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Abstract. Let (C,E, s) be an extriangulated category with a proper class ξ of E-triangles. In this paper,
we first introduce the ξ-Gorenstein cohomology in terms of ξ-Gprojective resolutions and ξ-Ginjective
coresolutions, respectively, and then we get the balance of ξ-Gorenstein cohomology. Moreover, we study
the interplay among ξ-cohomology, ξ-Gorenstein cohomology and ξ-complete cohomology, and obtain the
Avramov-Martsinkovsky type exact sequences in this setting.

1. Introduction

Avramov and Martsinkovsky [5] introduced relative and Tate cohomology theories for modules of finite
G-dimension, which were initially defined for representations of finite groups. They made an intensive
study of the interaction between the absolute, relative and Tate cohomology theories. More precisely, they
showed that absolute cohomology, Gorenstein cohomology and Tate cohomology can be connected by a
long exact sequence (see [5, Theorem 7.1]). Ever since then several authors have studied these theories in
different abelian categories (see [1, 10, 17, 22, 23] for instance).

Beligiannis developed in [6] a relative version of homological algebra in triangulated categories in
analogy to relative homological algebra in abelian categories, in which the notion of a proper class of exact
sequences is replaced by that of a proper class of triangles. By specifying a class of trianglesE, which is called
a proper class of triangles, he introduced E-projective and E-injective objects. In an attempt to extend the
theory, Asadollahi and Salarian [2] introduced and studied E-Gorenstein projective, E-Gorenstein injective
objects, and corresponding E-Gorenstein dimensions in triangulated categories by modifying what Enochs,
Jenda [11] and Holm [12] have done in the category of modules. Moreover, Tate cohomology theory in a
triangulated category was developed in [3]. Ren and Liu established the global E-Gorenstein dimension
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for a triangulated category in [20] by introducing E-Gorenstein cohomology functors Exti
GP

(−,−) and
Exti

GI
(−,−) for objects with finite E-Gorenstein dimension. Motivated by Avramov-Martsinkovsky type

exact sequences constructed over a ring R in [5], Ren, Zhao and Liu [21] proved that Beligiannis’s E-
cohomology, Asadallahi and Salarian’s E-Tate cohomology and Ren and Liu’s Gorenstein cohomology can
be connected by a long exact sequence.

The notion of extriangulated categories was introduced by Nakaoka and Palu in [19] as a simultane-
ous generalization of exact categories and triangulated categories. Exact categories and extension closed
subcategories of an extriangulated category are extriangulated categories, while there exist some other
examples of extriangulated categories which are neither exact nor triangulated, see [13, 18, 19, 24]. Hence
many results on exact categories and triangulated categories can be unified in the same framework.

Let (C,E, s) be an extriangulated category with a proper class ξ ofE-triangles. Hu, Zhang and Zhou [13]
studied a relative homological algebra inCwhich parallels the relative homological algebra in a triangulated
category. By specifying a class of E-triangles, which is called a proper class ξ of E-triangles, the authors
introducedξ-projective dimensions andξ-Gprojective dimensions, and discussed their properties. Recently,
we studied ξ-cohomology in [14] and developed a ξ-complete cohomology theory for an extriangulated
category in [15], which extends Tate cohomology defined in the category of modules or in a triangulated
category. The aim of this paper is to study Avramov-Martsinkovsky type exact sequences for extriangulated
categories.

We now outline the results of the paper. In Section 2, we summarize some preliminaries and basic facts
about extriangulated categories which will be used throughout the paper.

From Section 3, we assume that (C,E, s) is an extriangulated category with enough ξ-projectives and
enough ξ-injectives satisfying Condition (WIC). We first introduce ξ-Gorenstein cohomology in terms of
ξ-Gprojective resolutions and ξ-Ginjective coresolutions, and then prove that ξ-Gorenstein cohomology
in (C,E, s) is balanced (see Theorem 3.4). Moreover, we show that there are two long exact sequences of
ξ-Gorenstein cohomology under some certain conditions (see Propositions 3.6 and 3.8).

In Section 4, we first recall some definitions and basic properties of ξ-complete cohomology in (C,E, s),
and then construct the Avramov-Martsinkovsky type exact sequence in (C,E, s). More precisely, it is
proved that ξ-cohomology, ξ-Gorenstein cohomology and ξ-complete cohomology can be connected by
a long exact sequence, which generalizes Avramov-Martsinkovsky’s result on a category of modules and
Ren-Zhao-Liu’s result on a triangulated category and is new for exact categories and extension-closed
subcategories of triangulated categories (see Theorem 4.4 and Remark 4.5).

2. Preliminaries

We briefly recall some definitions and basic properties of extriangulated categories from [19]. We omit
some details here, but the reader can find them in [19].

Let C be an additive category equipped with an additive bifunctor

E : Cop
× C → Ab,

where Ab is the category of abelian groups. For any objects A,C ∈ C, an element δ ∈ E(C,A) is called an
E-extension. For an E-extension δ ∈ E(C,A), we briefly write

a∗δ := E(C, a)(δ) and c∗δ := E(c,A)(δ).

Let s be a correspondence which associates an equivalence class

s(δ) = [A x // B
y // C]

to any E-extension δ ∈ E(C,A). This s is called a realization of E, if it makes the diagrams in [19, Definition
2.9] commutative. A triplet (C,E, s) is called an extriangulated category if it satisfies the following conditions.

1. E : Cop
× C → Ab is an additive bifunctor.
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2. s is an additive realization of E.
3. E and s satisfy the compatibility conditions in [19, Definition 2.12].

Remark 2.1. Note that both exact categories and triangulated categories are extriangulated categories (see
[19, Example 2.13]) and extension closed subcategories of extriangulated categories are again extriangulated
(see [19, Remark 2.18]). Moreover, there exist extriangulated categories which are neither exact categories
nor triangulated categories (see [19, Proposition 3.30], [24, Remark 4.13] and [13, Remark 3.3]).

We will use the following terminology.

