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On a Class of Super-Recurrent Operators
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Abstract. In this paper, we introduce and study the notion of super-recurrence of operators. We investigate
some properties of this class of operators and show that it shares some characteristics with supercyclic and
recurrent operators. In particular, we show that if T is super-recurrent, then o(T) and 0,(T*), the spectrum
of T and the point spectrum of T* respectively, have some noteworthy properties.

1. Introduction and preliminaries

Throughout this paper, X will denote a Banach space over the field C of complex numbers. By an
operator, we mean a linear and continuous map acting on X.

The most important and studied notions in the linear dynamical system are those of hypercyclicity and
supercyclicity:

An operator T acting on X is said to be hypercyclic if there exists a vector x whose orbit under T;
Orb(T, x) := {T"x: n € N}, is dense in X. The vector x is called a hypercyclic vector for T. The set of all
hypercyclic vectors for T is denoted by HC(T). One of the first examples of hypercyclic operators on the
Banach space setting was given in 1969 by Rolewicz [20].

Birkhoff introduced an equivalent notion of the hypercyclicity called topological transitivity: an operator
T acting on a separable Banach space is hypercyclic if and only if it is topologically transitive, that is, for
each pair (U, V) of nonempty open subsets of X there exists some positive integer n such that T"(U) NV # 0,
see [4].

In 1974, Hilden and Wallen in [16] introduced the concept of supercyclicity. An operator T acting on X
is said to be supercyclic if there exists some vector x whose scaled orbit under T; COrb(T, x) := {AT"x: A €
C,n € N}, is dense in X. Such a vector x is called a supercyclic vector for T. The set of all supercyclic
vectors for T is denoted by SC(T). As in the case of the hypercyclicity, there exists a characterization of
the supercyclicity basing on the open subsets of X. An operator T acting on a separable Banach space is
supercyclic if and only if for each pair (U, V) of nonempty open subsets of X there exist A € Cand n € IN
such that AT*(U) NV # 0.

For more information about hypercyclic and supercyclic operators and their proprieties, see the book

[12] by KG. Grosse-Erdmann and A. Peris , the book [3] by E. Bayart and E. Matheron, and the survy article
[13] by KG. Grosse-Erdmann.
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Another notion in the dynamical system that has a long story is that of recurrence which is introduced
by Poincaré in [19]. A systematic study of recurrent operators goes back to the work of Gottschalk and
Hedlund [14] and also the work of Furstenberg [10]. Recently, recurrent operators have been studied in [7].

An operator T acting on X is said to be recurrent if for each open subset U of X, there exists some
positive integer n such that T"(U) N U # 0. A vector x € X is called a recurrent vector for T if there exists an
increasing sequence (1) of positive integers such that T"x — x as k — oo. The set of all recurrent vectors
for T is denoted by Rec(T), and we have that T is recurrent if and only if Rec(T) is dense in X. For more
information about this classe of operators, see [1, 5, 6, §, 11, 15, 17, 21].

Motivated by the relationship between hypercyclic and recurrent operators, we introduce in this paper a
new class of operators called super-recurrent operators which is related to the supercyclicity and recurrence.

In section 2, we introduce the notion of super-recurrence for operators. We show that every recurrent
operator is super-recurrent but the converse is false. We also prove that every supercyclic operator is super-
recurrent and that there exists an operator which is super-recurrent but not supercyclic. In section 3, we
prove some proprieties for super-recurrent operators, we prove that if T € 8(X) admits a super-recurrent
vector, then it admits an invariant subspace consisting except for zero, of super-recurrent vectors. Also, we
prove that T is super-recurrent if and only if T admits a dense subset of super-recurrent vectors. Moreover,
we prove that T is super-recurrent if and only if T? is super-recurrent, for every nonzero positive integer p.

In section 4, we focus on the spectral proprieties of super-recurrent operators. We prove that if T is super-
recurrent, then 0,(T") and o(T) have almost the same proprieties as supercyclic operators. In particular, we
show that there exists R > 0 such that each connected component of the spectrum of T intersect the circle
{z € C: |z| = R}. Moreover, we prove that the 0,(T") is completely contained in a circle of center 0. Finally,
we show that if A € 0,(T"), then one can find a T-invariant hyperplane X, such that A='T)y, is recurrent on
Xo.

