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Abstract. In this note, we give a new one-sided inequality for fusion frames in Hilbert C*-modules, which
corrects one corresponding result. We also present some double inequalities for fusion frames in Hilbert
C*-modules, which, compared to previous ones on this topic, possess different structures.

1. Introduction

In 1952, Duffin and Schaeffer [11] formally defined the concept of frames, which have become to be a
research hotspot since 1986, when Daubechies et al. [10] discovered the close relationship between frame
theory and wavelet theory. Now frames have played an important role in dozens of fields such as acoustics
[5], quantum mechanics [17], signal processing [7], and sampling theory [12, 24, 26]. As a generalization
of frames, the notion of fusion frames (also known as frames of subspaces) was introduced independently
in [8] and [13] to deal with some large systems. Noting that some new characteristics for fusion frames do
arise, although most properties of them can be induced from those for frames. For applications of fusion
frames see, for example, the references [6, 9].

On the other hand, some researchers have analogized the concepts of frames and fusion frames to the
case of Hilbert C*-modules [14, 19], which provides us a new direction to examine frame theory. We remark,
however, that because of the complexity of the C*-algebra and some essential differences between Hilbert
C*-modules and Hilbert spaces, the problems of frames and fusion frames in Hilbert C*-modules are more
complicated than those in Hilbert spaces. Frames and fusion frames in Hilbert C*-modules have attracted
many researchers’ attention, for more details see [1-3, 18, 20, 23].

To continue with this introductory section, we need to collect some notations and definitions.

Throughout this paper, the notations &/ and ] denote, respectively, a unital C*-algebra with identity
1., and a finite or countable index set. For two Hilbert C*-modules ¢ and .# over </, we denote by
End’, (7, ¢) the collection of all adjointable operators from 57 to % and, if " = J, then End’ (7, %)
is abbreviated to End’, (7). We set |f|* = (f, f) for each f € 5. A closed submodule .# of /# is said to be
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orthogonally complemented if & = .# & .#* and in this case, 14, the orthogonal projection onto .#, is
an adjointable operator on 7. Let £*(7) be the set

() = {{aj}je] C o :suplajll < 00}-
jel

Let {wj} ey be a sequence of weights, i.e., each wj is a positive invertible element from the center of .o7.
For any j € ], let W; be a closed submodule of .72 which is orthogonally complemented. One calls that
W = {(Wj,wj)}jey is a fusion frame for ¢ with fusion frame bounds C and D, if there are real numbers
0 < C £ D < oo such that

Cf, £y < ), @mw, (), 7w () < DX, f). (1)

jel

If only D in (1) is required to exist, then W is said to be a Bessel fusion sequence with bound D.
Let W = {(W}, w/)} jy be a fusion frame for .Z. Then, there is always a self-adjoint, positive and invertible
operator related to W, called the fusion frame operator of W and is defined by

Swid = A, Swf=) &mw(f), Vfesr.
j€l

Recall that a Bessel fusion sequence V = {(V}, v))} ;¢ for JZ is said to be an alternate dual of W, if for each
f € s, wehave

f= Z vj@;my, Sy, ().

jel

Forany I c J, let I = J\IL, and define an operator in End’,,(7¢) associated with I and W in the following
form:

Sly: ot -, Shf=) &mw(f), Vfesr.

jel

Since

Shf ) = (Y @rw ()= Y @ (). )

jel jel

=Y Xmw, (), )= Y @, (), 7w, ()
jel jel

20

for any f € #, meaning that S}, is positive.

Balan et al. [4] showed us a surprising inequality for Parseval frames when they further investigated
the remarkable Parseval frames identity arising from their study on efficient algorithms for signals recon-
structions, which was later extended to canonical dual frames and alternate dual frames [16]. After above
works, much attention has been paid to the generalization of those inequalities [15, 21, 25, 27, 28].

