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Abstract. The idea to consider the concept of measure pseudo almost periodic oscillation corresponds
better to the physical reality since the periodicity is utopic. So, in this research paper, we inform a notion
of mu-pseudo-almost periodicity using theoretical measure. Then we study the existence and uniqueness
of measure pseudo-almost periodic solutions to some first-order differential equations in Lebesgue spaces
with variable exponents.

1. Introduction

The theory of almost periodicity is a very important branch of Mathematics. Indeed, the almost
periodic functions intervene in the modeling of numerous problems in particular in Physics, Mechanics,
Biomathematics, Dynamics of the populations and many other phenomena which evolve in time. Histor-
ically, the notion of the almost-periodicity goes back to the Danish mathematician BOHR in 1925. Other
efforts subsequently aimed to generalize this theory. We find inside particularly, the work of Bochner [3],
around 1933, which gave two other versions of the definition of almost periodic functions analogous to that
given by Bohr.
A known generalization of almost-periodic functions is the class of asymptotically almost-periodic functions
(that was posed by Frechet), these are the functions define as follows:

ε + 1 = f

with g almost periodic and ε continuous and more ε(t)→ 0 when t→∞.
The notion of pseudo almost periodic was introduced by Zhang [19] as a generalization of function almost
periodic in the sense of Bohr and other generalizations have been made in 2015 by M. Miraoui, T. Diagana, K.
Ezzinbi and E. Ait Dads [1, 4, 6, 10, 13–17] define and studied the measure pseudo-almost periodic functions
and solutions of a few evolution problems. Naturally, the description of the model is an important but not
decisive step. In other words, a qualitative and quantitative study is required in order to satisfy certain
conditions previously requested but also to give more complete information on the system in question.
The existence and uniqueness of measure pseudo almost periodic solutions are of great importance in the
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qualitative study of the differential equations theory.
Stimulated by the Toka Diagana and Mohamed Zitane works [8] in this paper we study the existence and
uniqueness of pseudo almost periodic solutions of the following model:

∂
∂t

(u(t) − G(t,u(t)) = A(u(t) − G(t,u(t)) + F(t,u(t)), t ∈ R, (1)

where A : D(A) ⊂ X 7→ X is the infinitesimal generator of a C0−semigroup (T(t))t⩾0 ( exponentially stable)
of bounded linear operators on a Banach space X, and F,G : R × X 7→ X are continuous functions which
satisfy a few additional conditions.
To solve equation (1), we will study the existence and uniqueness of µ−pseudo almost periodic solution to
the following equation:

u′(t) = Au(t) + f (t), t ∈ R, (2)

whither f ∈ Sθ,ϑ(x)
pap , with θ > 1 and ϑ ∈ C+(R).

The rest of this paper is organized as follow. In the second Section we introduce necessary notations
and properties of measure µ−almost periodic functions needed in the sequel. In Section 3, we offer the
background of the Lebesgue spaces with variable exponents Lp(x). Introducing and studding the properties
of Sp,q(x)

µ −pseudo-almost periodic functions, in Section 4. We finished this paper by studding, in the last
Section, the existence and the uniqueness of µ−pseudo almost-periodic solutions to equations (1) and (2)

2. Preliminaries

In this article we suppose that X and Y are two Banach spaces. We note by BC(R,X) the space of
continuous and bounded functions from R in X. Let B denote the Lebesgue σ−field of R and M be the
collection of any nonnegative measures µ on B satisfing µ(R) = +∞ and µ([a1, a2]) < ∞ ∀ a1, a2 ∈ R(a ≤ b).

Definition 2.1. [10] Let k ∈N. A continuous function f : R→ X is said to be almost periodic if for every ε > 0, it
exists lε > 0 such that

∀ β ∈ R,∃ υ ∈ [β, β + lε]
∥ f (υ + .) − f (.)∥∞ ≤ ε.

LetAP(R,X) denote the collection of all almost periodic functions.

Definition 2.2. [10] Let µ ∈ M. A bounded continuous function f : R→ X is named µ-ergodic (or in E(R,X, µ))
if

lim
a→∞

1
µ([−a, a])

∫ a

−a
∥φ(t)∥dµ(t) = 0.

Definition 2.3. [10] Let µ ∈ M. A function f ∈ BC(R,X) can be composed as follow:

f = 1 + h,

whither h ∈ E(R,X, µ) and 1 ∈ AP(R,X), is called the µ−pseudo almost periodic function (or in PAP(R,X, µ)).

Notice that the space PAP(R,X, µ) is a closed subspace of BC(R,X), so (PAP(R,X, µ), ∥.∥∞) is a Banach
space.