Definition 2.2. (see [19, Definitions 2.15 and 2.19]) Let (C,E, s) be an extriangulated category.

1. A sequence A x // B
y // C is called a conflation if it realizes some E-extension δ ∈ E(C,A). In

this case, x is called an inflation and y is called a deflation.

2. If a conflation A x // B
y // C realizes δ ∈ E(C,A), we call the pair (A x // B

y // C, δ) an E-triangle,
and write it in the following way:

A x // B
y // C δ // .

We usually do not write this “δ” if it is not used in the argument.

3. Let A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ′ // be any pair of E-triangles. If a triplet
(a, b, c) realizes (a, c) : δ→ δ′, then we write it as

A x //

a
��

B
y //

b
��

C

c
��

δ //

A′ x′ // B′
y′ // C′ δ′ //

and call (a, b, c) a morphism of E-triangles.

The following condition is analogous to the weak idempotent completeness in exact category (see [19,
Condition 5.8]).

Condition 2.3. (Condition (WIC)) Consider the following conditions.

1. Let f ∈ C(A,B), 1 ∈ C(B,C) be any composable pair of morphisms. If 1 f is an inflation, then so is f .
2. Let f ∈ C(A,B), 1 ∈ C(B,C) be any composable pair of morphisms. If 1 f is a deflation, then so is 1.

Example 2.4. (1) If C is an exact category, then Condition (WIC) is equivalent to that C is weakly idempotent
complete (see [8, Proposition 7.6]).

(2) If C is a triangulated category, then Condition (WIC) is automatically satisfied.

Lemma 2.5. (see [19, Proposition 3.15]) Assume that (C,E, s) is an extriangulated category. Let C be any object,

and let A1
x1 // B1

y1 // C
δ1 // and A2

x2 // B2
y2 // C

δ2 // be any pair of E-triangles. Then there is a
commutative diagram in C

A2

m2

��

A2

x2

��
A1

m1 // M

e2

��

e1 // B2

y2

��
A1

x1 // B1
y1 // C

which satisfies s(y∗2δ1) = [A1
m1 // M

e1 // B2] and s(y∗1δ2) = [A2
m2 // M

e2 // B1] .
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The following definitions are quoted verbatim from [13, Section 3]. A class of E-triangles ξ is closed
under base change if for any E-triangle

A x // B
y // C δ // ∈ ξ

and any morphism c : C′ → C, any E-triangle A x′ // B′
y′ // C′ c∗δ // belongs to ξ.

Dually, a class of E-triangles ξ is closed under cobase change if for any E-triangle

A x // B
y // C δ // ∈ ξ

and any morphism a : A→ A′, any E-triangle A′ x′ // B′
y′ // C

a∗δ // belongs to ξ.
A class of E-triangles ξ is called saturated if in the situation of Lemma 2.5, whenever

A2
x2 // B2

y2 // C
δ2 // and A1

m1 // M
e1 // B2

y∗2δ1 // belong to ξ, then the E-triangle

A1
x1 // B1

y1 // C
δ1 //

belongs to ξ.

An E-triangle A x // B
y // C δ // is called split if δ = 0. It is easy to see that it is split if and only if

x is section or y is retraction. The full subcategory consisting of the split E-triangles will be denoted by ∆0.

Definition 2.6. (see [13, Definition 3.1]) Let ξ be a class of E-triangles which is closed under isomorphisms.
Then ξ is called a proper class of E-triangles if the following conditions hold:

1. ξ is closed under finite coproducts and ∆0 ⊆ ξ.
2. ξ is closed under base change and cobase change.
3. ξ is saturated.

Definition 2.7. (see [13, Definition 4.1]) An object P ∈ C is called ξ-projective if for any E-triangle

A x // B
y // C δ //

in ξ, the induced sequence of abelian groups

0 // C(P,A) // C(P,B) // C(P,C) // 0

is exact. Dually, we have the definition of ξ-injective objects.

We denote by P(ξ) (resp. I(ξ)) the class of ξ-projective (resp. ξ-injective) objects of C. It follows from
the definition that this subcategory P(ξ) and I(ξ) are full, additive, closed under isomorphisms and direct
summands.

An extriangulated category (C,E, s) is said to have enough ξ-projectives (resp. enough ξ-injectives) pro-
vided that for each object A there exists anE-triangle K // P // A // (resp. A // I // K // )
in ξwith P ∈ P(ξ) (resp. I ∈ I(ξ)).

The ξ-projective dimension ξ-pdA of A ∈ C is defined inductively. If A ∈ P(ξ), then define ξ-pdA = 0.
Next if ξ-pdA > 0, define ξ-pdA ≤ n if there exists an E-triangle K → P → A d in ξ with P ∈ P(ξ) and
ξ-pdK ≤ n − 1. Finally we define ξ-pdA = n if ξ-pdA ≤ n and ξ-pdA ≰ n − 1. Of course we set ξ-pdA = ∞,
if ξ-pdA , n for all n ≥ 0.

Dually we can define the ξ-injective dimension ξ-idA of an object A ∈ C.
We denote by P̃(ξ) (resp. Ĩ(ξ)) the full subcategory of C whose objects have finite ξ-projective (resp.

ξ-injective) dimension.
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Definition 2.8. (see [13, Definition 4.4]) A ξ-exact complex X is a diagram

· · · // X1
d1 // X0

d0 // X−1 // · · ·

inC such that for each integer n, there exists anE-triangle Kn+1
1n // Xn

fn // Kn
δn // in ξ and dn = 1n−1 fn.

Definition 2.9. (see [13, Definition 4.5]) LetW be a class of objects in C. An E-triangle

A // B // C //

in ξ is said to be C(−,W)-exact (resp. C(W,−)-exact) if for any W ∈ W, the induced sequence of abelian
groups

0 // C(C,W) // C(B,W) // C(A,W) // 0

(resp. 0 // C(W,A) // C(W,B) // C(W,C) // 0 )

is exact in Ab.