2. Super-recurrent operators

Definition 2.1. We say that an operator T is super-recurrent if, for every nonempty open subset U of X there exists

some n > 1 and some A € C such that
AT U) N U # 0.

A vector x € X\ {0} is called a super-recurrent vector for T if there exist a strictly increasing sequence of positive
integers (ky)new and a sequence (g, )neN 0of complex numbers such that
A, TRix — x
as n — +oo. We will denote by SRec(T) the set of all super-recurrent vectors for T.

Remarks 2.2. 1. The supercyclicity implies the super-recurrence. However, the converse does not hold in general.
Indeed, letn € Nand Ay, ..., A, be nonzero complex numbers such that |A;| = |A;| = R for some strictly positive
real number R, for 1 < i, j < n. We define an operator T on C" by

T : c — c”
(X1, .. 0,x0) — (Axg, ..., Anxy).
Let U be a nonempty open subset of X and x € U. Since |R™'A;| = 1, for all 1 < i < n, it follows that there

kﬂ .
exists a strictly increasing sequence of positive integers (kn)nen such that (R‘l/\,-) — 1, foralll1 <i<n
Let Ay = R™%, for all k, then

AMTox — x.
as k — oo. Since x € U and U is an open subset of X, it follows that there exists ko such that A, T™x € U.

Hence
A, T () N U # 0.

This means that T is a super-recurrent operators. However, T cannot be supercyclic whenever n > 2, since a
Banach space X supports supercyclic operators if and only if dim(X) = 1 or dim(X) = oo, see [16].
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2. A recurrent operator is super-recurrent, but the converse does not hold in general. Indeed, if T is the operator
defned in (1), then T is recurrent if and only if |Ai| = 1, forall 1 < i < n, see [7].

We have the following diagram showing the relationships among super-recurrence, recurrence and super-
cyclicity.

Hypercyclic Recurrent

[7, section 4]

y [3, Example 1.15] l l YRemarks 22

Remarks 2.2

H_
Supercyclic Super-recurrent
3. Some properties of super-recurrent operators
In the following, we give some properties satisfies by super-recurrent operators.

Proposition 3.1. If S € B(X) is an operator such that TS = ST, then SRec(T) is invariant under S.

Proof. Let x € SRec(T). Then there exist a strictly increasing sequence of positive integers (k,),en and a
sequence (Ag,)zen Of complex numbers such that Ay, T"x — x as n —> +oo. Since S is continuous and
TS = ST, it follows that Ay, T**Sx — Sx as n —> +oo. This means that Sx € SRec(T). [

We are now ready to deduce an important result on the algebraic structure of the set of super-recurrent
vectors. 4 '
Recall that if p(z) = Y,iLy Aiz' and T € B(X), then p(T) = Y.\_ AiT".

Theorem 3.2. If x is a super-recurrent vector for T, then
{p(T)x : pis a polynomial} \ {0} C SRec(T).

In particular, If T has a super-recurrent vector, then it admits an invariant subspace consisting, except for zero, of
super-recurrent vectors.

Proof. For a nonzero polynomial p, let S = p(T). Then ST = TS. Since x € SRec(T), it follows by Proposition
3.1, that p(T)x € SRec(T). O

Remark 3.3. If T is a super-recurrent operator, then it is of dense range.

Let X and Y be two Banach spaces. If T and S are operators acting on X and Y respectively, then T and S
are called quasi-conjugate or quasi-similar if there exists some operator ¢ : X — Y with dense range such
So¢ =¢oT.If ¢ can be chosen to be a homeomorphism, then T and S are called conjugate or similar, see
[12, Definition 1.5].

Proposition 3.4. Assume that T € B(X) and S € B(Y) are quasi-similar. Then, T is super-recurrent in X implies
that S is super-recurrent in Y.

