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Abstract. We study the regularity of the form ( linear functional) satisfying the functional equation
(x2
− c2)u = λv where c ∈ C, λ ∈ C − {0} and v is the perturbed form of order one of the Chebyshev form of

second kind. The integral representation of the form u is highlighted. Moreover, some symmetric second
degree forms of class two and four are given.

1. Introduction

Several authors have studied the problem of division of a regular form by a polynomial [1,3,4,8,10,11,15]:
Let v be a regular form, find all regular forms u fulfilling the following algebraic equation

Ru = λv, λ ∈ C − {0},

where R is a monic polynomial.
In particular, for R(x) = x see [4] and for R(x) = x2 consult [8]. Moreover, the cases R(x) = x3 and R(x) = x4,
have been studied in [10] and [11] respectively.
Recently, we have studied the case where R(x) = x2

− c2, c ∈ C − {0}. Basically, we dealt with v = U
the Chebyshev form of second kind [1]. The present work concerns the study of the case where v is the
perturbed form of order one of the Chebyshev form of second kind [7,12,13] and fulfilling the following
algebraic equation [1,12]

(x2
− a2)v = −

ω
4(ω − 1)

U, ω ∈ C − {0, 1}, a2 =
ω2

4(ω − 1)
.

Then,
(x2
− c2)(x2

− a2)u = −
ω

4(ω − 1)
U,

which give a particular study of the division problem of a regular form by a polynomial with deg(R) = 4
and and v is the Chebyshev form of second kind.
The preliminaries results and notations are thoroughly presented in section two. In the third section, we
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give explicitly the regularity conditions of the form u a detailed study regarding the class of is provided.
Also we establish the second degree character of the form u. In the fourth section, we study some particular
cases, which allowed us to give some examples of symmetric second degree forms of class four ( which is
not given in the literature as far as we know ) and of class two ( that are not dealt with in [14]) . The last
section is devoted to establish the integral representations of the forms given above.

2. Preliminaries and fundamental results

Let P be the vector space of polynomials with coefficients in C and let P′ be its dual. We denote by
⟨w, f ⟩ the effect of w ∈ P′ on f ∈ P. In particular, we denote by (w)n := ⟨w, xn

⟩, n ≥ 0, the moments of w.
For any form w, any polynomial 1, any a ∈ C− {0} any c ∈ C and b ∈ C , let w′, 1w, haw and (x− c)−1w be the
forms defined by duality

⟨w′, f ⟩ := −⟨w, f ′⟩, ⟨1w, f ⟩ := ⟨w, 1 f ⟩, ⟨(x − c)−1w, f ⟩ := ⟨w, θc f ⟩,
where (θc f )(x) = f (x)− f (c)

x−c , f ∈ P.
We also define the right-multiplication of a form by a polynomial with

(w f )(x) := ⟨w, x f (x)−ξ f (ξ)
x−ξ ⟩, w ∈ P′, f ∈ P.

Next, the product of two forms is defined as
⟨uv, f ⟩ := ⟨u, v f ⟩, u, v ∈ P′, f ∈ P.

We call polynomial sequence (PS), the sequence of polynomials {Pn}n≥0 when deg Pn = n, n ≥ 0. Then any
polynomial Pn can be supposed monic and the sequence becomes a monic polynomial sequence (MPS). Let
{wn}n≥0 be its dual sequence defined by ⟨wn,Pm⟩ = δn,m, n,m ≥ 0.
The MPS {Pn}n≥0 is orthogonal (MOPS) with respect to w ∈ P′ when the following conditions hold
⟨w,PmPn⟩ = rnδn,m, n,m ≥ 0, rn , 0, n ≥ 0. In this case the form w is said to be regular. The form w is
called normalized if (w)0 = 1. In this paper, we suppose that the forms are normalized. Thus, w = w0 and
{Pn}n≥0 satisfies the standard recurrence relation P0(x) = 1 , P1(x) = x − βP

0 ,

Pn+2(x) = (x − βP
n+1)Pn+1(x) − γP

n+1Pn(x), n ≥ 0; γP
n+1 , 0, n ≥ 0.

(1)

The regular form w0 is said to be symmetric when (w0)2n+1 = 0, n ≥ 0, or equivalently βP
n = 0, n ≥ 0, in (1)

[5].
Let us recall some results:

Lemma 2.1. [5] Let w ∈ P′, f , 1 ∈ P and a, b ∈ C. The following formulas hold:

( f w)′ = f w′ + f ′w, (2)

(x − a)−1
(
(x − a)w

)
= w − (w)0δa, (3)

(x − a)−1δb =
1

b − a

(
δb − δa), a , b ; (x − a)−1δa = −δ

′

a, (4)

(θaθb f )(x) = (θbθa f )(x) =
1

a − b

(
θa f − θb f )(x), a , b, (5)

where ⟨δa, f ⟩ := f (a), f ∈ P.