Definition 2.10. (see [13, Definition 4.6]) LetW be a class of objects in C. A complex X is called C(−,W)-
exact (resp. C(W,−)-exact) if it is a ξ-exact complex

· · · // X1
d1 // X0

d0 // X−1 // · · ·

in C such that there is a C(−,W)-exact (resp. C(W,−)-exact) E-triangle

Kn+1
1n // Xn

fn // Kn
δn //

in ξ for each integer n and dn = 1n−1 fn.
A ξ-exact complex X is called complete P(ξ)-exact (resp. complete I(ξ)-exact) if it is C(−,P(ξ))-exact (resp.

C(I(ξ),−)-exact).

Definition 2.11. (see [13, Definition 4.7]) A complete ξ-projective resolution is a complete P(ξ)-exact complex

P : · · · // P1
d1 // P0

d0 // P−1 // · · ·

in C such that Pn is ξ-projective for each integer n. Dually, a complete ξ-injective coresolution is a complete
I(ξ)-exact complex

I : · · · // I1
d1 // I0

d0 // I−1 // · · ·

in C such that In is ξ-injective for each integer n.

Definition 2.12. (see [13, Definition 4.8]) Let P be a complete ξ-projective resolution in C. So for each

integer n, there exists a C(−,P(ξ))-exact E-triangle Kn+1
1n // Pn

fn // Kn
δn // in ξ. The objects Kn are

called ξ-Gprojective for each integer n. Dually if I is a complete ξ-injective coresolution in C, there exists

a C(I(ξ),−)-exact E-triangle Kn+1
1n // In

fn // Kn
δn // in ξ for each integer n. The objects Kn are called

ξ-Ginjective for each integer n.

We denote by GP(ξ) (resp. GI(ξ)) the class of ξ-Gprojective (resp. ξ-Ginjective) objects. It is obvious
that P(ξ) ⊆ GP(ξ) and I(ξ) ⊆ GI(ξ).
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Definition 2.13. (see [14, Definition 3.1]) Let M be an object in C. A ξ-projective resolution of M is a ξ-exact
complex P→M such that Pn ∈ P(ξ) for all n ≥ 0. Dually, a ξ-injective coresolution of M is a ξ-exact complex
M→ I such that In ∈ I(ξ) for all n ≤ 0.

Definition 2.14. (see [14, Definition 3.2]) Let M and N be objects in C.

(1) If we choose a ξ-projective resolution P // M of M, then for any integer n ≥ 0, the ξ-cohomology
group ξxtn

P(ξ)(M,N) are defined as

ξxtn
P(ξ)(M,N) = Hn(C(P,N)).

(2) If we choose a ξ-injective coresolution N // I of N, then for any integer n ≥ 0, the ξ-cohomology
group ξxtn

I(ξ)(M,N) are defined as

ξxtn
I(ξ)(M,N) = Hn(C(M, I)).

Remark 2.15. ξxtn
P(ξ)(−,−) and ξxtn

I(ξ)(−,−) are cohomological functors for any integer n ≥ 0, independent of the
choice of ξ-projective resolutions and ξ-injective coresolutions, respectively. In fact, with the modifications of the
usual proof, one obtains the isomorphism ξxtn

P(ξ)(M,N) � ξxtn
I(ξ)(M,N), which is denoted by ξxtn

ξ(M,N).

Throughout this paper, we always assume that C = (C,E, s) is an extriangulated category and ξ is a
proper class ofE-triangles inC. We also assume that the extriangulated categoryC has enough ξ-projectives
and enough ξ-injectives satisfying Condition (WIC).

3. ξ-Gorenstein cohomology

Let M ∈ C and K // G
f // M // be an E-triangle. We call the morphism f a ξ-Gprojective precover of

M if G ∈ GP(ξ) and this E-triangle is C(GP(ξ),−)-exact.
Let M ∈ C. A ξ-exact complex G→M:

· · · → G2 → G1 → G0 →M→ 0

is called a ξ-Gprojective resolution of M if each fi is a ξ-Gprojective precover of Ki in the relevant E-triangle

Ki+1 // Gi
fi // Ki // (with K0 =M) for i ≥ 0.

A ξ-Gprojective resolution G→M is said to be of length n if Gn , 0 and Gi = 0 for all i > n.
Recall from [13] that the ξ-Gprojective dimension ξ-GpdM of an object M ∈ C is defined inductively.

If M ∈ GP(ξ) then define ξ-GpdM = 0. Next by induction, for an integer n > 0, put ξ-GpdM ≤ n if there
exists an E-triangle K // G // M // in ξ with G ∈ GP(ξ) and ξ-GpdK ≤ n − 1. One defines
ξ-GpdM = n if ξ-GpdM ≤ n and ξ-GpdM ≰ n − 1. If ξ-GpdM , n for all n ≥ 0, one sets ξ-GpdM = ∞.

Assume ξ-GpdM = n < ∞. By [13, Proposition 5.5], there is an E-triangle K1 // G0
f0 // M // in ξ

with G0 ∈ GP(ξ) and ξ-pdK1 ≤ n − 1. In particular, f0 is a ξ-Gprojective precover of M. Inductively, we can
get a ξ-Gprojective resolution of length n for M.

The notions of ξ-Ginjective preenvelopes and ξ-Ginjective coresolutions are given dually.

Definition 3.1. Let M,N ∈ C.

(1) Assume that M admits a ξ-Gprojective resolution G→M. For any integer i ≥ 0, we define

ξxti
GP(ξ)(M,N) = Hi

C(G,N).