Proof. Suppose that T is super-recurrent. If U is a nonempty open subset of Y, then ¢~}(U) is a nonempty
open subset of X. Since T is super-recurrent, it follows that there exist n € IN, A € C and x € X such that
x € ¢~1(U) and AT"x € ¢p~'(U), this means that ¢(x) € U and A¢ o T"(x) € U. Since T and S are quasi-similar,
it follows that ¢(x) € U and AS" o ¢(x) € U. Hence, S is super-recurrentin Y. [

Remark 3.5. Assume that T € B(X) and S € B(Y) are similar. Then, T is super-recurrent in X if and only if S is
super-recurrent in Y.

The following theorem gives necessary and sufficient conditions of super-recurrence of operators.
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Theorem 3.6. The following assertions are equivalent:

1. T is super-recurrent;
2. for each x € X, there exist a sequence (ny) of positive integers, a sequence (xp,) of elements of X and a sequence
(Ay,) of nonzero complex numbers such that

X, — X and A, T™(x,,) — x;
3. for each x € X and for W a neighborhood of zero, there exist z € X, A € C, and n € N such that
AT"(z)—x €W and z—xeW.

Proof. (1) = (2) Letx € X. Forall k > 1, let U} = B(x, %). Then U is a nonempty open subset of X. Since
T is super-recurrent, there exist n, € IN and A, such that A, T"(Uy) N Uk # 0. For all k > 1, let x,, € Uy
such that A, T™(x,,) € Uy, then |x, — x| < % and [[A,, T (x,,) — x| < % which implies that x,, — x and
A T (xy,) — x.

(2) = (3): Itis clear;

(3) = (1) Let U be a nonempty open subsets of X and x € U. Since for all k > 1, Wy = B(0, %) is a
neighborhood of zero, there exist z; € X, nx € N and A, € C such that ||, T"(z) — x|| < § and |lx — z| < ¢.
This implies that z; — x and A, T"(z;) — x, which implies the result. O

Proposition 3.7. Assume that T @ S is super-recurrent in X ® Y. Then T and S are super-recurrent on X and Y
respectively.

Proof. If U; and U, are nonempty open set of X and Y respectively, then U; @ U is a nonempty open set of
X@Y. Since TS is super-recurrent, there existn € Nand A € C such that (AT"@S")(L1 &) N (U1 dUy) # 0,
which means that AT"(U;) N Uy # 0 and AS"(Uz) N Uy # 0. Hence T and S are super-recurrent. [J

The next theorem gives the relationship between super-recurrent vectors and super-recurrent operators.
Theorem 3.8. Let T be an operator acting on X. The following assertion are equivalent:
(1) T admits a dense subset of super-recurrent vectors;
(2) T is super-recurrent.

Proof. (1) = (2) : Let U be a nonempty open subset of X, then there is a T-super-recurrent vector x such that
x € U. There exist a increasing sequence (1) of positive integers and an sequence (1,,) of complex numbers
such that A, T"x — x as k — +oo. Since U is open and x € U, it follows that there exist A € C and n € IN
such that AT"(U) N U # 0, this means that T is super-recurrent.

(2) = (1) : For a fixed element x € X and a fixed strictly positive numbers ¢ > 0, let

B := B(x, ¢).

Since T is super-recurrent, there exist some positive integer k; and some number A such that A4 T M(B)NB #
0. Let x; € X such that x; € A;T7%(B) N B. Since T is continuous, there exists 1 < % such that

By := B(x1, 1) € AT M(B) N B.

Again, since T is super-recurrent, there exist some k, € IN and some A, € C such that AT (By) N By # 0.
Let x, € X such that x, € A,T2(B,) N B,. By continuity of T, there exists ¢, < 21—2 such that

B3 := B(xy, &2) C AzT_kZ(Bz) N B,.

