). The 3-type edge graph lower and upper approximations
are

S3
e (G1) = ({y}, ∅) and S3

e (G1) = (U, {(x, y), (x,w)}),

respectively. Then 3-type edge rough graph of G1 is (({y}, ∅), (U, {(x, y), (x,w), (z, x), (z, v)})) and the 3-type
rough set of E1 is (∅, {(x, y), (x,w), (z, x)}).

The following two propositions provide properties of four types of edge graph approximation operators.

Proposition 3.5. Let (U,R,SU,SR) be a generalized approximation space on graph. For any G1,G2 ∈ G((U,R))
and any S1,S2 ⊆ S, the 0-type edge graph approximation operators have the following properties.

(L1) S(∅) ⊇ ∅, (H1) S(∅) = ∅,

(L2) S((U,R)) = (U,R), (H2) S((U,R)) ⊆ (U,R),

(L3) G1 ⊆ G2 ⇒ S(G1) ⊆ S(G2), (H3) G1 ⊆ G2 ⇒ S(G1) ⊆ S(G2),

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2), (H4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2),

(L5) S(G1 ∪ G2) ⊇ S(G1) ∪ S(G2), (H5) S(G1 ∪ G2) = S(G1) ∪ S(G2),

(L6) S1 ⊆ S2 ⇒ S1(G1) ⊇ S2(G1), (H6) S1 ⊆ S2 ⇒ S1(G1) ⊆ S2(G1),

(L7) S1 ∩ S2(G1) ⊇ S1(G1) ∪ S2(G1), (H7) S1 ∩ S2(G1) ⊆ S1(G1) ∩ S2(G1),

(L8) S1 ∪ S2(G1) ⊆ S1(G1) ∩ S2(G1), (H8) S1 ∪ S2(G1) ⊇ S1(G1) ∪ S2(G1).
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Proof. We omit the details since it follows directly from Proposition 2.1 and Definition 3.3.

Proposition 3.6. Let (U,R,SU,SR) be a generalized approximation space on graph. For any G1,G2 ∈ G((U,R))
and any S1,S2 ⊆ S, we have the following.

(1) The 1-type edge graph approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition
3.5, and

(L1) S(∅) = ∅, (L2) S(G1) ⊆ G1,

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2), (L8) S1 ∪ S2(G1) ⊆ S1(G1) ∪ S2(G1).

(2) The 2-type edge graph approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition
3.5, and

(L1) S(∅) = ∅, (L2) S(G1) ⊆ G1,

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2), (L6) S1 ⊆ S2 ⇒ S1(G1) ⊆ S2(G1),

(L7) S1 ∩ S2(G1) ⊆ S1(G1) ∩ S2(G1), (L8) S1 ∪ S2(G1) = S1(G1) ∪ S2(G1).

(3) The 3-type edge graph approximation operators have properties (L3)–(L8), (H1), (H3)–(H8) in Propo-
sition 3.5, and

(L1) S(∅) = ∅, (H2) G1 ⊆ S(G1).
(L2) S(G1) ⊆ G1,

Proof. It follows immediately from Proposition 2.2 and Definition 3.3, we thus omit the proof.

Remark 3.2. About the 1-type edge graph lower approximation operator, it is not hard to obtain that there
is no relationship among S1 ∩ S2(G1), S1(G1), and S2(G1).

3.3. Graph approximation operators

We first introduce four types of graph approximation operators, and then show their properties.

Definition 3.4. Let (U,R,SU,SR) be a generalized approximation space on graph. For any graph G1 =

(V1,E1) ∈ G((U,R)), the i-type graph lower approximation Si(G1) and upper approximation Si(G1) of G1
based on S, where i = 0, 1, 2, 3, are defined by

Si(G1) = (V′(Si
R(E1) ∩ E′(Si

U(V1))),Si
R(E1) ∩ E′(Si

U(V1))),

Si(G1) = (V′(Si
R(E1) ∩ E′(Si

U(V1))),Si
R(E1) ∩ E′(Si

U(V1))),

respectively.

The Si and Si are called the i-type graph lower and upper approximation operators, respectively, where
i = 0, 1, 2, 3. By graph approximation operators, we obtain that both Si(G1) and Si(G1) are subgraphs of
(U,R) and do not contain isolated vertices. We call the ordered pair (Si(G1),Si(G1)) the i-type rough graph
of G1, where i = 0, 1, 2, 3. Like the above, the superscript i can be omited when there is no confusion.

It should be noted that the vertex graph, edge graph, and graph approximation operators are equivalent
to each other when SU and SR satisfy the condition (3) in Definition 1.1, i.e., for any (r1, r2) ∈ SR with
r1 = (u, v) and r2 = (u′, v′), it holds that (u, v), (u′, v′) ∈ SU.

Graph approximation operators and approximation operators of sets have the following relationships.
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Proposition 3.7. Let (U,R) be a generalized approximation space on graph. Let V1 ⊆ U and E1 ⊆ R. For
the relationship between i-type graph approximation operators and i-type approximation operators, where
i = 0, 1, 2, 3, we have

V(S0((V1,E′(V1)))) ⊆ S0
U(V1), E(S0((U,E1))) = S0

R(E1), V(S0((V1, ∅))) ⊆ S0
U(V1),

E(S0((U,E1))) ⊆ S0
R(E1);

V(S1((V1,E′(V1)))) ⊆ S1
U(V1), E(S1((U,E1))) ⊆ S1

R(E1), V(S1((V1,E′(V1)))) ⊆ S1
U(V1),

E(S1((U,E1))) ⊆ S1
R(E1);

V(S2((V1,E′(V1)))) ⊆ S2
U(V1), E(S2((U,E1))) ⊆ S2

R(E1), V(S2((V1,E′(V1)))) ⊆ S2
U(V1),

E(S2((U,E1))) ⊆ S2
R(E1);

V(S3((V1,E′(V1)))) ⊆ S3
U(V1), E(S3((U,E1))) = S3

R(E1), V(S3((V1,E′(V1)))) ⊆ S3
U(V1),

E(S3((U,E1))) = S3
R(E1).