Recently, the authors in [22] presented some inequalities for fusion frames in Hilbert C*-modules with a
scalar in a finite interval, borrowing the ideas from [21, 25]. The purpose of this paper is to establish some
new inequalities for fusion frames in Hilbert C*-modules with a scalar in IR, the set of real numbers, and
the motivation is derived from an observation of Theorem 4 in [22], which we list as follows.
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Theorem 1.1. Let W = {(W}, w)}jej be a fusion frame for 5 and V = {(V;, vj)}jj be an alternate dual fusion frame
of W. Then for any A € [0,1], for any bounded sequence {a;};cy and any f € 2, we have

2
Re Y ajvjwi(Sytmw, (), 1, () + | (Lor = a;-)vfwmvfsavlﬂwf(f)’
i€l jel
=Re Z(ld - ﬂj)Uj&)j(S;\/lﬂWj(f), nV/(f» + Za]'vja)jﬂvjsa\}NWi(f)
j€ll Jj€l
>(2A — A*)Re Z ajvjw Sy w, (), v, (f))
j€l

+(1-A%Re Z(lm — ap)vjw Sy mw, (£, v, ())-
jel

2

The representation of above inequality is wrong since, the sums involved take values in the C*-algebra ./
rather than the field of complex numbers, one can not take the real parts on them. We provide a correction
to Theorem 1.1 in next section, and we also give some new double inequalities for fusion frames in Hilbert
C*-modules, which differ in structure from previous ones on this topic.

2. The Main Results and Their Proofs

We begin with a simple result on adjointable operators, which shows that the condition “self-adjoint
operator” in Lemma 2 of [22] can be deleted, and that the scalar A can take values in IR, not merely in the
interval [0, 1].

Lemma 2.1. Suppose that U,V € End’, () and that U + V =1d s. Then for any A € R we have

UU+AV + V)=V V+1-A)U +U) + (A - DId e
> (21 = A?)Id .

Proof. The proof is similar to Proposition 3.6 in [25], we omit the details. [
Theorem 1.1 can be corrected as follows.

Theorem 2.2. Let W = {(W}, w)}jej be a fusion frame for 7 and V = {(V;, vj)}jej be an alternate dual fusion frame
of W. Then for each {aj}cy € {(7), for any A € R and any f € H°, we have

2
Y (L = ajjimy, Syimw (A + Y (v, (), Syt (D)ajvjwy)’

jel jey

2
Z ajvjwjnvjsa}nw/(f)' + Z(lg{ — aj)vjwi(Siy tw, (), v, ()

jel jel

24 =A%) Y apjw Sy, (), 7, (F))
T
+(1+A-A? 2(1” —aj)vjwi(Sy o, (f), v, ()
T

= A Y (D, Sy (X(Lr = v 2)

jel
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Proof. We define two adjointable operators Ly, L, : 5# — 7 as follows.
Lif = Zajvjm]-nvjs;vlnwj( £, Lof = Z(ld — a;)vjw v, Sydmw, (f)- 3)
jel j€l
Then, clearly, L1 + L, = Id 5. By Lemma 2.1,
L1 f1P + AQL2f, £ + (f, Lof)) = Lo fPP + (1 = ML f, ) + (f, Lif) + QA = DI
for any f € s and any A € R. Therefore
L1 f1P = Lo f P + (1 = DAL f, £ + <, L))
+ QA= DIfP = A(L2f, ) + (f, L2f))
= |Lof P+ (Lo f, ) + (f, Lif) = ACLLf, £) + Laf, )
= AL Lify +<f, Laf)) + QA = DIfP

= |Laf P + (Lo f, ) + (f, Lif)y = 2A1f7 + @A = 1)| £
= |Laf P + (Lo f, ) + (f, Lify = (Laf, f) = (Laf, f)-

It follows that
ILaf* + (f, Lif) = ILifI* +(Laf, f),

which gives

2
Y (- a,-)vjwjnv,s;;nwf(f)‘ + Y (v, (), St mw () @jvjw;)’

€l j€l
2
= Z ﬂfvfwf“vfs_wlﬂwf(f)' + Z(lw = a))vjw(Syymtw, (f), v, (f)).
el jel

For the inequality in (2), we apply Lemma 2.1 again,

L1 f1? 2 24 = A)IfF = AQLaf, £ +(f, Laf))
= A= M)Lif, fY + @A = M)Laf, £y = MLaf, f) = Mf, Lo f)
= QA= )L f, fY + (A = P)Laf, ) = NS, Lof).