Lemma 2.4. Allow µ ∈ M, 1 ∈ PAP(R,X, µ) and H ∈ PAP(R × X,X, µ). If there exists L > 0, such that
∀ x1, x2 ∈ X, we have:

|H(t, x1) −H(t, x2)| ≤ L|x1 − x2| ∀ t, x1, x2 ∈ R. (3)

Then [t→ H(t, 1(t)] ∈ PAP(R,X, µ).

Proof. Since it exists L > 0 satisfies (3) then for all bounded subset B of R, H is bounded on R × B. From
Theorem 4.10 in [2], we have [t→ H(t, 1(t))] ∈ PAP(R,X, µ). So we prove the result.
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3. Lebesgue spaces with variable exponents Lp(t)

LetX a Banach space,Ω ⊆ R, M(Ω,X) the collection of all measurable functions fromΩ toX, p ∈M(Ω,X)
and ρ defined as follow:

ρ(u) = ρp(t)(u) =
∫
Ω

φ(t, ∥u(t)∥)dt =
∫
Ω

∥u(t)∥p(t)dt.

We define:

Lp(t)(Ω,X) =
{
u ∈M(Ω,X) : limλ→0+ρ(λu) = 0

}
,

Ep(t)(Ω,X) =
{
u ∈ Lp(t)(Ω,X) : f or all λ > 0, ρ(λu) < ∞

}
.

Then Ep(t)(Ω,X) ⊂ Lp(t)(Ω,X). The space Lp(t)(Ω,X) is a Musielak-Orliez type space.

Definition 3.1. [9] A function ψ : [0,∞)→ [0,∞) convex and left-continuous is said a Φ−function if the following
conditions are satisfied:

• a) ψ(0) = 0

• b) limx→0+ ψ(x) = 0

• c) limx→∞ ψ(x) = ∞.

Furthermore, ψ is called to be nonnegative if ψ(x) > 0 for each x > 0.

IfΨ−function, then on the set {x > 0;ψ(x) < ∞}, the function ψ is written as follows:

ψ(x) =
∫ x

0
k(t)dt,

whither the right-derivative ofψ(x) is given by k(.). Furthermore, k is a non-increasing and right-continuous
function. For extra about these functions and linked problems refer to [9].
Define

C+(Ω) := {p ∈M(Ω,X) : 1 ≤ p− ≤ p(x) ≤ p+ < ∞, f or each x ∈ Ω},

where p+ := ess supx∈Ω p(x) and p− := ess infx∈Ω p(x).
Now, we define the Lebesgue space with variable exponents Lp(t)(Ω,X) with p ∈ C+(Ω), by:

Lp(x)(Ω,X) =
{
u ∈M(Ω,X) :

∫
Ω

∥u(x)∥p(x)dx < ∞
}
.

For all u ∈ Lp(x)(Ω,X), we pose

∥u∥p(x) := inf
{
δ > 0 :

∫
Ω

∥∥∥∥u(x)
δ

∥∥∥∥p(x)
dx < 1

}
.

Remark 3.2. [9] Let p ∈ C+(Ω), then we have

• Ep(t)(Ω,X) = Lp(t)(Ω,X).

• If p is constant, then the space Lp(.)(Ω,X) coinsides with the usual space Lp(Ω,X).

Proposition 3.3. [9] Allow u,uk, v ∈M(Ω,X) for k = 1, 2, ... and p ∈ C+(Ω). So one has the following results.

• If uk → u a.e., so ρp(u) ≤ lim infk→∞(ρp(uk)).
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• If ∥uk∥ → ∥u∥ a.e., so ρp(u) = limk→∞ ρp(uk).

• If uk → u a.e., ∥uk∥ ≤ ∥v∥ and v ∈ Ep(x)(Ω,X), then uk → u in Lp(x)(Ω,X).

Proposition 3.4. [9, 18] Allow p ∈ C+(Ω). Wether u, v ∈ Lp(t)(Ω,X), so we have the following results:

• ∥u∥p(t) ≥ 0 and ∥u∥p(t) = 0⇔ u = 0.

• ρp(u) ≤ ρp(v) and ∥u∥p(t) ≤ ∥v∥p(t) if ∥u∥ ≤ ∥v∥.

• ρp(u∥u∥−1
p(t)) = 1 if u , 0.

• ρp(u) ≤ 1 signify that ∥u∥p(t) ≤ 1.

• If ∥u∥p(t) ≤ 1, so [
ρp(u)

] 1
p−
≤ ∥u∥p(t)∥ ≤

[
ρp(u)

] 1
p+ .