We provide the following illustrative example.

Example 3.3. We visit Example 3.1 again. We have that

S0(G1) = ∅ and S0(G1) = ({x, z}, {(z, x)}).

Then the 0-type rough graph of G1 is (∅, ({x, z}, {(z, x)})). The 1-type graph lower and upper approximations
are

S1(G1) = ∅ and S1(G1) = ({x, y,w}, {(x, y), (x,w)}),

respectively. Then the 1-type rough graph of G1 is (∅, ({x, y,w}, {(x, y), (x,w)})). The 2-type graph lower and
upper approximations are

S2(G1) = ({x,w}, {(x,w)}) and S2(G1) = ({x, y, z,w}, {(x, y), (x,w), (z, x)}),

respectively. Then the 2-type rough graph of G1 is (({x,w}, {(x,w)}), ({x, y, z,w}, {(x, y), (x,w), (z, x)})). The
3-type graph lower and upper approximations are

S3(G1) = ∅ and S3(G1) = (U, {(x, y), (x,w), (z, x)}),

respectively. Then the 3-type rough graph of G1 is (∅, (U, {(x, y), (x,w), (z, x)})).

The four types of graph approximation operators have the following properties.

Proposition 3.8. Let (U,R,SU,SR) be a generalized approximation space on graph. For any G1,G2 ∈ G((U,R))
and any S1,S2 ⊆ S, the 0-type graph approximation operators have the following properties.

(L1) S(∅) ⊇ ∅, (H1) S(∅) = ∅,

(L2) S((U,R)) = (U,R), (H2) S((U,R)) ⊆ (U,R),

(L3) G1 ⊆ G2 ⇒ S(G1) ⊆ S(G2), (H3) G1 ⊆ G2 ⇒ S(G1) ⊆ S(G2),

(L4) S(G1 ∩ G2) = S(G1) ∩ S(G2), (H4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2),

(L5) S(G1 ∪ G2) ⊇ S(G1) ∪ S(G2), (H5) S(G1 ∪ G2) ⊇ S(G1) ∪ S(G2),

(L6) S1 ⊆ S2 ⇒ S1(G1) ⊇ S2(G1), (H6) S1 ⊆ S2 ⇒ S1(G1) ⊆ S2(G1),

(L7) S1 ∩ S2(G1) ⊇ S1(G1) ∪ S2(G1), (H7) S1 ∩ S2(G1) ⊆ S1(G1) ∩ S2(G1),

(L8) S1 ∪ S2(G1) = S1(G1) ∩ S2(G1), (H8) S1 ∪ S2(G1) ⊇ S1(G1) ∪ S2(G1).
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Proof. It follows immediately from Proposition 2.1 and Definition 3.4, and hence we omit the proof.

Proposition 3.9. Let (U,R,SU,SR) be a generalized approximation space on graph. For any G1,G2 ∈ G((U,R))
and any S1,S2 ⊆ S, we have the following.

(1) The 1-type graph approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition 3.8,
and

(L1) S(∅) = ∅, (L2) S(G1) ⊆ G1,

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2).

(2) The 2-type graph approximation operators have properties (L3), (L5), (H1)–(H8) in Proposition 3.8,
and

(L1) S(∅) = ∅, (L2) S(G1) ⊆ G1,

(L4) S(G1 ∩ G2) ⊆ S(G1) ∩ S(G2), (L6) S1 ⊆ S2 ⇒ S1(G1) ⊆ S2(G1),

(L7) S1 ∩ S2(G1) ⊆ S1(G1) ∩ S2(G1), (L8) S1 ∪ S2(G1) ⊇ S1(G1) ∪ S2(G1).

(3) The 3-type graph approximation operators have properties (L2)–(L8), (H1), (H3)–(H8) in Proposition
3.8, and

(L1) S(∅) = ∅, (H2) G1 ⊆ S(G1).
(L2′) S(G1) ⊆ G1,

Proof. It follows directly from Proposition 2.2 and Definition 3.4. We thus omit the details.

Remark 3.3. It is easy to have that for the 1-type lower graph approximation operator, there is no relation-
ship among S1 ∩ S2(G1), S1(G1), and S2(G1), and no relationship among S1 ∪ S2(G1), S1(G1), and S2(G1).

In the sequel, we always let G1 = (V1,E1) ∈ G((U,R)) be a graph.

4. On axiomatic characterizations of four types of vertex graph approximation operators

4.1. On axiomatic characterizations of 0-type vertex graph approximation operators
Yao [33] gave axiomatic characterizations of 0-type approximation operators. Based on the results, in

this subsection, we present axiomatic characterizations of 0-type vertex graph approximation operators.

Theorem 4.1. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L((U,R)) = (U,R),
(2) L(G1 ∩ G2) = L(G1) ∩ L(G2),
(3) L(G1) = (V(L((V1, ∅))),E(L((U,E1))) ∩ E′(V(L((V1, ∅)))))

if and only if there exists a unique ordered pair S = (SU,SR) of binary relation SU on U and binary relation
SR on R such that L = S0

v.