(2) Assume that N admits a ξ-Ginjective coresolution N→ E. For any integer i ≥ 0, we define

ξxti
GI(ξ)(M,N) = Hi

C(M,E).
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Lemma 3.2. Let M,M′
∈ G̃P(ξ). Considerξ-projective resolutionsπ : P→M andπ′ : P′ →M′, andξ-Gprojective

resolutions ϑ : G→M and ϑ′ : G′ →M′. Then

(1) there exist unique up to homotopy morphisms γ : P→ G and γ′ : P′ → G′ such that π = ϑγ and π′ = ϑ′γ′

(2) for any morphism α : M → M′, there is a unique up to homotopy morphism τ : G → G′ such that the right
square of the diagram

P
γ //

τ′

��

G ϑ //

τ

��

M

α

��
P′

γ′ // G′ ϑ′ // M′

(1)

is commutative. Moreover, for each choice of τ, there exists a unique up to homotopy morphism τ′ : P → P′

making the left square commute up to homotopy.

Proof. Using standard arguments from homological algebra, one can prove the corresponding version of
the comparison theorem for ξ-projective resolutions and ξ-Gprojective resolutions, that is, there are unique
up to homotopy morphisms τ′ : P→ P′ and τ : G→ G′ making the following diagrams

P π //

τ′

��

M

α

��
P′ π′ // M′

G ϑ //

τ

��

M

α

��
G′ ϑ′ // M′

commute. Similarly, there are unique up to homotopy morphisms γ : P→ G and γ′ : P′ → G′ making the
following diagrams

P π //

γ

��

M

G ϑ // M

P′ π′ //

γ′

��

M′

G′ ϑ′ // M′

commute, i.e. (1) holds.
We next show that the left square of (1) is commutative up to homotopy. Firstly, we have a commutative

diagram

· · · // P2
dP

2 //

τ2γ2−γ′2τ
′

2

��

P1
dP

1 //

τ1γ1−γ′1τ
′

1

��

P0 //

τ0γ0−γ′0τ
′

0

��

0

· · · // G′2
dG′

2 // G′1
dG′

1 // G′0
// 0.

For theξ-Gprojective resolutionϑ′ : G′ →M′, there areC(GP(ξ),−)-exactE-triangles Hi+1
ui // G′i

vi // H′i
//

such that dG′
i = ui−1vi and H′0 =M′. Consider an exact sequence

0 // C(P0,H′1)
C(P0,u0)// C(P0,G′0)

C(P0,v0)// C(P0,M′) // 0.

SinceC(P0, v0)(τ0γ0−γ′0τ
′

0) = v0(τ0γ0−γ′0τ
′

0) = 0, there is t0 ∈ C(P0,H′1) with u0t0 = C(P0,u0)(t0) = τ0γ0−γ′0τ
′

0.
Moreover, by the exact sequence

0 // C(P0,H′2)
C(P0,u1)// C(P0,G′1)

C(P0,v1)// C(P0,H′1) // 0,
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there is s0 ∈ C(P0,G′1) with v1s0 = C(P0, v1)(s0) = t0. Thus τ0γ0 − γ′0τ
′

0 = u0v1s0 = dG′
1 s0.

Consider an exact sequence

0 // C(P1,H′2)
C(P1,u1)// C(P1,G′1)

C(P1,v1)// C(P1,H′1) // 0.

Let r1 = τ1γ1 − γ′1τ
′

1 − s0dP
1 . Then C(P1,u0)(C(P1, v1)(r1)) = C(P1, dG′

1 )(r1) = 0. But C(P1,u0) is monic, we have
C(P1, v1)(r1) = 0. Thus there is t1 ∈ C(P1,H′2) with r1 = C(P1,u1)(t1) = u1t1. By the exact sequence

0 // C(P1,H′3)
C(P1,u2)// C(P1,G′2)

C(P1,v2)// C(P1,H′2) // 0,

there is s1 ∈ C(P1,G′2) with t1 = C(P1, v2)(s1) = v2s1. Thus r1 = u1t1 = u1v2s1 = dG′
2 s1, that is, τ1γ1 − γ′1τ

′

1 =

dG′
2 s1 + s0dP

1 . Continuing this process, we obtain a homotopy {si} such that τγ ∼ γ′τ′.

Remark 3.3. Let M ∈ G̃P(ξ) and N ∈ G̃I(ξ). By the above lemma and its dual argument, one can see
that ξxtn

GP(ξ)(M,−) and ξxtn
GI(ξ)(−,N) are independent of the choice of ξ-Gprojective resolutions of M and

ξ-Ginjective coresolutions of N, respectively.

Now we show the balance of ξ-Gorenstein cohomology.

Theorem 3.4. Assume that M ∈ G̃P(ξ) and N ∈ G̃I(ξ). Then

ξxtn
GP(ξ)(M,N) � ξxtn

GI(ξ)(M,N)

for any n ≥ 1.

Proof. Since M ∈ G̃P(ξ), by [13, Proposition 5.5], there is an E-triangle K1
11 // G0

f0 // M // in ξwith G0 ∈

GP(ξ) andξ-pdK1 < ∞. For anyξ-Ginjective object H, by definition there is anE-triangle H1
s // E0

t // H //

in ξwith H1 ∈ GI(ξ) and E0 ∈ I(ξ). Consider the following commutative diagram

0

��

0

��
C(M,E0) //

��

C(M,H)

��
C(G0,E0)

C(G0,t) //

C(11,E0)
��

C(G0,H)

C(11,H)
��

0 // C(K1,H1) // C(K1,E0)
C(K1,t) //

��

C(K1,H) //

��

0

0 0.

Since ξ-pdK1 < ∞ and E0 ∈ I(ξ), we have that the bottom row and the first column are exact. It follows

that the second column is exact, and hence K1
11 // G0

f0 // M // is C(−,GI(ξ))-exact. Inductively, we get
a ξ-Gprojective resolution G→M which is C(−,GI(ξ))-exact.
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Dually, we can get a ξ-Ginjective coresolution N → E which is C(GP(ξ),−)-exact. Following these, we
have a commutative diagram as follows

0

��

0

��

0

��
0 // C(M,N) //

��

C(M,E0) //

��

C(M,E1) //

��

· · ·

0 // C(G0,N) //

��

C(G0,E0) //

��

C(G0,E1) //

��

· · ·

0 // C(G1,N) //

��

C(G1,E0) //

��

C(G1,E1) //

��

· · ·

...
...