• If ∥u∥p(t) ≥ 1, so [
ρp(u)

] 1
p+
≤ ∥u∥p(t)∥ ≤

[
ρp(u)

] 1
p− .

Proposition 3.5. [9] Allow p ∈ C+(Ω) and let u,uk, v ∈M(Ω,X) for k = 1, 2, .... So we have the following results:

• If u ∈ Lp(t)(Ω,X) and 0 ≤ ∥v∥ ≤ ∥u∥. so we have v ∈ Lp(t)(Ω,X) and ∥v∥p(t) ≤ ∥u∥p(t).

• If uk → u a.e, so ∥u∥p(t) ≤ lim infk→∞(∥uk∥p(t)).

• If ∥uk∥ → ∥u∥a.e where uk ∈ Lp(t)(Ω,X) and supk∥uk∥p(t) < ∞, so u ∈ Lp(t)(R,X) and ∥uk∥p(t) → ∥u∥p(t).

Proposition 3.6. [8] If u,uk ∈ Lp(t)(Ω,X) for k = 1, 2... so the following results are equivalent:

• limk→∞ ∥uk − u∥p(t) = 0.

• limk→∞ ρp(uk − u) = 0.

• uk → u and limk→∞ ρp(uk) = ρp(u).

Theorem 3.7. [11] The space (Lp(t)(Ω,X), ∥.∥p(t)) is a Banach space that is separable and uniform convex. Its
topological dual is Lq(t)(Ω,X), with p−1(t) + q−1(t) = 1. Moreover, for each u ∈ Lp(t)(Ω,X) and v ∈ Lq(t)(Ω,R), we
have ∥∥∥∥∫

Ω

uv dt
∥∥∥∥ ≤ ( 1

p−
+

1
p+
)
∥u∥p(t)|v|q(t).

Define
D+(Ω) :=

{
p ∈M(Ω,X) : 1 ≤ p− ≤ p(t) ≤ p+ < ∞, f or all t ∈ Ω

}
.

Corollary 3.8. [18] Allow p1, p2 ∈ D+(Ω). Wether the function q is known by the equation

1
q(t)
=

1
p1(t)

+
1

p2(t)

is in D+(Ω), so it exists a constant C = C(p1, p2) ∈ [1, 5] such that

∥uv∥q(t) ≤ C∥u∥p1(t).|v|p2(t),

for each u ∈ Lp1(t)(Ω,R) and v ∈ Lp2(t)(Ω,R).
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Corollary 3.9. [9] Allow mes(Ω) < ∞ with mes stands for the Lebesgue measure and p1(t), q(t) ∈ D+(Ω). Wether
q(.) ≤ p1(.) almost everywhere in Ω, then the embedding Lp1(t)(Ω,X) ↪→ Lq(t)(Ω,X) is continuous whose norm does
not exceed 2(mes(Ω) + 1).

Definition 3.10. [5] Let t ∈ R, s ∈ [0, 1] we say that f b(t, s) is the Bochner transform of the function [ f : R→ X]
defined as follows:

f b(t, s) := f (t + s).

Remark 3.11. • A function ψ(x1, x2), x1 ∈ R, x2 ∈ [0, 1], is the transform of Bochner of a certain function f ,
ψ(x1, x2) = f b(x1, x2), means ψ(x1 + τ, x2 − λ) = ψ(x1 + x2) for each x1 ∈ R, x2 ∈ [0, 1] and λ ∈ [x2 − 1, x2].

• Noting that wether f = f1 + f2, so f b = f b
1 + f b

2 . Furthermore, (τ f )b = τ f b for all τ ∈ R.

Definition 3.12. [5] The transform of Bochner Fb(t, s,u), t ∈ R, s ∈ [0, 1], u ∈ X of a function F(t,u) on R × X,
with values in X, is defined by F(t, s,u) := F(t + s,u) for all u ∈ X.

Definition 3.13. [8] Allow p ∈ [1,∞). The space BSp(X) of all Stepanov bounded functions, with the exponent p,
consists of all measurable functions f on R with values in X such that f b

∈ L∞(R,Lp((0, 1),X)). This is a Banach
space with the norm

∥ f ∥Sp = ∥ f b
∥L∞(R,Lp) = sup

x∈R

( ∫ x+1

x
∥ f (τ)∥pdτ

)1p .
Noting that for all p ≥ 1, we get the following continuous inclusion:

(BC(X), ∥.∥∞) ↪→ (BSp(X), ∥.∥Sp ).