Proof. "⇐" It follows immediately from Propositions 3.1 and 3.2, and Definition 3.2.
"⇒" We first construct S = (SU,SR). For SU, (x, y) ∈ SU if and only if there exists a subset V ⊆ U such

that y ∈ V, x ∈ V(L((V, ∅))) and x < V(L((V − {y}, ∅))). For SR, (r1, r2) ∈ SR if and only if there exists a
subset E ⊆ U such that r2 ∈ E, r1 ∈ E(L((U,E))) and r1 < E(L((U,E − {r2}))). From the construction we have
that for any x ∈ U, x ∈ V(L(((SU)s(x), ∅))) and x < V(L(((SU)s(x) − {y}, ∅))) for any y ∈ (SU)s(x), and for any
r1 ∈ R, r1 ∈ E(L((U, (SR)s(r1)))) and r1 < E(L((U, (SR)s(r1)− {r2}))) for any r2 ∈ (SR)s(r1). Obviously, S0

v((U,R)) =
(U,R) = L((U,R)). Now we prove S0

v(G1) = L(G1). By the definition of 0-type lower approximation operator
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and (2), we obtain that for any x ∈ U, x ∈ S0
U(V1) if and only if (SU)s(x) ⊆ V1 if and only if x ∈ V(L(V1, ∅))),

and hence S0
U(V1) = V(L((V1, ∅))). Similarly, S0

R(E1) = E(L((U,E1))). Therefore, by (3) and Definition 3.2,

we have S0
v(G1) = (S0

U(V1),S0
R(E1) ∩ E′(S0

U(V1))) = (V(L((V1, ∅))),E(L((U,E1))) ∩ E′(V(L((V1, ∅))))) = L(G1). By
Definition 3.2 and Theorem 6 of [39], we can obtain the uniqueness of S.

For the axiomatic characterization of the 0-type vertex graph upper approximation operator, we have
the following.

Theorem 4.2. An operator H : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) H(∅) = ∅,
(2) V(H((V1 ∪ V2, ∅))) = V(H((V1, ∅))) ∪ V(H((V2, ∅))),
(3) E(H((U,E1 ∪ E2))) = E(H((U,E1))) ∪ E(H((U,E2))),
(4) H(G1) = (V(H((V1, ∅))),E(H((U,E1))) ∩ E′(V(H((V1, ∅)))))

if and only if there exists a unique ordered pair S = (SU,SR) of binary relation SU on U and binary relation
SR on R such that H = S0

v.

Proof. "⇐" It is easy to get by Propositions 2.1, 3.1 and 3.2, and Definition 3.2.
"⇒" We construct S = (SU,SR) by the following way: for any x, y ∈ U, (x, y) ∈ SU if and only if

x ∈ V(H(({y}, ∅))), and for any r1, r2 ∈ R, (r1, r2) ∈ SR if and only if r1 ∈ E((H(U, {r2}))). By the construction
and (2), we have that for any x ∈ U and any subset V ⊆ U, (SU)s(x) ∩ V , ∅ if and only if x ∈ V(H((V, ∅))),
and by the construction and (3), we obtain that for any r ∈ R and any subset E ⊆ R, (SR)s(r) ∩ E , ∅ if and
only if r ∈ E(H((U,E))). By Proposition 3.2, we have S0

v(∅) = ∅ = H(∅). Then we prove that S0
v(G1) = H(G1),

for any x ∈ U, from the above results, we have that x ∈ S0
U(V1) if and only if (SU)s(x) ∩ V1 , ∅ if and only

if x ∈ V(H((V1, ∅))), which implies that S0
U(V1) = V(H((V1, ∅))). Analogously, S0

R(E1) = E(H((U,E1))). Hence

(S0
U(V1),S0

R(E1) ∩ E′(S0
U(V1))) = (V(H((V1, ∅))),E(H((U,E1))) ∩ E′(V(H((V1, ∅))))), i.e., S0

v(G1) = H(G1). The
uniqueness of S can be obtained immediately from Definition 3.2 and Theorem 5 of [39]. This completes
the proof.

4.2. On axiomatic characterizations of 1-type vertex graph approximation operators

Zhu [40, 41] first gave the axiomatic characterization of the 1-type lower approximation operator,
and then Zhang et al. [47] established axiomatic systems and examined that the obtained axioms are
all independent. The approximation operator is also studied by Yao [35], and Zhu et al. [39] from
different aspects. In this subsection, we give the axiomatic characterization of the 1-type vertex graph lower
approximation operator, for the 1-type vertex graph upper approximation operator, we will investigate it
in the future.

Theorem 4.3. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L(G1) ⊆ G1,
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) V(L((U, ∅))) = U,
(4) if V(L((V1, ∅))) = V′1, then V(L((V′1, ∅))) = V′1,
(5) if E(L((U,E1))) = E′1, then E(L((U,E′1))) = E′1,
(6) L(G1) = (V(L((V1, ∅))), E(L((U,E1))) ∩ E′(V(L((V1, ∅)))))

if and only if there exists an ordered pair S = (SU,SR) of predecessor serial binary relation SU on U and
binary relation SR on R such that L = S1

v.
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Proof. "⇐" It follows immediately from Propositions 3.1 and 3.3, and Definition 3.2.
"⇒" We first construct S = (SU,SR). Let

O1 = {V ⊆ U |V(L((V, ∅))) = V},
O2 = {V ∈ O1 | for any V′ ∈ O1, if V′ ⊆ V, then V′ = V},
O3 = {V ∈ O1 −O2 |V is not the union of some elements in O2}.

Then O1,O2,O3 ⊆ P(U). Assume that |O2| = m and |O3| = l. Let O2 = {V′1,V
′

2, · · · ,V
′
m} and O3 =

{V′m+1,V
′

m+2, · · · , V′m+l}. Let us take m + l different elements y1, y2, · · · , ym+l from U. Set SU = {(yi, x) ∈
U ×U | x ∈ Vi, i = 1, 2, · · · ,m+ l}. Then we have (SU)s(yi) = Vi, where i = 1, 2, · · · ,m+ l. By the construction,
we know that SU is a predecessor serial relation. For the SR, let

T1 = {E ⊆ R |E(L((U,E))) = E},
T2 = {E ∈ T1 | for any E′ ∈ T1, if E′ ⊆ E, then E′ = E},
T3 = {E ∈ T1 − T2 |E is not the union of some elements in T2}.