...

where all rows and columns are exact except the top row and the left column. By [11, Proposition 1.4.16],
we have

ξxtn
GP(ξ)(M,N) = Hn

C(G,N) � Hn
C(M,E) = ξxtn

GI(ξ)(M,N),

as desired.

Next we compare ξxtn
GP(ξ)(M,N) and ξxtn

GI(ξ)(M,N) with ξxtn
ξ(M,N).

Proposition 3.5. Let M,N ∈ C.

(1) If ξ-pdM < ∞, then ξxtn
GP(ξ)(M,N) � ξxtn

ξ(M,N) for any n ≥ 0.

(2) If ξ-idN < ∞, then ξxtn
GI(ξ)(M,N) � ξxtn

ξ(M,N) for any n ≥ 0.

Proof. (1) Assume that ξ-pdM = m < ∞. Then there is a ξ-projective resolution

0→ Pm → · · · → P1 → P0 →M→ 0.

For the relevant E-triangle Ki+1 // Pi // Ki // , since all terms have finite ξ-projective dimension, it is
C(GP(ξ),−)-exact by [14, Lemma 3.5]. This shows that the ξ-projective resolution above is a ξ-Gprojective
resolution. Thus ξxtn

GP(ξ)(M,N) � ξxtn
ξ(M,N).

(2) is dual.

Proposition 3.6. Let M ∈ G̃P(ξ) and N : N x // N′
y // N′′ // a C(GP(ξ),−)-exact E-triangle in ξ.

(1) There are the connecting maps εi
GP

(M,N) : ξxti
GP(ξ)(M,N

′′) −→ ξxti+1
GP(ξ)(M,N) which are natural in M and

N, such that the following sequence

0 −→ ξxt0
GP(ξ)(M,N) −→ ξxt0

GP(ξ)(M,N
′) −→ ξxt0

GP(ξ)(M,N
′′) −→ ξxt1

GP(ξ)(M,N) −→

· · · −→ ξxtn−1
GP(ξ)(M,N

′′) −→ ξxtn
GP(ξ)(M,N) −→ ξxtn

GP(ξ)(M,N
′) −→ ξxtn

GP(ξ)(M,N
′′) −→ · · ·

is exact

(2) There are maps δi(M,N′′) : ξxti
GP(ξ)(M,N

′′)→ ξxti
ξ(M,N

′′) and
δi(M,N) : ξxti

GP(ξ)(M,N)→ ξxti
ξ(M,N) such that the following diagram

ξxti
GP(ξ)(M,N

′′) //

δi(M,N′′)
��

ξxti+1
GP(ξ)(M,N)

δi(M,N)
��

ξxti
ξ(M,N

′′) // ξxti+1
ξ (M,N)
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is commutative for each i ≥ 0.

Proof. Let π : P→M and ξ : G→M be ξ-projective and ξ-Gprojective resolutions, respectively. Then there
is a morphism γ : P→ G which induces a commutative diagram

0 // C(G,N) //

C(γ,N)
��

C(G,N′) //

C(γ,N′)
��

C(G,N′′) //

C(γ,N′′)
��

0

0 // C(P,N) // C(P,N′) // C(P,N′′) // 0.

Here the two rows are short exact sequences of complexes. By taking the homology group, we get the
desired long exact sequence and the commutative diagram.

Using standard arguments from relative homological algebra, one can prove the following version of
the Horseshoe Lemma for ξ-Gprojective resolutions.

Lemma 3.7. (Horseshoe Lemma forξ-Gprojective resolutions) Let M x // M′
y // M′′ δ // be aC(GP(ξ),−)-

exactE-triangle inξ such thatξ-GpdM < ∞ andξ-GpdM′′ < ∞. Letπ : P→M andπ′′ : P′′ →M′′ beξ-projective
resolutions of M and M′′, respectively. Let ϑ : G → M and ϑ′′ : G′′ → M′′ be ξ-Gprojective resolutions of M and
M′′, respectively. Then there is a commutative diagram:

P //

γ

��

P′ //

γ′

��

P′′

γ′′

��
G //

ϑ
��

G′ //

ϑ′

��

G′′

ϑ′′

��
M x // M′

y // M′′

(2)

such that π = ϑγ, π′′ = ϑ′′γ′′, ϑ′ : G′ → M′ is a ξ-Gprojective resolution of M′ and π′ = ϑ′γ′ : P′ → M′ is a
ξ-projective resolution of M′. Moreover, the two upper rows are split E-triangle in ξ.

Proposition 3.8. Let N be an object in C and M : M x // M′
y // M′′ δ // a C(GP(ξ),−)-exact E-triangle

in ξ such that ξ-GpdM < ∞ and ξ-GpdM′′ < ∞.

(1) There are homomorphisms εi
GP

(M,N) : ξxti
GP(ξ)(M,N)→ ξxti+1

GP(ξ)(M
′′,N) natural in M and N such that the

following sequence

0 −→ ξxt0
GP(ξ)(M

′′,N) −→ ξxt0
GP(ξ)(M

′,N) −→ ξxt0
GP(ξ)(M,N) −→ ξxt1

GP(ξ)(M
′′,N) −→

· · · −→ ξxtn−1
GP(ξ)(M,N) −→ ξxtn

GP(ξ)(M
′′,N) −→ ξxtn

GP(ξ)(M
′,N) −→ ξxtn

GP(ξ)(M,N) −→ · · ·

is exact

(2) There are maps δi(M,N) : ξxti
GP(ξ)(M,N

′′)→ ξxti
ξ(M,N) and

δi(M,N) : ξxti
GP(ξ)(M

′′,N)→ ξxti
ξ(M

′′,N) such that the following diagram

ξxti
GP(ξ)(M,N)

εi
GP

(M,N)
//

δi(M,N)
��

ξxti+1
GP(ξ)(M

′′,N)

δi+1(M′′,N)
��

ξxti
ξ(M,N)

εi
P

(M,N)
// ξxti+1

ξ (M′′,N)

is commutative for each i ≥ 0.
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Proof. Since A and C have finite ξ-Gprojective dimensions, we can construct the diagram (2). Moreover,
since the two upper rows of (2) are split E-triangles in ξ, by applying the functor C(−,N) we can get a
commutative diagram of complexes

0 // C(G′′,N) //

��

C(G′,N) //

��

C(G,N) //

��

0

0 // C(P′′,N) // C(P′,N) // C(P,N) // 0

with exact rows. By taking the homology group, we get the desired long exact sequence and the commu-
tative diagram.