Definition 3.14. [8] Allow p ∈ C+(R). The space BSp(t)(X) include of all functions f ∈M(R,X) such as ∥ f ∥Sp(t) < ∞,
with

∥ f ∥Sp(t) = sup
x∈R

[
inf{τ > 0 :

∫ 1

0

∥∥∥∥ f (t + x)
τ

∥∥∥∥p(t+x)
dt ≤ 1}

]
= sup

x∈R

[
inf{τ > 0 :

∫ x+1

x

∥∥∥∥ f (t)
τ

∥∥∥∥p(t)
dt ≤ 1}

]
Noting that the space (BSp(t)(X), ∥.∥Sp(t) ) is a Banach space.

Definition 3.15. [8] Wether p1, p2 ∈ C+(R), we furthermore specify the space BSp1(t),p2(t)(X) as following:

BSp1(t),p2(t)(X) : = BSp1(t)(X) + BSp2(t)(X)
= { f = f1 + f2 ∈M(R,X) : f1 ∈ BSp1(t)(X) and f2 ∈ BSp2(t)(X)}.

We outfit BSp(t),q(t)(X) with the norm ∥.∥Sp defined by

∥ f ∥Sp(t),q(t) := inf
{
∥h∥Sp(t) + ∥ϕ∥Sqt) : f = h + ϕ

}
.

The space
(
BSp(t),q(t)(X), ∥.∥Sp(t),q(t)

)
is a Banach space.

Lemma 3.16. [8] Let p1, p2 ∈ C+(R). Then we have the following continuous inclusion.

(BC(R,X), ∥.∥∞) ↪→ (BSp1(t)(X), ∥.∥Sp1(t) ) ↪→ (BSp1(t),p2(t)(X), ∥.∥Sp1(t),p2(t) ).
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Definition 3.17. [8] Allow a constant p ≥ 1 and a function f ∈ BSp(X) is called to be Stepanov-like almost periodic
(Sp
−almost periodic) if f b

∈ AP(Lp((0, 1),X)). It is for every ε > 0 such us every interval of length lε provides a real
δ along with the property that

sup
x∈R

( ∫ 1

0

∥∥∥∥ f b(x + δ, t) − f b(x, t)
∥∥∥∥pdt
)1p = sup

x∈R

( ∫ x+1

x

∥∥∥∥ f (t + δ) − f (t)
∥∥∥∥pdt
)1p < ε.

The set of such functions will be noted Sp
ap(X).

Remark 3.18. There is a few hardness in defining Sp(x)
ap (X) for function p ∈ C+(R) which it is not perforce constant.

This is at most due to the fact that the space BSp(x)(X) is not always translation-invariant. In other terms, the
quantities f b(x+ δ, t) and f b(x, t) (for x ∈ R t ∈ [0, 1]) that are used in the definition of Sp

−almost periodicity, do not
belong to the same space, unless p is constant.

Definition 3.19. [8] Allow p ≥ 1 be a constant and allow p1 ∈ C+(R). A function f ∈ BSp,p1(t)(X) is called to be
Sp,p1(t)
µ −pseudo almost periodic (or Stepanov-like µ−pseudo almost periodic with variable exponents p, p1(t)) if it can

be decomposed as
f = f1 + f2,

where f1 ∈ Sp
ap(X) and f2 ∈ Sp1(t)

E
(X) with Sp1(t)

E
(X) being the space of all ϕ ∈ BSp1(t)(X) such us

lim
a→∞

1
µ([−a, a])

∫ a

−a
in f
{
τ > 0 :

∫ x+1

x
∥
ϕ(t)
τ
∥

p1(t)dt ≤ 1
}
dµ(x) = 0.

The set of Sp,p1(t)
µ −pseudo almost periodic functions will be called Sp,p1(t)

µ (X).
Assume that:
(H.0) ∀τ ∈ R, there ∃α > 0 and a bounded interval I such that

µ(a + τ : a ∈ A) ≤ αµ(A), (4)

where A ∈ B and A ∩ I = ∅.

Proposition 3.20. Allow a constant p ≥ 1, p1 ∈ C+(R) and µ ∈ M. If f ∈ PAP(R,X, µ) and (H.0) holds, then f
is Sp,p1(x)

µ −pseudo almost periodic.