Then T1,T2,T3 ⊆ P(R). Assume that |T2| = n and |T3| = q. Let T2 = {E′1,E
′

2, · · · ,E
′
n} and T3 = {E′n+1,E

′

n+2, · · · ,
E′n+q}. Taking n + q different elements r1, r2, · · · , rn+q from R, and set SR = {(ri, r) ∈ R × R | r ∈ Ei, i =
1, 2, · · · ,n + q}. Then we have (SR)s(ri) = Ei, where i = 1, 2, · · · ,n + q.

It is obvious that S1
v(G1) ⊆ G1. Now we prove that S1

v(G1) = L(G1), for any x ∈ S1
U(V1), we have

that there exists y ∈ {y1, y2, · · · , ym+l}, assume that y = yk, such that x ∈ (SU)s(yk) = V′k ⊆ V1, and so
x ∈ V(L(((V′k, ∅))) ⊆ V(L(((V1, ∅))) by the construction and (2). Hence S1

U(V1) ⊆ V(L((V1, ∅))). Conversely,
for any x ∈ V(L((V1, ∅))), assume that V(L((V1, ∅))) = V3, then by (4), we have V(L((V3, ∅))) = V3, and
so x ∈ V(L((V3, ∅))). By the construction of SU, we know that there exists y ∈ {y1, y2, · · · , ym+l}, assume
that y = yk, such that x ∈ (SU)s(yk) = V′k ⊆ V3. Hence x ∈ S1

U(V3) ⊆ S1
U(V1) by the definition of 1-type

lower approximation operator. Thus V(L((V1, ∅))) ⊆ S1
U(V1). Therefore, we have S1

U(V1) = V(L((V1, ∅))).

Analogously, we obtain S1
R(E1) = E(L((U,E1))). Thus by (6) and Definition 3.2, we have S1

v(G1) = L(G1). This
completes the proof.

4.3. On axiomatic characterizations of 2-type vertex graph approximation operators
Ma and Mi [16] introduced 2-type approximation operators. Based on them, we introduced 2-type

vertex graph approximation operators. Now we present the axiomatic characterizations.

Theorem 4.4. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L(G1) ⊆ G1,
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) V(L((U, ∅))) = U,
(4) for any x ∈ U and any V ⊆ U, x ∈ V(L((V, ∅))) if and only of ∃y ∈ V such that V(L(({x, y}, ∅))) = {x, y},
(5) for any r1 ∈ R and any E ⊆ R, r1 ∈ E(L((U,E))) if and only of ∃r2 ∈ E such that E(L((U, {r1, r2}))) = {r1, r2},
(6) L(G1) = (V(L((V1, ∅))), E(L((U,E1))) ∩ E′(V(L((V1, ∅)))))

if and only if there exists an ordered pair S = (SU,SR) of serial and symmetric binary relation SU on U and
symmetric binary relation SR on R such that L = S2

v.

Proof. "⇐" It follows from Propositions 3.1 and 3.3, and Definition 3.2.
"⇒" We first construct S = (SU,SR) as follows: for any x, y ∈ U, (x, y) ∈ SU if and only if V(L(({x, y}, ∅))) =

{x, y}; for any r1, r2 ∈ R, (r1, r2) ∈ SR if and only if E(L((E, {r1, r2}))) = {r1, r2}. By the construction, (3) and (4),
we know that SU is a serial and symmetric binary relation and SR is a symmetric binary relation. It is easy
to show that S2

v(G1) ⊆ G1. Then we prove that S2
v(G1) = L(G1), for any x ∈ S2

U(V1), by the definition of 2-type
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lower approximation operator, there exists y ∈ V1 such that (x, y) or (y, x) ∈ SU, and then by the construction
and (2), we have {x, y} = V(L(({x, y}, ∅))) ⊆ V(L((V1, ∅))). Hence S2

U(V1) ⊆ V(L((V1, ∅))). Conversely, for
any x ∈ V(L((V1, ∅))), by (4), there exists y ∈ V1 such that {x, y} = V(L(({x, y}, ∅))), and so (x, y) ∈ SU by the
construction. In addition, by (1), we have x ∈ V1, and hence x ∈ S2

U(V1) by the definition of 2-type lower

approximation operator. Thus V(L((V1, ∅))) ⊆ S2
U(V1). Therefore, we have S2

U(V1) = V(L((V1, ∅))). By the

same way, we can obtain that S2
R(E1) = E(L((U,E1))). Hence S2

v(G1) = L(G1). This completes the proof.

Theorem 4.5. An operator H : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) H(∅) = ∅,
(2) H(G1 ∪ G2) ⊇ H(G1) ∪H(G2),
(3) for any x, y ∈ U, x ∈ V(H(({y}, ∅))) if and only if y ∈ V(H(({x}, ∅))), for any r1, r2 ∈ R, r1 ∈ E(H((U, {r2})))

if and only if r2 ∈ E(H((U, {r1}))),
(4) for any x ∈ U and any V ⊆ U, x ∈ V(H((V, ∅))) if and only if ∃y ∈ V such that x ∈ V(H(({y}, ∅))), for any

r1 ∈ R and E ⊆ R, r1 ∈ V(H((U,E))) if and only if ∃r2 ∈ R such that r1 ∈ V(H((U, {r2}))),
(5) H(G1) = (V(H((V1, ∅))), E(H((U,E1))) ∩ E′(V(H((V1, ∅)))))

if and only if there exists an ordered pair S = (SU,SR) of symmetric binary relation SU on U and symmetric
binary relation SR on R such that H = S2

v.