Definition 2.2. A MOPS {Pn}n≥0 with respect to w is called semi-classical sequence if w fulfils an equation

(ϕw)′ + ψw = 0, (6)

where ϕ monic and degψ ≥ 1. In this case, the form w is called semi-classical.
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Let us introduce the integer s(ϕ,ψ) = max
(
degϕ − 2,degψ − 1

)
. Then s = min s(ϕ,ψ) where the minimum

is taken over all the pairs (ϕ,ψ) occurring in (6) is called the class of w. By extension, the integer s is also
the class of {Pn}n≥0 [5].
We have the following result:

Proposition 2.3. [5] The form w satisfying (6) is of class s = s(ϕ,ψ) if and only if∏
c∈Z(ϕ)

(
| ψ(c) + ϕ′(c) | + | ⟨w, θcψ + θ2

cϕ⟩ |
)
, 0,

where Z(ϕ) = {c, ϕ(c) = 0}.
In the case when there exists c ∈ C such that ϕ(c) = 0 and | ψ(c) + ϕ′(c) | + | ⟨w, θcψ + θ2

cϕ⟩ |= 0, we have

(θcϕw)′ +
(
θcψ + θ

2
cϕ
)
w = 0.

Let {Pn}n≥0 be a MOPS with respect to w and {P(1)
n }n≥0 be the first associated polynomial sequence where

P(1)
n (x) = ⟨w, Pn+1(x)−Pn+1(ξ)

x−ξ ⟩, n ≥ 0. The sequence {P(1)
n }n≥0 is orthogonal with respect to w(1) and satisfies (1)

with β(1)
n = β

P
n+1, γ

(1)
n+1 = γ

P
n+2, n ≥ 0.

The monic second kind Chebyshev polynomials are defined by [2,6,7]{
U0(x) = 1 , U1(x) = x,
Un+2(x) = xUn+1(x) − 1

4 Un(x), n ≥ 0. (7)

We denote by v the perturbed Chebyshev form of order one of the Chebyshev form of second kind and
{Sn}n≥0 its MOPS, we have [12] {

S0(x) = 1, S1(x) = x,
Sn+2(x) = xSn+1(x) − σn+1Sn(x), n ≥ 0, (8)

with
σ1 =

1
4
ω, σn+1 =

1
4
, n ≥ 1, ω ∈ C − {0, 1, 2}, (9)

(ϕv)′ + ψv = 0, (10)

ϕ(x) = (x2
− 1)(x2

− a2), ψ(x) = −3x(x2
− a2), a2 =

ω2

4(ω − 1)
. (11)

We know that [1]

Sn+2(x) = Un+2(x) −
ω − 1

4
Un(x), n ≥ 0. (12)

Now, let us consider the following problem:
find all regular symmetric forms u satisfying

(x2
− c2)u = λv, λ ∈ C − {0}, c ∈ C − {0}, (13)

with the constraint (u)0 = 1.
When u is regular, let {Zn}n≥0 be its corresponding MOPS fulfilling{

Z0(x) = 1, Z1(x) = x,
Zn+2(x) = xZn+1(x) − γn+1Zn(x), n ≥ 0. (14)

From (13), the existence of the sequence {Zn}n≥0 is among all the strictly quasi-orthogonal sequences of order
two with respect to λv that is [1,9]

Zn+2(x) = Sn+2(x) + anSn(x), n ≥ 0, (15)

with an , 0, n ≥ 0.
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Remark 2.4. Let {Sn(., µ)}n≥0, be the co-recursive polynomials for the sequence {Sn}n≥0. One may write [2,5]

Sn(x, µ) = Sn(x) − µS(1)
n−1(x), n ≥ 0, (16)

where S(1)
−1 = 0.