4. The Avramov-Martsinkovsky type exact sequence

In [15], we introduced the notion of ξ-complete cohomology in an extriangulated category. In this
section, we will give an Avramov-Martsinkovsky type exact sequence which connects ξ-cohomology, ξ-
Gorenstein cohomology and ξ-complete cohomology. In particular, we can use ξ-complete cohomology to
measure the distance between ξ-cohomology and ξ-Gorenstein cohomology.

We denote by Ch(C) the category of complexes in C; the objects are complexes and morphisms are chain
maps. We write the complexes homologically, so an object X of Ch(C) is of the form

X := · · · // Xn+1
dX

n+1 // Xn
dX

n // Xn−1 // · · · .

The ith shift of X is the complex X[i] with nth component Xn−i and differential dX[i]
n = (−1)idX

n−i. Assume that X
and Y are complexes in Ch(C). A homomorphism φ : X // Y of degree n is a family (φi)i∈Z of morphisms

φi : Xi // Yi+n for all i ∈ Z. In this case, we set |φ| = n. All such homomorphisms form an abelian group,
denoted by C(X,Y)n, which is identified with

∏
i∈Z C(Xi,Yi+n). We let C(X,Y) be the complex of abelian

groups with nth component C(X,Y)n and differential d(φi) = dY
i+nφi − (−1)nφi−1dX

i for φ = (φi) ∈ C(X,Y)n.
We refer to [4, 9] for more details.

Let M and N be objects in C.

1. There are two ξ-projective resolutions PM // M and PN // N of M and N, respectively. A

homomorphism β ∈ C(PM,PN) is bounded above if βi = 0 for all i≫ 0. The subset C(PM,PN), consisting
of all bounded above homomorphisms, is a subcomplex with components

C(PM,PN)n = {(φi) ∈ C(PM,PN)n | φi = 0 for all i≫ 0}.

We set

C̃(PM,PN) = C(PM,PN)/C(PM,PN). (3)

2. There are two ξ-injective coresolutions M // IM and N // IN of M and N, respectively. A
homomorphism β ∈ C(IM, IN) is bounded below if βi = 0 for all i ≪ 0. The subset C(IM, IN), consisting
of all bounded below homomorphisms, is a subcomplex with components

C(IM, IN)n = {(φi) ∈ C(IM, IN)n | φi = 0 for all i≪ 0}.

We set

C̃(IM, IN) = C(IM, IN)/C(IM, IN). (4)

Definition 4.1. (see [15, Definition 3.4]) Let M and N be objects in C, and let n be an integer.
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1. Using ξ-projective resolutions, we define the nth ξ-complete cohomology group, denoted by ξ̃xt
n
P(M,N),

as
ξ̃xt

n
P(M,N) = Hn(C̃(PM,PN)),

where C̃(PM,PN) is the complex (3).
2. Using ξ-injective coresolutions, we define the nth ξ-complete cohomology group, denoted by ξ̃xt

n
I(M,N),

as
ξ̃xt

n
I(M,N) = Hn(C̃(IM, IN)),

where C̃(IM, IN) is the complex (4).

Definition 4.2. (see [15, Definition 4.3]) Let M ∈ C be an object. A ξ-complete resolution of M is a diagram

T ν // P π // M

of morphisms of complexes satisfying: (1) π : P → M is a ξ-projective resolution of M; (2) T is a complete
ξ-projective resolution; (3) ν : T→ P is a morphism such that νi = idTi for all i≫ 0. Moreover, a ξ-complete
resolution is split if νi has a section (i.e., there exists a morphism ηi : Pi → Ti such that νiηi = idPi ) for all
i ∈ Z.

The following lemma is very key, which shows that one can compute ξ-complete cohomology for objects
having finite ξ-Gprojective dimension using ξ-complete resolutions.

Lemma 4.3. (see [15, Theorem 4.6]) Let M and N be objects inC. If M admits aξ-complete resolution T ν // P π // M,
then for any integer i, there exists an isomorphism

ξ̃xt
i
P(M,N) � Hi(C(T,N)).

Assume that M has a ξ-complete resolution T ν // P π // M such that νi is an isomorphism for each

i ≥ n. By [15, Proposition 4.4], there is a split ξ-complete resolution S
µ // P π // M such that µi is an

isomorphism for each i ≥ n. Now we need a new construction as follows, which seems to be similar to that
of [15, Proposition 4.4 (2)⇒ (3)] but different. By assumption, there is a commutative diagram

T := · · · // Pn // Tn−1 //

νn−1

��

· · · // T1 //

ν1

��

T0

ν0

��

// T−1

ν−1

��

// · · ·

P := · · · // Pn // Pn−1 // · · · // P1 // P0 // 0 // · · ·

with the E-triangles Ki+1
fi // Pi

1i // Ki // and K′i+1

f ′i // Ti
1′i // K′i

// (Here K′n = Kn) in ξ.
Then we have the following morphism of E-triangles in ξ

Kn
1′n−1 // Tn−1

f ′n−1 //

νn−1

��

K′n−1

ωn−1

��

ρn−1 //

Kn
1n−1 // Pn−1

fn−1 // Kn−1
δn−1 // .

Moreover, for any integer i < n, we have the following morphism of E-triangles in ξ

K′i
ωi

��

1′i−1 // Ti−1
f ′n−1 //

νi−1

��

K′i−1

ωi−1

��

ρi−1 //

Ki
1i−1 // Pi−1

fi−1 // Ki−1
δi−1 // .