Proof. "⇐" It can be obtained directly by Propositions 3.1 and 3.3, and Definition 3.2.
"⇒" We construct S = (SU,SR) as the way: for any x, y ∈ U, (x, y) ∈ SU if and only if x ∈ V(H(({y}, ∅)));

for any r1, r2 ∈ R, (r1, r2) ∈ SR if and only if r1 ∈ E(H((U, {r2}))). We know that both SU and SR are symmetric
binary relations. It is obvious that S2

v(∅) = ∅ = H(∅). Now we show S2
v(G1) = H(G1), for any x ∈ S2

U(V1), there
exists y ∈ V1 such that (x, y) or (y, x) ∈ SU, and then x ∈ V(H(({y}, ∅))) ⊆ V(H((V1, ∅))) by the construction and
(2). Hence S2

U(V1) ⊆ V(H((V1, ∅))). Conversely, for any x ∈ V(H((V1, ∅))), by (4), there exists y ∈ V1 such that

x ∈ V(H(({y}, ∅))), and so (x, y) ∈ SU by the construction. Then x ∈ S2
U({y}) ⊆ S2

U(V1). Thus V(H((V1, ∅))) ⊆

S2
U(V1). Therefore, we have S2

U(V1) = V(H((V1, ∅))). Similarly, we obtain S2
R(E1) = E(H((U,E1))). By (5) and

Definition 3.2, we have S2
v(G1) = H(G1). This completes the proof.

4.4. On axiomatic characterizations of 3-type vertex graph approximation operators
The axiomatic characterizations of 3-type approximation operators are studied by Ma and Mi [16], as a

generalization, we investigate axiomatic characterizations of 3-type vertex graph approximation operators
in this subsection.

Theorem 4.6. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L((U,R)) = (U,R),
(2) L(G1 ∩ G2) = L(G1) ∩ L(G2),
(3) L(G1) ⊆ G1,
(4) L(G1) = (V(L((V1, ∅))),E(L((U,E1))) ∩ E′(V(L((V1, ∅)))))

if and only if there exists an ordered pair S = (SU,SR) of symmetric binary relation SU on U and symmetric
binary relation SR on R such that L = S3

v.

Proof. "⇐" It follows immediately from Propositions 3.1 and 3.3, and Definition 3.2.
"⇒" We can construct S = (SU,SR) as follows: for any x, y ∈ U, (x, y), (y, x) ∈ SU if and only if there exists

a subset V ⊆ U such that x ∈ V(L((V, ∅))) and x < V(L((V − {y}, ∅))), and similarly, we can construct SR. We
know that both SU and SR are symmetric relations. The S3

v((U,R)) = (U,R) = L((U,R)) is obvious. Then we
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prove S3
v(G1) = L(G1). From the construction and (3), we obtain that (SU)s(x)∪ (SU)p(x)∪{x} ⊆ V1 if and only

if x ∈ V(L((V1, ∅))), for any x ∈ U. Besides, by the definition of 3-type lower approximation operator, we
have x ∈ S3

U(V1) if and only if (SU)s(x) ∪ (SU)p(x) ∪ {x} ⊆ V1. Hence S3
U(V1) = V(L((V1, ∅))). In the same way,

we can obtain that S3
R(E1) = E(L((U,E1))). By (4) and Definition 3.2, we have S3

v(G1) = L(G1). This completes
the proof.

Theorem 4.7. An operator H : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) H(∅) = ∅,
(2) H(G1 ∪ G2) ⊇ H(G1) ∪H(G2),
(3) G1 ⊆ H(G1),
(4) for any x, y ∈ U, x ∈ V(H(({y}, ∅))) if and only if y ∈ V(H(({x}, ∅))), for any r1, r2 ∈ R, r1 ∈ E(H((U, {r2})))

if and only if r2 ∈ E(H((U, {r1}))),
(5) for any x ∈ U and any V ⊆ U, x ∈ V(H((V, ∅))) if and only if ∃y ∈ V such that x ∈ V(H(({y}, ∅))), for any

r1 ∈ R and any E ⊆ R, r1 ∈ V(H((U,E))) if and only if ∃r2 ∈ R such that r1 ∈ V(H((U, {r2}))),
(6) H(G1) = (V(H((V1, ∅))), E(H((U,E1))) ∩ E′(V(H((V1, ∅)))))

if and only if there exists a unique ordered pair S = (SU,SR) of tolerance binary relation SU on U and
tolerance binary relation SR on R such that H = S3

v.

Proof. "⇐" It follows from Propositions 3.1 and 3.3, and Definition 3.2.
"⇒" We construct S = (SU,SR) by the following way: for any x, y ∈ U, (x, y) ∈ SU if and only if

x ∈ V(H(({y}, ∅))); for any r1, r2 ∈ R, (r1, r2) ∈ SR if and only if r1 ∈ E(H((U, {r2}))). From the construction and
(3), we know that both SU and SR are tolerance relations. It is easy to show that S3

v(∅) = ∅ = H(∅). Now we
prove that S3

v(G1) = H(G1), for any x ∈ S3
U(V1), by the definition of 3-type upper approximation operator

and SU is reflexive, there exists y ∈ V1 such that (x, y) or (y, x) ∈ SU, hence x ∈ V(H(({y}, ∅))) ⊆ V(H((V1, ∅)))
by the construction and (2). Thus S3

U(V1) ⊆ V(H((V1, ∅))). Conversely, for any x ∈ V(H((V1, ∅))), by (4),
there exists y ∈ V1 such that x ∈ V(H(({y}, ∅))), and so by the construction, we have (x, y) ∈ SU, which
implies that x ∈ S3

U({y}) ⊆ S3
U(V1) by the definition of 3-type upper approximation operator. Hence

V(H((V1, ∅))) ⊆ S3
U(V1). Therefore, we have that S3

U(V1) = V(H((V1, ∅))). Analogously, we obtain that

S3
R(E1) = E(H((U,E1))). By (6) and Definition 3.2, we obtain S3

v(G1) = H(G1). This completes the proof.

Remark 4.1. The uniqueness of ordered pairs of equivalence relations which have the same 1-type ver-
tex graph lower approximation operator as the abstract vertex graph lower approximation operator, the
same 2-type vertex graph lower approximation operator as the abstract vertex graph lower approximation
operator, or the same 2-type vertex graph upper approximation operator as the abstract vertex graph up-
per approximation operator can be obtained since 0-type, 1-type, and 2-type approximation operators are
equivalent to each other with respect to equivalence relations [16] and Theorems 4.1 and 4.2. By Theo-
rem 3 in [16] and Theorem 4.1, we have that the uniqueness of ordered pair of tolerance binary relations
which has the same 3-type vertex graph lower approximation operator as the abstract vertex graph lower
approximation operator.