Continuing inductively, we construct a sequence (x,).en Of elements of X, a sequence (A,,),en of complex
numbers, a strictly increasing sequence of positive integers (k,).en and a sequence of positive real numbers
&n < 217, such that

B(xy, €4) C B(xy—1, €4-1) and A T™ (B(x,, €,)) C B(xp-1, €4-1)-
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Since X is a Banach space, then by Cantor’s Theorem, there exists some vector y € X such that

() Bl ) = {y). (1)

neN

Since y € B, we need only to show that y is T-super-recurrent. By (1), we have y € B(x,, ¢,) for all n, which
implies that

llxn — yll < €n. (2)
On the other hand, A, Ty € B(x,, ¢,;). Indeed, we have y € B(x,11, £4+1). This implies that
ATy € Ay T™(B(xns1, €n41)) C AT (B(xn, €n)) C B(xn, €n)-
Hence,
IAT™ Y = xull < €n. ©)

Now, by using (2) and (3) we conclude that

ATy = yll < NIALT™y = xull + llxn — yll <

on-1°

Hence, A, T"y — y, that is y is a T-super-recurrent vector. Hence each open ball of X contains a T-super-
recurrent vector. Thus the set of all super-recurrent vectors for T is dense in X. [J

Theorem 3.8 shows that any super-recurrent operator on a Banach space admits super-recurrent vectors.
However, an operator may has super-recurrent vectors without being super-recurrent as we show in the
following example.

Example 3.9. Let X be a Banach space and let (e;)ic; be a basis of X. Let igp € I and A € C a nonzero fixed number.
We define an operator T on X by:

Te,, = Aej, and Te; =0, foralliel\ {ip}.

It is clear that e;, is a T-super-recurrent vector for T. However, T itself is not super-recurrent since it is not of dense
range and super-recurrent operators are of dense range by Remark 3.3.

Remark 3.10. If T is super-recurrent, then AT is super-recurrent for all A € C*. Moreover, T and AT have the same
super-recurrent vectors.

The next theorem gives the relationship between the super-recurrence of an operator and its iterates.

Theorem 3.11. Let p be a nonzero positive integer. Then, T is super-recurrent if and only if TP is super-recurrent.
Moreover, T and TP have the same super-recurrent vectors.

Proof. We will prove that SRec(T) = SRec(T?), for that it is enough to show that SRec(T) € SRec(T*). Let x be
a T-super-recurrent vector, then there exist a strictly increasing sequence (k,).en of positive integers and a
sequence (A,).en of complex numbers such that A, T*x — x as n —> +o0. Without loss of generality we
may suppose that k,, > p for all n. Hence, for all #, there exist {, € N and v, € {0, ...,p — 1} such that

ky = ply + vy

Since (v,,), is bounded, there exists v € {0, ..., p — 1} and a subsequence of (v,), which converges to v. Thus,
Ak, Tri+ox — x for some subsequence of (£,)en and a subsequence (A, )en which we call them again (£,)en
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and (Ag,)en- Let U be a nonempty open subset of X such that x € U. Since A, TPty —s x, there exists a
positive integer m; := {,, such that A,, T""*°x € U. We have

/\kn/\nl Tp(f,,+ml)+20x — /\nk/\nl Tpf,,+vam1+vx N Anl Tpm1+vx clU

Thus, we can find a positive integer m, := m; +¢,, > my such that A, A, Trm+2vy e ] Continuing inductively
we can find a positive integer m, = m,_1 + {;, such that

Ay oo A, TP 703 € UL,

Put A = Ay .o Ay, then A(T?)"*°x € U, which means that x is TP-super-recurrent. Hence, SRec(T) =
SRec(TP). Now it suffices to use Theorem 3.8 to conclude the result. [

4. Spectral Proprieties of Super-recurrent Operators

In this section, we show that super-recurrent operators have some noteworthy spectral proprieties.

If T is hypercyclic, then Kitai [18] showed that every component of the spectrum of T must intersects
the unit circle. Later, N. S. Feldman, V. G. Miller, and T. L. Miller gave a similar result for the supercyclicity
case. They proved that if T is supercyclic, then there exists R > 0 such that the circle {z € C: |z| = R}, called
a supercyclicity circle for T, intersects each component of the spectrum of T, see [3, Theorem 1.24] or [9].
Recently, G. Costakis, A. Manoussos, and I. Parissis [7] proved that the spectrum of recurrent operators
share the same propriety with hypercyclic operators by proven that if T is recurrent, then every component
of the spectrum of T intersects the unit circle. Since super-recurrent operators “look like” supercyclic
operators, it is expected that their spectrums share the same propriety. This is the objective of the next
theorem.