Let us recall the following results:

Proposition 2.5. [1] The form u is regular, if and only if, Sn(c,−λc ) , 0, n ≥ 0.
Moreover,

an = −
Sn+2(c,−λc )

Sn(c,−λc )
, n ≥ 0, (17)

γ1 = cS1(c,−
λ
c

), (18)

γ2 = −λ
S2(c,−λc )
λ + c2 , (19)

γn+3 =
an+1

an
σn+1, n ≥ 0. (20)

Proposition 2.6. The form u given by (13) is regular if and only if

∆n , 0, n ≥ 0,

with

∆n =
c2 + λ

c
Un(c) −

ω
4

Un−1(c) , 0, n ≥ 0, U−1 = 0. (21)

In this case, we have
a0 = −

(
c2 + λ −

ω
4

)
, (22)

an+1 = −
∆n+2

∆n
, n ≥ 0, (23)

γ1 = c2 + λ, (24)

γ2 = −
λ
4

4c2 + 4λ − ω
λ + c2 , (25)

γ3 =
ω
4

a1

a0
, (26)

γn+4 =
1
4

an+2

an+1
, n ≥ 0. (27)

Proof. We have

Sn(c,−
λ
c

) = Sn(c) +
λ
c

S(1)
n−1(c), n ≥ 0.

On account of (7), (8) and (9), we get S(1)
n = Un, n ≥ 0, then last relation becomes

Sn(c,−
λ
c

) = Sn(c) +
λ
c

Un−1(c), n ≥ 0. (28)

Also, by (7), (8) and (9), we have

S0(c,−
λ
c

) = 1, S1(c,−
λ
c

) =
c2 + λ

c
. (29)
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We may write

Sn+2(c,−
λ
c

) = Sn+2(c) +
λ
c

Un+1(c), n ≥ 0,

using the formula (12), we obtain

Sn+2(c,−
λ
c

) =
c2 + λ

c
Un+1(c) −

ω
4

Un(c), n ≥ 0.

Based on (29), we can deduce that

Sn+1(c,−
λ
c

) =
c2 + λ

c
Un(c) −

ω
4

Un−1(c) = ∆n, n ≥ 0. (30)

Taking into account relation (30) and Proposition 2.5, we can deduce that the form u is regular

∆n , 0, n ≥ 0.

Furthermore, the relations (22)-(27) are an immediate consequence from (29)-(30) and Proposition 2.5.

3. The class of the form u and its second degree character

3.1. The class of the form u

From the relations (10)-(13), we get
(ϕ̃u)′ + ψ̃u = 0, (31)

with
ϕ̃(x) = (x2

− c2)(x2
− a2)(x2

− 1) , ψ̃(x) = −3x(x2
− c2)(x2

− a2). (32)

We see that the class of the form u is at most s = 4.
Let us recall the following result:

Proposition 3.1. [1] The class of the form u depends only on the zeros εc, where ε = ±1.

Proposition 3.2. When u is a regular form, let

ϑ1 = 2a2(a2
− 1) + λ(2a2

− 1 −
ω
2

), (33)

ϑ2 = 2(1 − a2) + λ(2a2
− 1 −

ω
2

). (34)

We have
(a) The form u is a semi-classical of class s = 4 when c2 , a2, c2 , 1 or c2 = a2, ϑ1 , 0 or c2 = 1, ϑ2 , 0 and u
satisfies (31)-(32).
(b) When c2 = a2, ϑ1 = 0, the class of the form u is s = 2, and we have

(ϕ̃1u)′ + ψ̃1u = 0, (35)

ϕ̃1(x) = (x2
− a2)(x2

− 1), ψ̃1(x) = −x3 + (3a2
− 2)x. (36)

(c) If c2 = 1, ϑ2 = 0, the class of the form u is s = 2, and we have

(ϕ̃2u)′ + ψ̃2u = 0, (37)

ϕ̃2(x) = (x2
− a2)(x2

− 1), ψ̃2(x) = −2x(x2
− a2) (38)
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Proof. The following formula is needed [5](
θa( f1)

)
(x) = f (x)(θa1)(x) + 1(a)(θa f )(x), a ∈ C, f , 1 ∈ P. (39)

From (32), we get
ψ̃(ϵc) + ϕ̃′(εc) = 2ϵc(c2

− a2)(c2
− 1). (40)

Also, we have
(θεcψ̃)(x) = (θεc((x2

− c2)ψ))(x),

using the formula (39), it follows that

(θεcψ̃)(x) = (x2
− c2)(θεcψ)(x) + (x + εc)ψ(εc). (41)

Similarly, we get
(θ2
εcϕ̃)(x) = (x2

− c2)(θ2
εcϕ)(x) + (x + εc)ϕ′(εc) + ϕ(εc). (42)

Based on (41) and (42), we can deduce that

(θεcψ̃)(x) + (θ2
εcϕ̃)(x) = (x2

− c2)
(
θεcψ) + θ2

εcϕ
)
(x) + (x + εc)

(
ψ(εc) + ϕ′(εc)

)
+ϕ(εc),

but from (11), we obtain successively(
θεcψ) + θ2

εcϕ
)
(x) = −2x2

− εcx + 2a2
− 1,

and
ψ(εc) + ϕ′(εc) = 2εc(2c2

− a2
− 1).