5. On axiomatic characterizations of four types of edge graph approximation operators

In this section, like four types of vertex graph approximation operators, we provide axiomatic charac-
terizations of four types of edge graph approximation operators.
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5.1. On axiomatic characterizations of 0-type edge graph approximation operators
We first present the axiomatic characterization of the 0-type edge graph lower approximation operator

which can be obtained by the same way as that of the 0-type vertex graph lower approximation operator.

Theorem 5.1. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L((U,R)) = (U,R),
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) L(G1) = (V(L((V1, ∅))) ∪ V′(E(L((U,E1)))),E(L((U,E1))))

if and only if there exists a unique ordered pair S = (SU,SR) of binary relation SU on U and binary relation
SR on R such that L = S0

e .

Proof. By Definition 3.3, and Propositions 3.4 and 3.5, the proof is similar to Theorem 4.1. We thus omit the
details.

For the axiomatic characterization of the 0-type edge graph upper approximation operator, we have the
following.

Theorem 5.2. An operator H : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) H(∅) = ∅,
(2) H(G1 ∪ G2) = H(G1) ∪H(G2),
(3) H(G1) = (V(H((V1, ∅))) ∪ V′(E(H((U,E1)))),E(H((U,E1))))

if and only if there exists a unique ordered pair S = (SU,SR) of binary relation SU on U and binary relation
SR on R such that H = S0

e .

Proof. "⇐" It is easy to get by Definition 3.3, and Propositions 3.4 and 3.5.
"⇒" We construct S = (SU,SR) by the same way as Theorem 4.2. By Proposition 3.5, we have S0

e (∅) = ∅ =
H(∅). For any x ∈ U, by the construction and (2), we obtain that x ∈ S0

U(V1) if and only if (SU)s(x) ∩ V1 , ∅

if and only if x ∈ V(H((V1, ∅))), which implies that S0
U(V1) = V(H((V1, ∅))). Analogously, we obtain S0

R(E1) =

E(H((U,E1))). Hence we have (S0
U(V1)∪V′(S0

R(E1)),S0
R(E1)) = (V(H((V1, ∅)))∪V′(E(H((U,E1)))),E(H((U,E1)))),

i.e., S0
e (G1) = H(G1). By Definition 3.3 and Theorem 6 of [39] again, we get the uniqueness of S.

5.2. On axiomatic characterizations of 1-type edge graph approximation operators
In this subsection, the axiomatic characterization of the 1-type edge graph lower approximation operator

is provided, and in the future, we will study the 1-type edge graph upper approximation operator.

Theorem 5.3. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L(G1) ⊆ G1,
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) V(L((U, ∅))) = U,
(4) if V(L((V1, ∅))) = V′1, then V(L((V′1, ∅))) = V′1,
(5) if E(L((U,E1))) = E′1, then E(L((U,E′1))) = E′1,
(6) L(G1) = (V(L((V1, ∅))) ∪ V′(E(L((U,E1)))),E(L((U,E1))))

if and only if there exists an ordered pair S = (SU,SR) of binary relation SU on U and binary relation SR on
R such that L = S1

e .

Proof. By Definition 3.3 and Propositions 3.4 and 3.6, it can be obtained in a similar way as Theorem 4.3.
We thus omit the details.
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5.3. On axiomatic characterizations of the 2-type edge graph approximation operators
In a similar way as axiomatic characterizations of 2-type vertex graph approximation operators, we can

obtain axiomatic characterizations of 2-type edge graph approximation operators.

Theorem 5.4. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L(G1) ⊆ G1,
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) for any x ∈ U and V ⊆ U, x ∈ V(L((V, ∅))) if and only of ∃y ∈ V such that V(L(({x, y}, ∅))) = {x, y},
(4) for any r1 ∈ R and E ⊆ R, r1 ∈ E(L((U,E))) if and only of ∃r2 ∈ E such that E(L((U, {r1, r2}))) = {r1, r2}

(5) L(G1) = (V(L((V1, ∅))) ∪ V′(E(L((U,E1)))),E(L((U,E1))))

if and only if there exists an ordered pair S = (SU,SR) of symmetric binary relation SU on U and symmetric
binary relation SR on R such that L = S2

e .

Proof. It follows immediately in a similar way to that of Theorem 4.4 by Definition 3.3, and Propositions 3.4
and 3.6. Hence we omit the proof.

Theorem 5.5. An operator H : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) H(∅) = ∅,
(2) H(G1 ∪ G2) = H(G1) ∪H(G2),
(3) for any x, y ∈ U, x ∈ V(H(({y}, ∅))) if and only if y ∈ V(H(({x}, ∅))), for any r1, r2 ∈ R, r1 ∈ E(H((U, {r2})))

if and only if r2 ∈ E(H((U, {r1}))),
(4) for any x ∈ U and for any V ⊆ U, x ∈ V(H((V, ∅))) if and only if ∃y ∈ V such that x ∈ V(H(({y}, ∅))), for

any r1 ∈ R and for any E ⊆ R, r1 ∈ V(H((U,E))) if and only if ∃r2 ∈ R such that r1 ∈ V(H((U, {r2}))),
(5) H(G1) = (V(H((V1, ∅))) ∪ V′(E(L(U,E1))),E(H((U,E1))))

if and only if there exists an ordered pair S = (SU,SR) of symmetric binary relation SU on U and symmetric
binary relation SR on R such that H = S2

e .

Proof. The proof is analogous to that of Theorem 4.5 by Definition 3.3, and Propositions 3.4 and 3.6. We
thus omit the details.

5.4. On axiomatic characterizations of 3-type edge graph approximation operators
The axiomatic characterizations of 3-type edge graph approximation operators are also analogous to

axiomatic characterizations of 3-type vertex graph approximation operators, and hence we omit the proofs.