Proof. Allow f ∈ PAP(R,X, µ). It is therefore two functions f1, f2 : R→ X such as

f1 + f2 = f ,

with f1 ∈ AP(R,X) and f2 ∈ E(R,X, µ). For starters, we prove that f1 ∈ Sp
ap(X).After all, about f1 ∈ AP(R,X),

for all ε > 0 it exists lε > 0 such as any interval of length lε contains a number δ with the ownership that

∥ f1(t + δ) − f1(t)∥ < ε

for all t ∈ R.
At the moment ∫ t+1

t
∥ f1(s + δ) − f1(t)∥pds ≤

∫ t+1

t
εpdx = εp

for each t ∈ R, whichever means this
∥ f1(t + δ) − f1(t)∥Sp ≤ ε,
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there, f b
1 ∈ AP(R,Lp((0, 1),X)).

Furthermore, showing that f b
2 ∈ E(R,Lp1(t)((0, 1),X), µ). According to usual Hölder inequality and Proposi-

tion 3.4, it concludes that∫ a

−a in f
{
τ > 0 :

∫ 1

0

∥∥∥∥ f2(x + t)
τ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t)

≤

∫ a

−a

( ∫ 1

0 ∥ f2(x + t)∥q(x+t)dx
)δ

dµ(t)

≤ (µ([−a, a]))1−δ
[ ∫ a

−a

( ∫ 1

0 ∥ f2(x + t)∥q(x+t)dx
)
dµ(t)

]δ
≤ (µ([−a, a]))1−δ

[ ∫ a

−a

( ∫ 1

0 ∥ f2(x + t)∥∥ f2∥
q(x+t)−1
∞ dx

)
dµ(t)

]δ
≤ (µ([−a, a]))1−δ

(
∥ f2∥∞ + 1

)q+ − 1
δ
[ ∫ a

−a

( ∫ 1

0 ∥ f2(x + t)∥dx
)
dµ(t)

]δ
= (µ([−a, a]))1−δ

(
∥ f2∥∞ + 1

)q+ − 1
δ
[ ∫ 1

0

( ∫ a

−a ∥ f2(x + t)∥dµ(t)
)
dx
]δ

= (µ([−a, a]))
(
∥ f2∥∞ + 1

)q+ − 1
δ
[ ∫ 1

0

( 1
µ([−a, a])

∫ a

−a ∥ f2(x + t)∥dµ(t)
)
dx
]δ
,

with

δ =


1
q+

i f ∥ f2∥ < 1,

1
q−

i f ∥ f2∥ ≥ 1

From (H.0), we recall that E(R,X, µ) is translation invariant. Then, by the Theorem of Dominated Conver-
gence, we have

lim
a→∞

1
µ([−a, a])

∫ a

−a
in f
{
τ > 0 :

∫ 1

0

∥∥∥∥ f2(x + t)
τ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t)

≤ lim
a→∞

(
∥ f2∥∞ + 1

)q+ − 1
δ
[ ∫ 1

0

( 1
µ([−a, a])

∫ a

−a
∥ f2(x + t)∥dµ(t)

)
dx
]δ
= 0.

Definition 3.21. Allow p ≥ 1, q ∈ C+(R) and µ ∈ M. F(.,u) ∈ Bp,q(x)(X) is named to be Sp,q(x)
−pseudo almost

periodic in t ∈ R uniformly in u ∈ X if t 7→ F(t,u) is Sp,q(x)
−pseudo almost periodic for all u ∈ B wither B ⊂ X

is an arbitrary bounded set. Then there exists two functions G,H : R × X −→ X such as F = G + H, wither
Gb
∈ AP(R ×X,Lp((0, 1),X)) and Hb

∈ E(R ×X,Lq(x)((0, 1)), µ), there is,

lim
r→∞

1
µ([−a, a])

∫ a

−a
inf
{
τ > 0 :

∫ 1

0

∥∥∥∥H(x + t,u)
τ

∥∥∥∥q(x+t)
dx ≤ 1

}
dµ(t) = 0

uniformly in u ∈ B with B ⊂ X is an arbitrary bounded set.

Let Sp,q(x)
µ (R ×X) denote the collection of such functions.

Allow Lipr(R × X) be the set of functions f : R × X → X satisfactory: it exists a non negative function
L f ∈ Lr(R) such as

∥ f (t,u1) − f (t,u2)∥ ≤ L f (t)∥u1 − u2∥ f or each u1,u2 ∈ X and t ∈ R.

Theorem 3.22. [12] Taking a constant p > 1. We presume that the next conditions hold:
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1. For r ≥ max{
p

p − 1
, p}, we have f ∈ Sp

ap(R ×X) ∩ Lipr(R ×X).

2. K := {ϕ(t) : t ∈ R \ E} is a compact in X, where E ⊂ R with mes(E) = 0 and ϕ ∈ Sp
ap(X).

Then there exists n ∈ [1, p) such as f (., ϕ(.)) ∈ Sn
ap(R ×X).