Which implies that
(θεcψ̃)(x) + (θ2

εcϕ̃)(x) = (x2
− c2)

(
−2x2

− εcx + 2a2
− 1
)

+2εc(2c2
− a2
− 1)(x + εc) + (c2

− a2)(c2
− 1). (43)

Then,
⟨u, θεcψ̃ + θ

2
εcϕ̃⟩ = ⟨u, (x

2
− c2)

(
−2x2

− εcx + 2a2
− 1)
)
⟩

+⟨u, 2εc(2c2
− a2
− 1)(x + εc) + (c2

− a2)(c2
− 1)⟩

Equivalently,
⟨u, θεcψ̃ + θ

2
εcϕ̃⟩ = ⟨(x

2
− c2)u,−2x2

− εcx + 2a2
− 1⟩

+⟨u, 2εc(2c2
− a2
− 1)(x + εc) + (c2

− a2)(c2
− 1)⟩,

by (13) and the fact that u is a symmetric form, the last relation can be written as

⟨u, θεcψ̃ + θ
2
εcϕ̃⟩ = λ⟨v,−2x2

− εcx + 2a2
− 1⟩

+2c2(2c2
− a2
− 1) + (c2

− a2)(c2
− 1).

But ⟨v,−2x2
− εcx + 2a2

− 1⟩ = 2a2
− 1 − ω

2 , then

⟨u, θεcψ̃ + θ
2
εcϕ̃⟩ = λ

(
2a2
− 1 −

ω
2

)
+ 2c2(2c2

− a2
− 1) + (c2

− a2)(c2
− 1). (44)

(a) If c2 = a2, relation (44) becomes

⟨u, θεaψ̃ + θ
2
εaϕ̃⟩ = λ

(
2a2
− 1 −

ω
2

)
+ 2a2(a2

− 1) = ϑ1. (45)
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When c2 = 1, by (44), we get

⟨u, θεψ̃ + θ2
εϕ̃⟩ = λ

(
2a2
− 1 −

ω
2

)
+ 2(1 − a2) = ϑ2. (46)

In the case where c2 , a2, c2 , 1, based on (40), (45), (46) and Proposition 2.3, we can not simplify the
equation (31). According to Proposition 3.1, we can deduce the desired results.
(b) In this case, from (40) and (45), we can simplify equation (31) by the factor x2

− a2, and we obtain (35)
with

ϕ̃1 = θaθ−aϕ̃, ψ̃1 = θaθ−aψ̃ + (θaθ
2
−a + θ

2
aθ−a)ϕ̃.

Since ϕ̃(x) = (x2
− a2)2(x2

− 1), ψ̃(x) = −3x(x2
− a2)2, we obtain (36).

Moreover, by (36), we have ϕ̃′1(εa) + ψ̃(εa) = 4εa(a2
− 1) , 0, then we cannot simplify equation (35) and the

class of the form u is s = 2.
(c) When c2 = 1, ϑ2 = 0, by (40) and (46), equation (35) can be is simplified by the factor x2

− 1 and we
obtain (37) with

ϕ̃2 = θ1θ−1ϕ̃, ψ̃2 = θ1θ−1ψ̃ + (θ1θ
2
−1 + θ

2
1θ−1)ϕ̃.

Since ϕ̃(x) = (x2
− 1)2(x2

− a2), ψ̃(x) = −3x(x2
− 1)(x2

− a2), we obtain (38).
Furthermore, by (38), we have ϕ̃′2(ε) + ψ̃2(ε) = −2ε(1 − a2) , 0, then we cannot simplify the equation (37)
and the class of the form u is s = 2.

3.2. The second degree character of the form u
Let us introduce the formal Stieltjes function S(.; w) of the form w:

S(z,w) = −
∑
n≥0

(w)n

zn+1 . (47)

Definition 3.3. A regular form w is said to be a second degree form if there exist two polynomials B(z,w) (monic)
and C(z,w) such that

B(z,w)S2(z,w) + C(z,w)S(z,w) +D(z,w) = 0, (48)

where
D(z,w) = (wθ0C(.,w))(z) − (w2θ2

0B(.,w))(z). (49)

The regularity of w means that B(.,w) , 0, C2((.,w) − 4B(.,w)D(.,w) , 0 and D(.,w) , 0 [6].

A second-degree form w whose corresponding formal Stieltjes function S(z,w) satisfies (48) is necessarily
semi-classical and fulfils [6]

(ϕ(x,w)w)′ + ψ(x,w)w = 0, (50)

with
αϕ(x,w) = B(x,w)(C2(x,w) − 4B(x,w)D(x,w)),

αψ(x,w) = −
3
2

B(x,w)(C2(x,w) − 4B(x,w)D(x,w))′, (51)

where α represents a normalization constant.