J. Hu et al. / Filomat 36:10 (2022), 3405–3421 3417

By [15, Lemma 4.1], there is an E-triangle in ξ

Kn

[
−1n−1
1′n−1

]
// Pn−1 ⊕ Tn−1

[
1 νn−1
0 f ′n−1

]
// Pn−1 ⊕ K′n−1

[0 1]∗ρn−1// .

Since the morphism [1 0] : Pn−1 ⊕ K′n−1 → Pn−1 is a split epimorphism, and it is a ξ-deflation. Hence
[1 νn−1] = [1 0]

[
1 νn−1
0 f ′n−1

]
: Pn−1 ⊕ Tn−1 → Pn−1 is a ξ-deflation by [13, Corollary 3.5]. Let

Ln−1 // Pn−1 ⊕ Tn−1
[1 νn−1]// Pn−1 //

be an E-triangle in ξ. Moreover, by [13, Lemma 3.7(2)] one has an E-triangle

Kn

[
0
1′n−1

]
// Pn−1 ⊕ Tn−1

[
1 0
0 f ′n−1

]
// Pn−1 ⊕ K′n−1

[0 1]∗ρn−1//

in ξ. By [19, Lemma 5.9], there is a commutative diagram

0 //

��

Ln−1 //

��

K′′n−1

��

//

Kn

[
0
1′n−1

]
// Pn−1 ⊕ Tn−1

[1 νn−1]
��

[
1 0
0 f ′n−1

]
// Pn−1 ⊕ K′n−1

ηn−1

��

[0 1]∗ρn−1//

Kn
1n−1 //

��

Pn−1

��

fn−1 // Kn−1

��

δn−1 //

in which all rows and columns are E-triangles. Dual to [13, Lemma 3.7(2)], there exists an E-triangle

Pn−1 ⊕ K′n−1

[
1 0
0 1′n−2

]
// Pn−1 ⊕ Tn−2

[0 f ′n−2] // K′n−2

[
0
1

]
∗

ρn−2
// ,

which is also in ξ because ξ is closed under cobase change. Since K′n−2 ∈ GP(ξ), by [13, Lemma 4.10(2)] we
have the following morphism of E-triangles in ξ

Pn−1 ⊕ K′n−1

ηn−1

��

[
1 0
0 1′n−2

]
// Pn−1 ⊕ Tn−2

[0 f ′n−2] //

γn−2=[γ′n−2 γ
′

n−2]

��

K′n−2

ωn−2

��

[
0
1

]
∗

ρn−2
//

Kn−1
1n−2 // Pn−2

fn−2 // Kn−2
δn−2 // .

Set 1n−2ηn−1 = [α′ α′′]. By [15, Lemma 4.1], there is an E-triangle

Pn−1 ⊕ K′n−1

[
α′ α′′

1 0
0 1′n−2

]
// Pn−2 ⊕ Pn−1 ⊕ Tn−2

[
1 γ′n−2 γ′n−2
0 0 f ′n−2

]
// Pn−2 ⊕ K′n−2

[0 1]∗
[

0
1

]
∗

ρn−2
// .

Then [1 γn−2] = [1 0]
[

1 γ′n−2 γ′n−2
0 0 f ′n−2

]
is a ξ-deflation, and thus there is an E-triangle

Ln−2 // Pn−2 ⊕ Pn−1 ⊕ Tn−2
[1 γn−2]// Pn−2 //
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in ξ. By [19, Lemma 5.9], we have the following commutative diagram

K′′n−1
//

��

Ln−2 //

��

K′′n−2
//

��
Pn−1 ⊕ K′n−1

ηn−1

��

[
0 0
1 0
0 1′n−2

]
// Pn−2 ⊕ Pn−1 ⊕ Tn−2

[
1 0 0
0 0 f ′n−2

]
//

[1 γn−2]

��

Pn−2 ⊕ K′n−2

ηn−2

��

[0 1]∗
[

0
1

]
∗

ρn−2
//

Kn−1
1n−2 //

��

Pn−2
fn−2 //

��

Kn−2
δn−2 //

��

in which all rows and columns are E-triangles. By proceeding in this manner, we set

Si =


Pi i ≥ n

Pn−1 ⊕ Tn−1 i = n − 1
Pi ⊕ Pi+1 ⊕ Ti i < n − 1

µi =


1 i ≥ n

[1 νn−1] i = n − 1
[1 γ′i γ′′i ] 0 ≤ i < n − 1

0 i < 0

Consequently, we get a commutative diagram

L

ς

��

· · · // 0 //

��

Ln−1 //

��

· · · // L1 //

��

L0 //

��

S−1 // · · ·

S

µ

��

· · · // Pn // Sn−1 //

µn−1

��

· · · // S1 //

µ1

��

S0

µ0

��

// S−1

µ−1

��

// · · ·

P · · · // Pn // Pn−1 // · · · // P1 // P0 // 0 // · · · .

(5)

Note that every Si is ξ-projective, and S is obtained by pasting together those E-triangles

Kn // Pn−1 ⊕ Tn−1 // Pn−1 ⊕ K′n−1
//

and
Pi ⊕ K′i

// Pi−1 ⊕ Pi ⊕ Ti−1 // Pi−1 ⊕ K′i−1
//

for all i < n. Then the complex S is ξ-exact and C(−,P(ξ))-exact. Moreover, since all columns are split
E-triangles, we can get the top row is C(−,P(ξ))-exact. In particular, L is a ξ-exact complex.

Now we give an Avramov-Martsinkovsky type exact sequence in extriangulated category as follows.