Looking at article [12], it is obvious to deduce the following Lemma:

Lemma 3.23. Taking a compact subset K ⊆ X and a constant q > 1. Ifµ ∈ M, (H.0) holds, f b
∈ E(R×X,Lq((0, 1)), µ)

and f ∈ Lipq(R ×X), then f̃ ∈ E(R,X, µ), with the function f̃ fixed by

f̃ (t) :=
∥∥∥∥ sup

u∈K
∥ f (t + .,u)∥

∥∥∥∥
q

for each t ∈ R.

Theorem 3.24. Allow p1, p2 > 1 to be constants such as p1 ≤ p2. Assume that we have the next conditions:

1. (H.0) holds.
2. Let 1b

∈ AP(R × X,Lp1 ((0, 1))) and hb
∈ E(R × Lp2 ((0, 1),X), µ) such that f = 1 + h ∈ Sp1,p2

µ (R × X).

Furthermore, f , 1 ∈ Lipr(R ×X) where r ≥ max{p2,
p1

p1 − 1
}.

3. Let α ∈ Sp1
ap(X) and β ∈ Sp2

E
(X) such that ϕ = α + β ∈ Sp1,p2

pap (X), it exists a set E ⊂ R where mes(E) = 0 such as

K := {α(t) : t ∈ R \ E}

is a compact in X.

So it exists n ∈ [1, p1) such as f (., ϕ(.)) ∈ Sn,n
µ (R ×X).

Proof. Let
f b(., ϕb(.)) = 1b(., αb(.)) + f b(., ϕb(.)) − f b(., αb(.)) + hb(., αb(.)).

In view of Theorem 3.22, it exists n ∈ [1, p1) where
1
n
=

1
p1
+

1
p0

such as 1b(., αb(.)) ∈ AP(R × Ln((0, 1),X)).

Let
φb(.) = f b(., ϕb(.)) − f b(., αb(.)).

Plainly, φb
∈ E(Ln(0, 1),X, µ). Indeed, for a > 0,

1
µ([−a, a])

∫ a

−a

( ∫ 1

0
∥φb(t + s)∥nds

) 1
n dµ(t)

=
1

µ([−a, a])

∫ a

−a

( ∫ 1

0
∥ f b(t + s, ϕb(t + s)) − f b(t + s, αb(t + s))∥nds

) 1
n dµ(t)

≤
1

µ([−a, a])

∫ a

−a

( ∫ 1

0

(
Lb

f (t + s)∥βb(t + s)∥
)n

ds
) 1

n dµ(t)

≤ ∥Lb
f ∥S

p0

[ 1
µ([−a, a])

∫ a

−a

( ∫ 1

0
∥βb(t + s)∥p1 ds

) 1
p1 dµ(t)

]
≤ Cst.∥Lb

f ∥S
p0

[ 1
µ([−a, a])

∫ a

−a

( ∫ 1

0
∥βb(t + s)∥p2 ds

) 1
p2 dµ(t)

]
.

Since, reminding that βb
∈ E(R ×X,Lp2 ((0, 1)), µ), so we have φb

∈ E(R ×X,Ln((0, 1)), µ).
Currently, we use that h = f − 1 ∈ Lipp0 (R ×X) ⊂ Lipp2 (R ×X), by using the Lemma 3.23 we obtained

lim
a→∞

1
µ([−a, a])

∫ a

−a

∥∥∥∥ sup
u∈K
∥h(t + .,u)∥

∥∥∥∥
p2

dµ(t) = 0,
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1
µ([−a, a])

∫ a

−a

( ∫ 1

0 ∥h
b(t + s, αb(t + s))∥nds

) 1
n dµ(t)

≤
Cst

µ([−a, a])

∫ a

−a

( ∫ 1

0 ∥h
b(t + s, αb(t + s))∥p2 ds

) 1
p2 dµ(t)

≤
Cst

µ([−a, a])

∫ a

−a

( ∫ 1

0

(
supu∈K

∥∥∥∥hb(t + s,u)
∥∥∥∥)p2

ds
) 1

p2 dµ(t) → 0 as a→∞.

As result we obtain that hb(., αb(.)) ∈ E(R ×X,Ln(0, 1), µ).

Remark 3.25. A general expression result in Sp1,p2(x)
µ (R×X) is improbable as compositions of items of Sp1,p2(x)

µ (R×X)
can not be well-defined except p2(.) is the constant function.