Remark 3.4. Keeping the same notation in [12], we have v = û(a,− ω
4(ω−1) ), then we have the following results:

Proposition 3.5. [12] On has
B(z, v)S2(z, v) + C(z, v)S(z, v) +D(z, v) = 0, (52)

with
B(z, v) = (z2

− a2), C(z, v) =
ω − 2
ω − 1

z, D(z, v) = −
1

ω − 1
, (53)
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S(z, v) =
1

z2 − a2

{ ω
2(ω − 1)

1

z +
√

z2 − 1
− z
}
, z ∈ C − {−a,+a}, (54)

where the principal square root of a complex number z is
√

z =
√
|z| exp(i arg(z)

2 ), −π < arg(z) ≤ π.

Proposition 3.6. When the form u is regular it is a second degree form and we have

B(z,u)S2(z,u) + C(z,u)S(z,u) +D(z,u) = 0, (55)

with 
B(z,u) = (z2

− c2)2(z2
− a2),

C(z,u) = (z2
− c2)

(
2z(z2

− a2) + λω−2
ω−1 z
)
,

D(z,u) = z2(z2
− a2) + λω−2

ω−1 z2
−

λ2

ω−1 ,

(56)

S(z,u) =
λ

(z2 − c2)2(z2 − a2)

( ω
2(ω − 1)

1

z +
√

z2 − 1
− z
)
−

z
z2 − c2 . (57)

Proof. We know that the Stieltjes function S(z,u) of the form u defined by (13) is given by [1]

S(z,u) =
1

z2 − c2

(
λS(z, v) − z

)
. (58)

Equivalently,

S(z, v) =
1
λ

(z2
− c2)S(z,u) +

1
λ

z.

Using the equation (52), we can deduce that

B(z,u)S2(z,u) + C(z,u)S(z,u) +D(z,u) = 0, (59)

with 
B(z,u) = (z2

− c2)2B(z, v),
C(z,u) = (z2

− c2)
(
2zB(z, v) + λC(z, v)

)
,

D(z,u) = z2B(z, v) + λzC(z, v) + λ2D(z, v).
(60)

Taking into account (53), we obtain (56).
The result in (57) is a consequence of equations (58) and (54).

4. Some particular cases

Remark 4.1. In this section, we denote a(ω) := a, u(a(ω), c, λ) := u, ∆n(a(ω), c, λ) = ∆n, an(a(ω), c, λ) :=
an, γn+1(a(ω), c, λ) = γn+1, n ≥ 0.

4.1. The case where c = 1
2

Proposition 4.2. The form u(a(ω), 1
2 , λ), is regular if and only if, 4λ + 1 , 0, 4λ − ω + 1 , 0.

In this case, we have

∆3n(a(ω),
1
2
, λ) =

(−1)n

23n+1 (4λ + 1), ∆3n+1(a(ω),
1
2
, λ) =

(−1)n

23n+2 (4λ − ω + 1),

∆3n+2(a(ω),
1
2
, λ) = −ω

(−1)n

23n+3 , n ≥ 0. (61)

a0(a(ω),
1
2
, λ) = −

(
λ +

1 − ω
4

)
, a3n+1(a(ω),

1
2
, λ) =

ω
4(4λ + 1)

,
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a3n+2(a(ω),
1
2
, λ) =

4λ + 1
4(4λ − ω + 1)

,

a3n+3(a(ω),
1
2
, λ) = −

4λ − ω + 1
4ω

, n ≥ 0. (62)

γ1(a(ω),
1
2
, λ) =

4λ + 1
4

, γ2(a(ω),
1
2
, λ) = −λ

4λ − ω + 1
4λ + 1

,

γ3(a(ω),
1
2
, λ) = −

ω2

4
1

(4λ + 1)(4λ − ω + 1)
,

γ3n+4(a(ω),
1
2
, λ) =

1
4ω

(4λ + 1)2

4λ − ω + 1
, n ≥ 0,

γ3n+5(a(ω),
1
2
, λ) = −

(4λ − ω + 1)2

4ω(4λ + 1
, n ≥ 0,

γ3n+6(a(ω),
1
2
, λ) = −

ω2

4
1

(4λ + 1)(4λ − ω + 1)
, n ≥ 0. (63)

Proof. By virtue of [13], we have U3n( 1
2 ) = (−1)n

23n , U3n+1( 1
2 ) = (−1)n

23n+1 , U3n+2( 1
2 ) = 0, n ≥ 0. This implies (61).