Theorem 4.1. Let T be an operator acting on a complex Banach space X. If T is super-recurrent, then there exists
R > 0 such that each connected component of the spectrum of T intersects the circle {z € C : |z| = R}.

Proof. Assume that T is super-recurrent. We will produce by contradiction. By [3, Lemma 1.25], there exist
R > 0 and Cy, C; two component of ¢(T) such that C; ¢ ID and C; € C \ D. Without loss of generality,
we may suppose that R = 1. Indeed, this is since T is super-recurrent if and only R™!T is. By [3, Lemma
1.21], there exist o1 and o7, two closed and open sets of o(T) such that C; C o C Dand C; C o, € C \ D.
Set g3 = o(T) \ (01 U 02). We have then o(T) = 01 U 0, U 03 and the sets o; are closed and pairwise disjoint.
By Reisz decomposition theorem there exist Xi, X, X3 and Ty, T», T3 such that X = X; @ X, @ X, and
T =T, ® T, ® T3, where each X; is a T-invariant subspace, T; = T/x, and 0; = o(T}). Let x € X; and y € X>.
By Theorem 3.6, there exist (Ax) C C, (k) C N, (x¢) C X3 and (yx) C X5 such that

x— X Yy —y, M'n—x and 4Ty — y.
By [3, Lemma 1.20], the last assertion implies that (|Ax|) converges into 0 and +oo, which is a contradiction. [J

The adjoint Banach operator of a hypercyclic operator cannot have eigenvalue. This means that ,(T*) =
0, see [3, Proposition 1.7]. Unlike the hypercyclicity case, the adjoint of a supercyclic operator T can have
an eigenvalue but not more then one. This means that either we have 0,(T*) = 0 or there exists A such
that 0,(T") = {A}. For the recurrent operators, it is expected that they have the same result as hypercyclic
operators, but this is not the case, see [7, Example 2.13 and Remark 2.15]. So the Banach adjoint operator of
a recurrent operator may has eigenvalue. However, no one of those eigenvalue can be outside of the unit
circle. This means that 6,(T*) C T, where T the unit circle. Since recurrent operators are super-recurrent, it
follows that some super-recurrent operators may have eigenvalue. However, all those eigenvalues lie in a
circle of form {z € C : |z| = R}, where R > 0. This is the content of the next result.

Theorem 4.2. The eigenvalues of the adjoint operator of a super-recurrent operator have the same argument. That
is, if T is super-recurrent, then there exists R > 0 such that 0,(T") C {z € C: |z| = R}. In particular, for all
A€ C\{z € C: |z| = R} the operator T — Al has dense range.
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Proof. Assume that there exist A, u € 0,(T") such that |u| < || and let m be a nonzero real number such that
lul < m < |A|. Since A, u € 0,(T"), there exist x*, y* € X* such that T"x* = Ax* and T"y* = uy*. This implies
that x*(T"z) = A"x*(z) and y*(T"z) = u"y*(z) for all z € X. Since T is super-recurrent if and only %T is, let
zo € SRec(LT). By Baire Category Theorem we may suppose that x*(z9) # 0 and y*(zp) # 0. Since z is a
super-recurrent vector for %T, it follows that there exist (fx) C C and (nx) € IN such that ,Bkm%kT”*‘zo — 2
as k — oo. Since x* and y* are continuous, we deduce that
AN . AR .
ﬁk(a) x"(z0) — x"(z0) and By (a) ¥'(z0) — y'(20)-

Using that x*(zp) # 0 and y*(z9) # 0 we conclude that (%)nk — land f; (%)nk —> 1 Hence || — 0 and
|Bx| — o0, which is a contradiction. [J

Remark 4.3. If T is supercyclic, then T is super-recurrent, but either 0,(T*) = 0 or 0,(T") = {A} for some nonzero
number A. However, there exist several super-recurrent operators such that Card(o,(T")) > 1. Indeed, let (A,)nen be
a sequence of nonzero complex numbers of the same argument. Define in €>(N) an operator T by

T(x1,x2, .. ) = (Axl, /\23(2, Cee )
Then T is a super-recurrent operator. It’s easy to check that (A)nen C 0,(T*) and hence o,(T") is an infinite set.