Theorem 5.6. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L((U,R)) = (U,R),
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) L(G1) ⊆ G1,
(4) L(G1) = (V(L((V1, ∅))) ∪ V′(E(L((U,E1)))),E(L((U,E1))))

if and only if there exists an ordered pair S = (SU,SR) of symmetric binary relation SU on U and symmetric
binary relation SR on R such that L = S3

e .

Proof. By Definition 3.3, and Propositions 3.4 and 3.6, the proof is similar to that of Theorem 4.6. We thus
omit the details.

Theorem 5.7. An operator H : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),
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(1) H(∅) = ∅,
(2) H(G1 ∪ G2) = H(G1) ∪H(G2),
(3) G1 ⊆ H(G1),
(4) for any x, y ∈ U, x ∈ V(H(({y}, ∅))) if and only if y ∈ V(H(({x}, ∅))), for any r1, r2 ∈ R, r1 ∈ E(H((U, {r2})))

if and only if r2 ∈ E(H((U, {r1}))),
(5) for any x ∈ U V ⊆ U, x ∈ V(H((V, ∅))) if and only if ∃y ∈ V such that x ∈ V(H(({y}, ∅))), for any r1 ∈ R

and for any E ⊆ R, r1 ∈ V(H((U,E))) if and only if ∃r2 ∈ R such that r1 ∈ V(H((U, {r2}))),
(6) H(G1) = (V(H((V1, ∅))) ∪ V′(E(H((U,E1)))),E(H((U,E1))))

if and only if there exists an ordered pair S = (SU,SR) of tolerance binary relation SU on U and tolerance
binary relation SR on R such that H = S3

e .

Proof. By Definition 3.3, and Propositions 3.4 and 3.6, the proof can be obtained in a similar way to that of
Theorem 4.6. Hence we omit the proof.

Remark 5.1. Since 0-type, 1-type, and 2-type approximation operators are equivalent to each other with
respect to equivalence relations [16], and Theorems 5.1 and 5.2, we have that there exists a unique ordered
pair of equivalence relations such that the 1-type edge graph lower approximation operator is the same as
the abstract edge graph lower approximation operator, and a unique ordered pairs of equivalence relations
such that 2-type edge graph lower and upper approximation operators are the same as the abstract edge
graph lower and upper approximation operators, respectively. The uniqueness of ordered pair of tolerance
binary relations which has the same 3-type edge graph lower approximation operator as the abstract edge
graph lower approximation operator can be obtained by Theorem 3 in [16] and Theorem 4.1.

6. On axiomatic characterizations of four types of graph approximation operators

In this section, we give axiomatic characterizations of 0-type, 1-type, and 3-type graph lower approx-
imation operators. The axiomatic characterizations of 2-type graph approximation operators, and 0-type,
1-type, and 3-type graph upper approximation operators have not been solved, and we will study in the
future.

6.1. On the axiomatic characterization of the 0-type graph lower approximation operator

Theorem 6.1. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L((U,R)) = (U,R),
(2) L(G1 ∩ G2) = L(G1) ∩ L(G2),
(3) L(G1) = (V′(E(L((U,E1))) ∩ E′(V(L((V1,E′(V1)))))),E(L((U,E1))) ∩ E′(V(L((V1,E′(V1))))))

if and only if there exists an ordered pair S = (SU,SR) of binary relation SU on U and binary relation SR on
R such that L = S0.

Proof. "⇐" It follows immediately from Definition 3.4, and Propositions 3.7 and 3.8.
"⇒" We construct S = (SU,SR) by the following way: for any x, y ∈ U, (x, y) ∈ SU if and only if there exists

a subset V ⊆ U such that y ∈ V, x ∈ V(L((V,E′(V1)))) and x < V(L((V − {y},E′(V − {y})))); for any r1, r2 ∈ R,
(r1, r2) ∈ SR if and only if there exists a subset E ⊆ R such that r2 ∈ E, r1 ∈ E(L((U,E))) and r1 < E(L((U,E−{r2}))).
It is obvious that S0((U,R)) = (U,R) = L((U,R)). For any x ∈ U, by the construction and (2), we have
x ∈ S0

U(V1) if and only if (SU)s(x) ⊆ V1 if and only if x ∈ V(L((V1,E′(V1)))). Hence S0
U(V1) = V(L((V1,E′(V1)))).

Similarly, S0
R(E1) = E(L((U,E1))). Therefore, we have S0(G1) = (V′(S0

R(E1)∩E′(S0
U(V1))),S0

R(E1)∩E′(S0
U(V1))) =

(V′(E(L((U,E1))) ∩ E′(V(L((V1,E′(V1)))))),E(L((U,E1))) ∩ E′(V(L((V1,E′(V1)))))) = L(G1).
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6.2. On the axiomatic characterization of the 1-type graph lower approximation operator
Theorem 6.2. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L(G1) ⊆ G1,
(2) L(G1 ∩ G2) ⊆ L(G1) ∩ L(G2),
(3) L((V1,E′(V1))) = L((U,E′(V1))),
(4) if E(L((U,E1))) = E′1, then E(L((U,E′1))) = E′1, if L((V1,E1)) = (V′1,E1), then L((V′1,E1)) = (V′1,E1),
(5) L(G1) = (V′(E(L((U,E1))) ∩ E′(V(L((V1,E′(V1)))))),E(L((U,E1))) ∩ E′(V(L((V1,E′(V1))))))

if and only if there exists an ordered pair S = (SU,SR) of binary relation SU on U and binary relation SR on
R such that L = S1, where S satisfies the following (a),(b),(c).