On one hand, based on (4.1) and Proposition 2.6, we can deduce that the form u(a(ω), 1
2 , λ) is regular if and

only if 4λ + 1 , 0, 4λ − ω + 1 , 0.
On the other hand the relations (62)-(63) are a consequence from the relation (61) and Proposition 2.6.

Proposition 4.3. When u(a(ω), 1
2 , λ) is regular, one has

(a) u(a(ω), 1
2 , λ) it is a semi-classical of class s = 4, when ω , 1−i

√
3

2 , ω , 1+i
√

3
2 and we have(

ϕ̃(a(ω),
1
2
, λ)u(a,

1
2
, λ)
)′
+ ψ̃(a(ω),

1
2
, λ)u(a(ω),

1
2
, λ) = 0, (64)

with

ϕ̃(a(ω),
1
2
, λ)(x) = (x2

−
1
4

)(x2
− a(ω)2)(x2

− 1),

ψ̃(a(ω),
1
2
, λ)(x) = −3x(x2

−
1
4

)(x2
− a(ω)2). (65)

(b) When ω = ωk, k = 1, 2, with ω1 =
1−i
√

3
2 and ω2 =

1+i
√

3
2 , the form u(a(ωk), 1

2 , λ) is of class two and satisfy the
following equation (

ϕ̃(a(ωk),
1
2
, λ)u(a(ωk),

1
2
, λ)
)′
+ ψ̃(a(ω),

1
2
, λ)u(a(ωk),

1
2
, λ) = 0, (66)

with

ϕ̃(a(ωk),
1
2
, λ)(x) = (x2

−
1
4

)(x2
− 1),

ψ̃(a(ωk),
1
2
, λ)(x) = −3x2

−
5
4

x. (67)

Proof. (a) We have a2(ω) = 1
4 if and only if ω = ωk, k = 1, 2.

From the affirmation (a) in Proposition 3.2, the form u(a(ω), 1
2 , λ) is of class s = 4 and satisfies (61)-(62) since

c = 1
2 , a2, c = 1

2 , 1.
(b) When ω = ωk, k = 1, 2, by virtue of the statement (b) in Proposition 3.2, the form u(a(ωk), 1

2 , λ) is of class
two and fulfilled (66) with (67) since a(ωk)2 = 1

4 .
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4.2. The case where c = 1
Proposition 4.4. The form u(a(ω), 1, λ) is regular if and only if

(
2(λ + 1) − ω

)
n + 2(λ + 1) , 0, n ≥ 0.

In this case, one has

∆n(a(ω), 1, λ) =

(
2(λ + 1) − ω

)
n + 2(λ + 1)

2n+1 , , n ≥ 0. (68)

a0(a(ω), 1, λ) =
4(λ + 1) − ω

4
,

an+1(a(ω), 1, λ) = −
1
4

(
2(λ + 1) − ω

)
(n + 2) + 2(λ + 1)(

2(λ + 1) − ω
)
n + 2(λ + 1)

, n ≥ 0. (69)

γ1(a(ω), 1, λ) = λ + 1, γ2(a(ω), 1, λ) = −
λ
4

4(λ + 1) − ω
λ + 1

,

γ3(a(ω), 1, λ) = −
ω
4

5(λ + 1) − 3ω(
4(λ + 1) − ω

)2 ,
γn+4(a(ω), 1, λ) =

1
4

(
2(λ + 1) − ω

)
(n + 3) + 2(λ + 1)(

2(λ + 1) − ω
)
(n + 2) + 2(λ + 1)

×

(
2(λ + 1) − ω

)
n + 2(λ + 1)(

2(λ + 1) − ω
)
(n + 1) + 2(λ + 1)

, n ≥ 0. (70)

Proof. We know that [2]

Un(x) =
1
2n

sin((n + 1)θ)
sin(θ)

, n ≥ 0, x = cos(θ). (71)

It follows that , Un(1) = n+1
2n , n ≥ 0. From the previous relation, we obtain (68).

By Proposition 2.6 and (68), we see that u(a(ω), 1, λ) is regular when
(
2(λ + 1) − ω

)
n + 2(λ + 1) , 0, n ≥ 0.

The relations (69)-(70) can be deduced from (68) and Proposition 2.6.