4. Existence of µ−pseudo almost periodic solutions

This section is dedicated to research of a pseudo almost periodic solution to the differential equation (1)
of the first order. Through the rest of the document, we suppose that p1, p2 > 1 are two constants such as
p1 ≤ p2 and assuming that:

(H.1) We assume that the C0-semigroup is exponentially stable: there exist constants M and ω > 0 such
that

∥T(t)∥ ≤Me−ωt

for all t ≥ 0.

(H.2) Let Gb
∈ AP(R×Lp1 ((0, 1),X) and Hb

∈ E(R×Lp2 ((0, 1),X) such that F = G+H ∈ Sp1,p2
µ (R×X)∩C(R×X).

Furthermore, F,G ∈ Lipr(R ×X) where

r ≥ max
{
p2,

p1

p1 − 1

}
.

Definition 4.1. According to (H.1) and if a bounded continuous function f : R → X so u : R → X a continuous
function is a mild solution to Eq. (2) such that

u(t) = T(t − s)u(s) +
∫ t

s
T(t − s) f (s)ds. (5)

for each t, s ∈ Rand t ≥ s.

Theorem 4.2. Assume that (H.1) holds, allow θ > 1 to be a constant and ϑ ∈ C+(R).
If Sθ,ϑ(x)

µ (X ∩ C(R,X), so the Eq. (2) admits a unique pseudo-almost periodic mild solution defined as follows:

u(t) =
∫ t

−∞

T(t − s) f (s)ds. (6)

Proof. Consider a function u : R 7→ X decomposed as follow:

u(t) =
∫ t

−∞

T(t − s) f (s)ds, t ∈ R. (7)

Clearly, one can be shown that our function u satisfies the equation (5) then it is a mild solution.
Since, we have f ∈ Sp,q(x)

µ (X) ∩ C(R,X), so f = h + φ, with hb
∈ AP(R × X,Lθ(0, 1))) and φb

∈ E(R ×
X,Lϑb(x)((0, 1), µ). So u expressed as follows

u(t) = X(t) + Y(t),



M. Miraou, A. Hamdi / Filomat 36:11 (2022), 3731–3743 3740

with

X(t) =
∫ t

−∞

T(t − s)h(s)ds, and Y(t) =
∫ t

−∞

T(t − s)φ(s)ds.

Seeing [7] it is not difficult to prove that X ∈ AP(R,X). In the other hand, we will check that Y ∈ E(R,X, µ),
taking for each n ∈N, Yn the sequence of integral operators defined by

Yn(t) =
∫ n

n−1
T(s)φ(t − s)ds =

∫ t−n+1

t−n
T(t − s)φ(s)ds, ∀t ∈ R.

Take d ∈M(R,R) such as d−1(x) + ϑ−1(x) = 1. Reminding Hölder inequality and Theorem 3.7, holds that

∥Yn(t)∥ ≤ M
∫ t−n+1

t−n
e−ω(t−s)

∥φ(s)∥ds

≤ M
( 1
d−
+

1
ϑ−

)[
inf
{
τ > 0 :

∫ t−n+1

t−n

( e−ω(t−s)

τ

)d(s)
ds ≤ 1

}]
× inf

{
τ > 0 :

∫ t−n+1

t−n

∥∥∥φ(s)
τ

∥∥∥ϑ(s)
ds ≤ 1

}
.

Actually as though∫ t−n+1

t−n

( e−ω(t−s)

e−ω(n−1)

)d(s)
ds =

∫ t−n+1

t−n

(
e−ω(s−t+n−1)

)d(s)
ds

≤

∫ t−n+1

t−n

(
1
)d(s)

ds,

≤ 1

getting that e−ω(n−1)
∈

{
τ > 0 :

∫ t−n+1

t−n

( e−ω(t−s)

τ

)d(s)
ds ≤ 1

}
, where assume that

[
inf
{
τ > 0 :

∫ t−n+1

t−n

( e−ω(t−s)

τ

)d(s)
ds ≤ 1

}]
≤ e−ω(n−1).

As a result,

∥Yn(t)∥ ≤M
( 1
d−
+

1
q−
)
e−ω(n−1)

∥φ∥Sϑ(x)

From the moment that the series ∑
n∈N

(
e−ω(n−1)

)
is convergent, we obtain from the well-known Weierstrass test that the series∑

n∈N

Yn(t)

is uniformly convergent on R. Moreover,

Y(t) =
∑
n∈N

Yn(t),

Y ∈ C(R,X), and
∥Y(t)∥ ≤

∑
n∈N

∥Yn(t)∥ ≤ K1∥φ∥Sϑ(x) ,

with
K1 =M

( 1
d−
+

1
ϑ−

)∑
n∈N

(
e−ω(n−1)

)
.
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The following, proving that

lim
a→∞

1
µ([−a, a])

∫ a

−a
∥Y(t)∥dµ(t) = 0.