(a) S1((V1,E′(V1))) = S1((U,E′(V1))),

(b) if E(S1((U,E1))) = E′1, then E(S1((U,E′1))) = E′1,

(c) if S1((V1,E1)) = (V′1,E1), then S1((V′1,E1)) = (V′1,E1),

Proof. "⇐" It follows immediately from Definition 3.4, and Propositions 3.7 and 3.9.
"⇒" We first construct S = (SU,SR). Let

P1 = {E ⊆ R |E(L((U,E))) = E},
P2 = {E ∈ P1 | for any E′ ∈ P1, if E′ ⊆ E, then E′ = E},
P3 = {E ∈ P1 − P2 |E is not the union of some elements in P2}.

Then P1,P2,P3 ⊆ P(R). Assume that |P2| = m and |P3| = l. Let P2 = {E′1,E
′

2, · · · ,E
′
m} and P3 = {E′m+1,E

′

m+2, · · · ,
E′m+l}. Let us take m + l different elements r1, r2, · · · , rm+l from R. Set SR = {(ri, r) ∈ R × R | r ∈ Ei, i =
1, 2, · · · ,m + l}. Then we have (SR)s(ri) = Ei, where i = 1, 2, · · · ,m + l. For the SU, let

O1 = {V ⊆ U | (V,Ei) ∈ G((U,R)),L((V,Ei)) = (V,Ei), i = 1, 2, · · · ,m + l},
O2 = {V ∈ O1 | for any V′ ∈ O1, if V′ ⊆ V, then V′ = V},
O3 = {V ∈ O1 −O2 |V is not the union of some elements in O2}.

Then O1,O2,O3 ⊆ P(U). Assume that |O2| = n and |O3| = q. Let O2 = {V′1,V
′

2, · · · ,V
′
n} and O3 =

{V′n+1,V
′

n+2, · · · , V
′
n+q}. Taking n + q different elements y1, y2, · · · , yn+q from U. Set SU = {(yi, x) ∈ U ×U | x ∈

V′i , i = 1, 2, · · · ,n + q}.
It is obvious that S1(G1) ⊆ G1. Now we prove that S1(G1) = L(G1). For any r ∈ R, by the construction

and (2), r ∈ S1
R(E1) if and only if there exists r′ ∈ {r1, r2, · · · , rm+l}, assume that r′ = rk, such that r ∈ (SR)s(rk) =

E′k ⊆ E1 if and only if r ∈ E(L((U,E1))). Hence S1
R(E1) = E(L((U,E1))). For any x ∈ U, by the construction,

(2), (3), and (4), x ∈ S1
U(V1) if and only if there exists y′ ∈ {y1, y2, · · · , yn+q}, assume that y′ = yt, such that

x ∈ (SU)s(yt) ⊆ V1 if and only if x ∈ V(L((V1,E′i ))) for some E′i ∈ P2 ∪ P3 if and only if x ∈ V(L((V1,E′(V1)))).
Hence S1

U(V1) = V(L((V1,E′(V1)))). By Definition (5) and 3.4, we obtain that S1(G1) = L(G1).

6.3. On the axiomatic characterization of the 3-type graph lower approximation operator
Theorem 6.3. An operator L : G((U,R)) → G((U,R)) satisfies the following axioms: for any G1,G2 ∈

G((U,R)),

(1) L((U,R)) = (U,R),
(2) L(G1 ∩ G2) = L(G1) ∩ L(G2),
(3) L(G1) ⊆ G1,
(4) L(G1) = (V′(E(L((U,E1))) ∩ E′(V(L((V1,E′(V1)))))),E(L((U,E1))) ∩ E′(V(L((V1,E′(V1)))))).
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if and only if there exists an ordered pair S = (SU,SR) of symmetric binary relation SU on U and symmetric
binary relation SR on R such that L = S3.

Proof. "⇐" It is easy to get by Definition 3.4, and Propositions 3.7 and 3.9.
"⇒" We construct S = (SU,SR) as follows: for any x, y ∈ U, (x, y), (y, x) ∈ SU if and only if there

exists a subset V ⊆ U such that y ∈ V, x ∈ V(L((V,E′(V)))) and x < V(L((V − {y},E′(V − {y})))); for any
r1, r2 ∈ R, (r1, r2) ∈ SR if and only if there exists a subset E ⊆ R such that r2 ∈ E, r1 ∈ E(L((U,E))) and
r1 < E(L((U,E − {r2}))). It is obvious that S3((U,R)) = (U,R) = L((U,R)). For any x ∈ U, by the construction,
(2) and (3), we have x ∈ S3

U(V1) if and only if (SU)p(x)∪ (SU)s(x)∪{x} ⊆ V1 if and only if x ∈ V(L((V1,E′(V1)))).

Hence S3
U(V1) = V(L((V1,E′(V1)))). Similarly, we obtain that S3

R(E1) = E(L((U,E1))). Therefore, we have

S3(G1) = L(G1).

Remark 6.1. From Definition 3.4 and the constructions of S = (SU,SR), it is easy to obtain that binary
relations S in Theorems 6.1, 6.2, and 6.3 are not unique, respectively.

7. Conclusions

As is well known, relational data cannot be neglected, and graphs which contain the data on edges
can represent more complex knowledges than vertex sets. This paper developed rough set analysis of
graphs. Vertex graph, edge graph, and graph approximation operators were introduced. We explored their
properties within the constructive approach, and then within the axiomatic approach.

However, axiomatic characterizations of 0-type graph upper approximation operator, and 1-type vertex
graph, edge graph, and graph upper approximation operators, 2-type graph approximation operators,
and 3-type graph upper approximation operators are still problems that need further consideration. In
the future, we will explore the relationships between pairs of different kinds of relations, including serial,
reflexive, symmetric, transitive relations as well as their compositions, and approximation operators of
graphs, and investigate that approximation operators of graphs corresponding to pairs of special kind of
relations can be characterized by axioms. Then we will explore fuzzy rough graphs based on fuzzy relations,
extend the work of this paper to the covering based rough graphs and fuzzy covering based rough graphs,
investigate rough set analysis of graphs based on other types of approximation operators of sets, and study
applications of the rough graph model in feature selection, decision analysis, and the analysis of graphs.
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