Proposition 4.5. If the form u(a(ω), 1, λ) is regular, we have
(a) The class of u(a(ω), 1, λ) is s = 4 if ϑ2 , 0 and satisfies the following functional equation(

ϕ̃(a(ω), 1, λ)u(a, 1, λ)
)′
+ ψ̃(a(ω), 1, λ)u(a(ω), 1, λ) = 0, (72)

with
ϕ̃(a(ω), 1, λ)(x) = (x2

− a2(ω))(x2
− 1)2,

ψ̃(a(ω), 1, λ)(x) = −3x(x2
− 1)(x2

− a2(ω)). (73)

(b) The class of u(a(ω), 1, λ) is s = 2 if ϑ2 = 0 and the following functional equation holds(
ϕ̃1(a(ω), 1, λ)u(a, 1, λ)

)′
+ ψ̃1(a(ω), 1, λ)u(a(ω), 1, λ) = 0, (74)

where
ϕ̃1(a(ω), 1, λ)(x) = (x2

− a2(ω))(x2
− 1),

ψ̃1(a(ω), 1, λ)(x) = −3x3 + (3 − 2a2(ω))x. (75)

Proof. (a) Taking into account the statement (a) in the Proposition 3.2, we get the desired results.
(b) From the the statement (b) in the Proposition 3.2, we can deduce that the functional equation (72) can
be simplified by the factor x2

− 1, and we obtain (74) with (75).

Remark 4.6. The cases (b) in Proposition 4.3 and the Proposition 4.5 are not studied in [14].
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5. Integral representation of the form u

In order to determine the integral representation of the form u, we need the following results:

Proposition 5.1. [12] The form v possess the following integral representation

⟨v, f ⟩ = b( f (−a) + f (a)) + ρ
∫ +1

−1

√

1 − x2

x2 − a2 f (x)dx, f ∈ P, a ∈ C−] − 1,+1[, (76)

with

b =
1
2
+

ω
4(1 − ω)

(
1 −

√
(1 −

2
ω

)2
)
, ρ =

ω
2π(1 − ω)

. (77)

Lemma 5.2. let a, c ∈ C. The following formulas hold

(x + c)−1(x − c)−1
(
δ−a + δa

)
=

1
a2 − c2

(
δ−a + δa − δ−c − δc

)
, a2 , c2, (78)

(x + a)−1(x − a)−1
(
δ−a + δ a

)
=

1
2a

(
δ′−a − δ

′

a

)
. (79)

Proof. We need the following formula easy to prove from the definition:

(x − b)−1δ′a =
1

a − b
δ′a +

1
(a − b)2 (δa − δb), a , b. (80)

Let ε = ±1, by (4), we get (x − c)−1δεa =
1

εa−c

(
δεa − δc

)
. Therefore

(x + c)−1(x − c)−1δεa =
1

εa − c

(
(x + c)−1δεa − (x + c)−1δc

)
,

and by the formula (4), it follows that

(x + c)−1(x − c)−1δεa =
1

εa − c

( 1
εa + c

(
δεa − δ−c

)
−

1
2c

(
δc − δ−c

))
.

Thus,

(x + c)−1(x − c)−1δεa =
1

a2 − c2 δεa +
1

2c(εa + c)
δ−c −

1
2c(εa − c)

δc.

Based on last relation, we can deduce (78).
From (4), we have (x − a)−1δa = −δ′a. Then

(x + a)−1(x − a)−1δa = −(x + a)−1δ′a,

using the formula (80), it follows that

(x + a)−1(x − a)−1δa = −
1
2a
δ′a −

1
4a2 (δa − δ−a). (81)

By virtue of (81), we get

(x + a)−1(x − a)−1δ−a =
1
2a
δ′−a −

1
4a2 (δ−a − δa). (82)

The relation (79) can be deduced by addition both sides of the relations (81) and (82).
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Lemma 5.3. Let w be the form defined by

⟨w, f ⟩ =
∫ +1

−1

√

1 − x2

x2 − a2 f (x)dx, f ∈ P, a ∈ C−] − 1,+1[. (83)

We have

⟨(x + c)−1(x − c)−1w, f ⟩ =
∫ +1

−1

√

1 − x2

(x2 − a2)(x2 − c2)
f (x)dx

−
1
2c

(∫ +1

−1

√

1 − x2

(x2 − a2)(x − c)
dx
)

f (c)

+
1
2c

(∫ +1

−1

√

1 − x2

(x2 − a2)(x + c)
dx
)

f (−c), f ∈ P, c ∈ C−] − 1,+1[, (84)

⟨(x + c)−1(x − c)−1w, f ⟩ = P
∫ +1

−1

√

1 − x2

(x2 − a2)(x2 − c2)
f (x)dx

−
1
2c

(
P
∫ +1

−1

√

1 − x2

(x2 − a2)(x − c)
dx
)

f (c)

+
1
2c

(
P
∫ +1

−1

√

1 − x2

(x2 − a2)(x + c)
dx
)

f (−c), f ∈ P, c ∈] − 1,+1[, (85)

where P

+∞∫
−∞

V(x)
x + ϵc

dx and P

+∞∫
−∞

V(x)
x2 − c2 f (x)dx means the Cauchy principal value of the integral at ϵc .