Theorem 4.4. Assume that M admits a ξ-complete resolution T ν // P π // M . Then there are homomorphisms
natural in M and N, such that the following sequence

0 // K // ξxt1
GP(ξ)(M,N) // ξxt1

ξ(M,N) // ξ̃xt
1
P(M,N) // ξxt2

GP(ξ)(M,N) // · · ·

· · · // ξ̃xt
i−1
P (M,N) // ξxti

GP(ξ)(M,N) // ξxti
ξ(M,N) // ξ̃xt

i
P(M,N) // · · ·

is exact.
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Proof. Assume that M has a ξ-complete resolution T ν // P π // M such that νi is an isomorphism for
each i ≥ n. By the previous argument, we have the diagram (5). In particular, we have a commutative
diagram

G[−1] :

��

· · · // 0 //

��

Ln−1 //

��

· · · // L1 //

��

L0 //

��

K′0 ⊕ P0 // 0

S⪰−1 :

��

· · · // Pn // Sn−1 //

µn−1

��

· · · // S1 //

µ1

��

S0

µ0

��

// K′0 ⊕ P0

��

// 0

P : · · · // Pn // Pn−1 // · · · // P1 // P0 // 0 // 0.

(6)

Set Gi = Li−1 for each 1 ≤ i ≤ n and G0 = K′0 ⊕ P0. Then each Gi is ξ-projective for 1 ≤ i ≤ n and
G0 is ξ-Gprojective. In the relevant E-triangle K′′i+1

// Li // K′′i
// for each i ≥ 0, the object

ξ-pdK′′i+1 < ∞, thus the induced sequence

0→ C(G,K′′i+1)→ C(G,Li)→ C(G,K′′i )→ 0

is exact for any G ∈ GP(ξ). This means that the relevant E-triangle K′′i+1
// Li // K′′i

// is
C(GP(ξ),−)-exact for each i ≥ 0, and hence we obtain a ξ-Gprojective resolution G→M:

0→ Gn → · · · → G1 → G0 →M→ 0.

Now since the columns in the diagram (6) are split E-triangles, one has an exact sequence of complexes

0→ C(P,N)→ C(S⪰−1,N)→ C(G[−1],N)→ 0.

This shows that there is a long exact sequence

0→ H−1
C(S⪰−1,N)→ H−1

C(G[−1],N)→ H0
C(P,N)→ H0

C(S⪰−1,N)

→ H0
C(G[−1],N)→ H1

C(P,N)→ H1
C(S⪰−1,N)→ H1

C(G[−1],N)→ · · ·

→ Hi−1
C(G[−1],N) → Hi

C(P,N) → Hi
C(S⪰−1,N) → Hi

C(G[−1],N) → · · · .

Notice that Hi−1
C(G[−1],N) = ξxti

GP(ξ)(M,N), and Hi
C(P,N) = ξxti

ξ(M,N) for any i ≥ 0. Moreover, since

S // P // M is a ξ-complete resolution of M, one has Hi
C(S⪰−1,N) = ξ̃xt

i
P(M,N) for any i ≥ 1. Finally,

by setting K = Ker(H0
C(G[−1],N)→ H1

C(P,N)), we can get the desired long exact sequence.

Remark 4.5. Note that extriangulated categories are a simultaneous generalization of abelian categories
and triangulated categories. It follows that Theorem 4.4 here unifies Theorem 7.1 proved by Avramov
and Martsinkovsky [5] in the category of modules, and Theorem 4.10 proved by Ren, Zhao and Liu [21]
in a triangulated category. It should be noted that our results here are new for exact categories and
extension-closed subcategories of triangulated categories.

Corollary 4.6. Let M ∈ G̃P(ξ). Then the following are equivalent:

(1) ξ-GpdM ≤ n.

(2) ξxti
GP(ξ)(M,N) = 0 for all i ≥ n + 1 and all N ∈ C.

(3) The maps ε̃i
P

(M,N) : ξxti
ξ(M,N)→ ξ̃xt

i
P(M,N) are bijective for all i ≥ n + 1 and all N ∈ C.
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(4) ξxti
ξ(M,Q) = 0 for all i ≥ n + 1 and all Q ∈ P̃(ξ).

(5) ξxti
ξ(M,Q) = 0 for all i ≥ n + 1 and all Q ∈ P(ξ).

Proof. (1)⇔ (3) follow from [16, Proposition 3.7], and (1)⇔ (4)⇔ (5) follow from [13, Theorem 3.8].
(1)⇒ (2) is clear.
(2)⇒ (3) follows from Theorem 4.4 directly.

Corollary 4.7. Assume that ξ-GpdM = n < ∞. Then there are homomorphisms natural in M and N, such that the
following sequence

0 // K // ξxt1
GP(ξ)(M,N) // ξxt1

ξ(M,N) // ξ̃xt
1
P(M,N) // ξxt2

GP(ξ)(M,N) // · · ·

· · · // ξ̃xt
n−1
P (M,N) // ξxtn

GP(ξ)(M,N) // ξxtn
ξ(M,N) // ξ̃xt

n
P(M,N) // 0

is exact.

Assume that M ∈ G̃P(ξ) and N ∈ G̃I(ξ). By Theorem 3.4, we have

ξxtn
GP(ξ)(M,N) � ξxtn

GI(ξ)(M,N)

for any n ≥ 1, which is denoted by ξxtn
G(ξ)(M,N).

By [16, Proposition 4.3], for any M ∈ G̃P(ξ) and N ∈ G̃I(ξ), we also have

ξ̃xt
n
P(ξ)(M,N) � ξ̃xt

n
I(ξ)(M,N)

and we denote it by ξ̃xt
n
ξ(M,N) for any integer n ≥ 1.

Corollary 4.8. Assume that M ∈ G̃P(ξ) and N ∈ G̃I(ξ). Let n = min{ξ-GpdM, ξ-GidN}. Then there are
homomorphisms natural in M and N, such that the following sequence

0 // K // ξxt1
G(ξ)(M,N) // ξxt1

ξ(M,N) // ξ̃xt
1
ξ(M,N) // ξxt2

G(ξ)(M,N) // · · ·

· · · // ξ̃xt
n−1
ξ (M,N) // ξxtn

G(ξ)(M,N) // ξxtn
ξ(M,N) // ξ̃xt

n
ξ(M,N) // 0

is exact.
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