Hence,

2
Z ajvjwjnvjsa,lnwj(f)’ + Z(ld - aj)v]-a)](S;\,anj(f), ﬂv/(f))
jel jel
>2A = A2XLaf, ) + (1 + A = APXLaf, f) = Af, Laf)
=@A =A%) ) apjw S, (), 7, (F)

jel

+(1+A-A% Z(ld —aj)vj@i(Sy o, (f), v, ()
j€l

=AY, (), Sa mw (DN(r = vy,

jey

and the proof is completed. [
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We can immedjiately arrive at the following result, if in Theorem 2.2 we take I C JJ and

o 1y, jE]I,
710, eI

Corollary 2.3. Let W = {(W}, w))} jey be a fusion frame for 7 and V = {(V;, v))} jey be an alternate dual fusion frame
of W. Then for any I C JJ, for any A € R and any f € 5, we have

2
Y vy, St (P + Y, (), Sy (i)

jele jel

2
Y viwmy S (| + Y viwiSitmw, (), 7y, (F))

jel jere
>4 =A%) Y viwi S, (), 7, (F)
jel
+ (14 A= 2% Y vjwSitmw (), 7y, (F))

jele

-A Z(nvj(f), S mw, (M) (jw))".

jele

Remark 2.4. Corollary 2.3 is a correction of Corollary 4 in [22].

The following three double inequalities for fusion frames in Hilbert C*-modules admit new structures,
compared with those in Theorems 3, 5, and 6 of [22].

Theorem 2.5. Let W = {(W;, )}y be a fusion frame for 7. Then for each A € R, for any I C J and any f € A,
we have

Y @, (F), oy ()Y = 2 ) 3w, (), 7w, ()

jele jel
<Y X (S Sh ), T (S Sh ) = 2 Y @Xmw, (S Sk ), 7w (S Sk )
jel j€l
<(1+23) Y X, (), mw () + (A =24 = 1) Y oXmw, (), T, (). (4)
jele jel

Proof. Since1 S+ S}; = Sy, we conclude that S;v% SII[NS;V% + S;\,% S]]I;,S;,% =1Id_,. Itis obvious that U = S;\,% S]TINS;\,%
and V = 5 ?S},5,* are positive and commutable. Hence
1 _ 1
0<UV=U-U*=S,2(S)y—SwSwSw)Sy-

For each f € /7, there is g € / such that f = S;V% g. Since

((Sly = SWSWSWIF, f) = ((Sy — SWwSw SISy 9. S 9
= (S, (Sh — S SHSI IS g, )
>0,

it follows that S}, — S}, S,/ S}, = 0, thatis, S}, > SI, S} S7,..
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Thus
Y X rw, (S St ), T, (St She ) = 2 ) @ (St Sty ), 7w, (St Sy )
jele jel
=(SwSy Sw.f, S S f) — 2SwSw Sivf, S S )
=(Syy St f, S f) = 2(Sy S f, Sw )
=(Sw (Sw = Sw)f, (Sw = Sy)f) = 2(Siy Sw f, S )
=(Swf, f) = 2Shf, f) + (SptSh £, Sh f) — 2(Syi Sh. f, S )
=(Swf ) = 2Sf, /) + (S f, ) = (S S S, Sw )]
2(SWf ) = 2ASWf £y = ) X, (), o, () =2 ) aXmw, (), 7w, (1)) (5)

jele jel

for each f € . Now replacing U, V and f by S;\,% St SWZ, SW2 SiwSw * and S w/f respectively in Lemma 2.1
yields

(S Shf Shuf) = (S ShSi Suf, S0 ShiSi Sy
> (24 — A2)(S2 fS f)=A(Sy 25“ ZSZfs Ja)
+<52f5 25“ 252f>)
= A = A(Swf, fy — 2SN f,
= QA= 2)Sif, /) = NS f, (6)

and consequently,

Y 3w (S Sh ), Tw (SIS = 2 ) @Xmw, (Sil Sy ), 7w (S S )
el il

=(Swf, ) = (Swf ) = (S Swf, S

<(SLf ) - <s LE £ = QA= APSYf, £ + AXST £,

=(1+ AD(S f, ) + (A2 =24 = 1Sy f,

=(1+ 12 2 WX, (), mw, (F)) + (A2 =24 = 1) 2 WX, (f), T, (f)-

jele jel

This result and (5) conclude (4). O

Theorem 2.6. Let W = {(W;, w))} ey be a fusion frame for 7. Then for each A € R, for any I C J and any f € 2,
we have

@A +1) Y X, (F), 7w, () = (L + A7) Y aXmw, (), 7w, ()
jel j€l
<) X, (Sul Sh ) 7w (S ST = Y @t (), 7w, ()

jel jel¢

<2 =1) Y X (), T, () + (3= 24) Y oXrw, (), T, ().