Proof. Let f ∈ P, we have
⟨(x + c)−1(x − c)−1w, f ⟩ = ⟨w, (θ−cθc) f ⟩,

and by the formula (5), we obtain

⟨(x + c)−1(x − c)−1w, f ⟩ =
1
2c
⟨w, θc f − θ−c f ⟩.

Taking into account (83), we get
⟨(x + c)−1(x − c)−1w, f ⟩ =

1
2c

∫ +1

−1

√

1 − x2

x2 − a2

{ f (x) − f (c)
x − c

−
f (x) − f (−c)

x + c

}
dx. (86)

The relation (86) implies (84) and (85).

Proposition 5.4. Let f ∈ P, we have
(a) If c ∈ C−] − 1,+1[, c2 , a2, the form u is represented by

⟨u, f ⟩ =
λb

a2 − c2

(
f (−a) + f (a)

)
+
{1
2
−

λb
a2 − c2 +

λρ

2c

(∫ +1

−1

√

1 − x2

(x2 − a2)(x + c)
dx
)}

f (−c)

+
{1
2
−

λb
a2 − c2 −

λρ

2c

(∫ +1

−1

√

1 − x2

(x2 − a2)(x − c)
dx
)}

f (c)

+λρ

∫ +1

−1

√

1 − x2

(x2 − a2)(x2 − c)
f (x)dx. (87)
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(b) When c ∈] − 1,+1[, one has

⟨u, f ⟩ =
λb

a2 − c2

(
f (−a) + f (a)

)
+
{1
2
−

λb
a2 − c2 +

λρ

2c

(
P
∫ +1

−1

√

1 − x2

(x2 − a2)(x + c)
dx
)}

f (−c)

+
{1
2
−

λb
a2 − c2 −

λρ

2c

(
P
∫ +1

−1

√

1 − x2

(x2 − a2)(x − c)
dx
)}

f (c)

+λρP
∫ +1

−1

√

1 − x2

(x2 − a2)(x2 − c)
f (x)dx. (88)

(c) In the case when a2 = c2, the form u possesses the following integral representation

⟨u, f ⟩ =
{1
2
+
λρ

2a

∫ +1

−1

√

1 − x2

(x2 − a2)(x + a)
dx
}

f (−a)

+
{1
2
−
λρ

2a

(
P
∫ +1

−1

√

1 − x2

(x2 − a2)(x + a)
dx
)}

f (a)

+
λb
2a

(
f ′(a) − f ′(−a)

)
+ λρ

∫ +1

−1

√

1 − x2

(x2 − a2)2 f (x)dx. (89)

Proof. Based on (77) and (83), we may write

v = b(δ−a + δa) + ρw, (90)

where w is the form defined by (83).
We know that [1]

u =
1
2

(δ−c + δc) + λ(x + c)−1(x − c)−1v. (91)

Taking into account (90), we get

u =
1
2

(δ−c + δc) + λb(x + c)−1(x − c)−1(δ−a + δa)

+λρ(x + c)−1(x − c)−1w,
and by Lemma 5.2, we obtain the following formulas

u =
λb

a2 − c2

(
δ−a + δa

)
+
(1
2
−

λb
a2 − c2

)(
δ−c + δc

)
+λρ(x + c)−1(x − c)−1w, c2 , a2, (92)

and
u =

1
2

(
δ−a + δa

)
+
λb
2a

(
δ′−a − δ

′

a

)
+ λρ(x + a)−1(x − a)−1w. (93)

(a) In this case, by (92), we have

⟨u, f ⟩ =
λb

a2 − c2

(
f (−a) + f (a)

)
+
(1
2
−

λb
a2 − c2

)(
f (−c) + f (c)

)
+λρ⟨(x + c)−1(x − c)−1w, f ⟩ (94)

By virtue of (84), we obtain (87).
(b) When c ∈] − 1,+1[. The relation (88) is a consequence from (94) and (85).
(c) When c2 = a2, by (93), we obtain

⟨u, f ⟩ =
1
2

(
f (−a) + f (a)

)
+
λb
2a

(
− f ′(−a) + f ′(a)

)
+ λρ⟨(x + a)−1(x − a)−1w, f ⟩.

Using (84) since a ∈ C−] − 1,+1[, we can deduce (89).
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