We already know that if T is supercyclic, then either 6,(T*) = @ or 0,(T") = {A} for some nonzero number
A. Moreover, in the latter case, one can find a T-invariant hyperplane Xy, C X such that the operator
Ty := T/x, is hypercyclic on Xy, see [3, Proposition 1.26]. In the next theorem, we prove that the same
relation still true between recurrent and super-recurrent operators.

Theorem 4.4. Let X be a Banach space with dim(X) > 1. Let T be a super-recurrent operator acting on X. Then for
all A € 0,(T*), there exists a (closed) T-invariant hyperplane Xo C X such that T := A T)x, is recurrent on Xy.

Proof. First note that A # 0 for every A € 0,(T") since a super-recurrent operator has dense range.

Since T is super-recurrent if and only if aT is super-recurrent for every a # 0, we may assume, without
loss of generality, that A = 1. Choose xj; € X* \ {0} such that T"xj = xj and let Xy = Ker(x(). Since xj is an
eigenvector of T*, it follows that Xj is a T-invariant hyperplane of X. We can consider then Ty := T)x,. In
the following, we will prove that T} is a recurrent operator on Xj.

With a slight abuse of notation, we may write X = C & X, and since T"x;; = x{, let T(180) = 1@y for
some y € Xo. It follows then that T(1 ® z) = 1@ (y + To(z) for all z € Xy. By straightforward induction, we
have

T"lez)=1® W+ To(y)+---+ Tg_l(y) + T5(2))
for all z € X.
Note that T — I has dense range. Indeed, assume that (T — I)(Xo) # Xo and without loss of generality
we may suppose that y & (To — I)(Xo). By the Hahn-Banach theorem, there exists k* € X such that k*(y) # 0

and k*(T"z) = k*(z) for every z € X,. Choose a super-recurrent vector for T of the form 1 & x;. Hence there
exist (ux) € € and a strictly increasing sequence (1) C IN such that T (1 ® x9) — 1@ x as k — oo. Thus

(1@ (y + To(y) +--- + Tg‘l(y) + T (x0))) — 1@ xo.

This implies that uy — 1and y+ To(y) +-- - + Tgk_l(y) + Ty (x0)) — Xo. Since k* is continuous and k*(y) # 0,
it follows that n; — 1 — 0, which is a contradiction.

Since T is super-recurrent, there exist a subset A of C and a subset B of Xy such that. SRec(T) = A® B
such that A = C and B = X,.

Finally, let x be an element of B. By the same method applied to xo, we have

y+To(y) +--+Tp 7 () + Ty(x) — x.
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Applying (T — I), we get
T"(y + (To — Dx) — (y + (To — Dx.

This implies that (y + (To — I)x € Rec(Ty). Since (T — I) has dense range, we conclude that Ty is recurrent on
Xo. O

The Purpose of the following proposition is to show that a large supply of eigenvectors corresponding to
eigenvalues with same argument implies that the operator is super-recurrent.

Proposition 4.5. Let T be an operator acting on X. If there exists R > 0 such that the space generated by
Xo :={x € X: Tx = Ax for some A € {|A| = R}}
is dense in X, then T is super-recurrent.

Proof. Let Y.! aix; € span {Xo}, where Tx; = A;x;, for certain a4;, A; € C with |A;] = Rfori =1,...,n. Since
each R71]; is in the unite circle, it follows that there exists a strictly increasing sequence (1) such that
(R‘lAi)nk —> 1 ask — co. Hence

n n n

R™™ T ZIZ,‘JC,‘ = Z aiR™™ Ajix; — Z a;x;
i i=1

i=1 i=1 i=

as k — oo. This means that span{X,} c SRec(T). Since span{Xy} is dense in X, it follows that T is super-
recurrent. [J
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