j€l jel
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Proof. For each f € ¢, by (6) we obtain

Y X, (S Sk f), o (S Sk ) = Y (), 7w, (F))

=] el
=(Sy Swfr Swf) = (Swf.
>(2A = A2KSWf, £ = AXSWf, £y = (SWf, )
=QA+1)(Shf, ) = A+ AD(Swf, f)
=@A+1) Y @Xmw,(F), 7w, (F))

jel

= (14 A%) Y @, (), 7w, ()

jel
Taking S;v% S%S;\,%, S;V% SwSw * and S 1vf instead of V, U and f respectively in Lemma 2.1 leads to

(SpSh £, Sh ) = (5,2 Sk S 2SE £, 5,2 5%, ‘%sévﬁ
>[A-A%) - (2A-1) ]<5§vf5 f
—(1—A)(<swzs“ ZSZfS i

+(S2,f,S,28 8282 £7)

= (1= A)Swf, ) = A = DS f, )y +{f. S )
= (1= A2)Swf, f) - 2(1 = A)XSL £, )
= (1= A)(Sy + SWf, Y =201 = AXSWf.
= A= A2 =)y f, /) + (1= 22XSi f, -

From this and taking into account the fact that S}, 5, Sl < SI, we get

Y X (S Sy N o (S S = Y, wXrm, (), 7w, (F))

jel jere
=(SwSwf, S = (Swf
<(SWf. f) = (Sw SWf. S/
S = QA= A2 = 1Sy f, £y — (L= A2)SW f, £
=(A2 = I(Swf, f) + (3 = 2AXSW f, /)
=(2=1) ) wXmw (), T, ()

jel

+(3-21) Z WX, (), 7w, (f)-

jel

This completes the proof. [J

Theorem 2.7. Let W = {(W}, w)}jey be a fusion frame for 7 and V = {(V, v)}jej be an alternate dual fusion frame



Z. Xiang, X. Xiao / Filomat 36:10 (2022), 3505-3514

of W. Then for each {a;}jey € (), for any A € R and any f € 2, we have

3 2
e <
JIfP <

Za]v]a)]nvls nw](f)‘ Z(ld ap)vjw Sy mw, (f), v, (f))

j€l j€l

+ Y (), Sat o (DL~ o))

jel

Z(lﬂ a;)vjw ity Sy T, 1(2 ajvjw Sy w, (), v, ()

j€l jel

+ Y, (P St (@)
i€l
< 3 + “Ll L2|| |f|2

where Ly and Ly are given in (3).

Proof. Since L + Ly = Id 5, we have

Za]v]a)]nv]S o, f)’ Z(LQ{ a;)viw{Syimw, (), v, ()

i€l jel
+ Y, (), Sa o (DN(r = a/)vjwj)*)
]

Sl fF + S CLaf )+ (L)

=(f = Lof, f = Laf) + 3 0af, )+ 54 1)
SILafP 4 S ) = Laf, )+ 5 = (f o)
Sla P+ S, )+ (L)

Z(ld —aj)vjw;my, S ang (f)‘ a]v]-a)](S;\,anj(f), v, (f))
jel JEJI
+ Y, (), Sy (D) aroje)

j€l

for each {a;} ey € £*(<7), forany A € Rand any f € 2. Now by Lemma 2.1,

Z ajvjw;

2
+%(Z(1g{ - ﬂj)Uj&)j(S;\/anj(f), nV],(f))

jel jey
+ Y (St rw (D)(Ls = e
jel

=ILy P+ 5(Laf, )+ (f, Laf)
3 2
Zz|f| .

3512
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The opposite inequality follows from the following calculation:

2
Y awoimy, S (| +3( Y s = apie(Sidma (P, 7w, ()
jel jey
+ Y () St (D)(Ls = e
j€l

= f, 1)+ 5 af, )+ 54 L)

W)+ 5 ) = 5f P+ 34 ) = 3 )
=)= 3CLL ) = L fLaf) = SCh L) = Laf 1)
=) - (S L2f) - 3{Laf L)

=20+ G+ LI+ L)) = S f o) = 2 (Laf L f)
2.0+ 1 - LI - L))

32,1 22
IR+ L -1
_4|f| 4|| 1 — LollIf]

3+|ILy — Lo
="

O
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