In fact,

1
µ([−a, a])

∫ a

−a
∥Yn(t)∥dµ(t) ≤ M

( 1
d−
+

1
ϑ−

)
e−ω(n−1)

×

[ 1
µ([−a, a])

∫ a

−a
inf
{
λ > 0 :

∫ t−n+1

t−n

∥∥∥∥φ(s)
λ

∥∥∥∥ϑ(s)
ds ≤ 1

}
dµ(t)

]
.

Like that φb
∈ E(R,Lϑb(x)((0, 1),X), µ), the precede inequality give that Yn ∈ E(R,X, µ). In view of the

following inequality

1
µ([−a, a])

∫ a

−a
∥Y(t)∥dµ(t) ≤

1
µ[−r, r]

∫ a

−a

∥∥∥∥Y(t) −
∑
n∈N

Yn(t)
∥∥∥∥dµ(t) +

∑
n∈N

1
µ([−a, a])

∫ a

−a
∥Yn(t)∥dµ(t),

then the uniform limit Y(.) ∈ E(R,Lϑb(x)((0, 1),X), µ). Moreover u ∈ PAP(R,X, µ).
At the moment, we have to show the uniqueness of the mild solution. In fact, the bounded function
u : R→ X satisfies the homogeneous equation

u′(t) = Au(t), ∀t ∈ R. (8)

So, u(t) = T(t−s)u(s), for all t ≤ s. Then ∥u(t)∥ ≤MKe−ω(t−s),with ∥u(s)∥ ≤ K. Let sn a sequence of real numbers
such as sn → −∞ as n→ ∞. For each t ∈ R, we can easily find a subsequence (snk ) ⊂ (sn) such as snk < t for
each k = 1, 2.... Let k→∞, it obtains u(t) = 0.
Presently if u, v are bounded solutions to Eq.(2), so w = u − v is a bounded solution to Eq.(8). It follows by
the above, w = u − v = 0 then u = v.

Definition 4.3. According to (H.1) and if a bounded continuous function F : R×X→ X so u : R→ X a continuous
function is a mild solution to Eq. (1) such that

u(t) = G(t,u(s)) − (G(s,u(s)) + T(t − s)u(s) +
∫ t

−∞

T(t − s)F(s,u(s))ds. (9)

for each t, s ∈ R and t ≥ s.

Theorem 4.4. Suppose that (H.0)–(H.2) hold, allow p1, p2 > 1 to be constants such as p1 ≤ p2. So the Eq.(1) admits
a unique pseudo-almost periodic mild solution when

∥LG∥∞ +M∥LF∥Sr
r2

√
1 + er2w

r2w

∞∑
n=1

e−nw < 1.

Proof. Consider a function u : R ×X 7→ X defined as follows:

u(x) =
∫ x

−∞

T(x − s)F(s,u(s))ds, x ∈ R. (10)

Clearly, it can be shown that our function u satisfies the equation (9) then it is a mild solution.
u = u1 + u2 ∈ PAP(R,X, µ), with u1 ∈ AP(R,X) and u2 ∈ E(R,X, µ). So u ∈ Sp1,p2

µ (X) and K = {u1(x) : x ∈ R}
is a compact in X.
As a result, in view of the Theorem 3.24, it exists m ∈ [1, p1) such as F(.,u(.)) ∈ Sn,n

µ (R ×X).
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Reminding the Theorem 4.2 we can show that u ∈ PAP(R,X, µ).We define the following nonlinear operator
Γ:

(Γu)(x) := G(x,u(x)) +
∫ x

−∞

T(x − s)F(s,u(s))ds, ∀x ∈ R.

For each u1,u2 ∈ PAP(R,X, µ), we can easily show that

∥(Γu1)(x) − (Γu2)(x)∥ ≤ ∥G(x,u1(x)) − G(x,u2(x))∥ +
∫ x

−∞

∥T(x − s)∥∥F(s,u1(s)) − F(s,u2(s))∥ds

≤ ∥LG∥∞∥u1 − u2∥∞ + ∥u1 − u2∥∞

∫ x

−∞

Me−w(x−s)LF(s)ds

≤ ∥LG∥∞∥u1 − u2∥∞ + ∥u1 − u2∥∞

∞∑
n=1

∫ x−n+1

x−n
Me−w(x−s)LF(s)ds

≤ ∥LG∥∞∥u1 − u2∥∞ +M∥u1 − u2∥∞

∞∑
n=1

( ∫ x−n+1

x−n
e−r2w(x−s)ds

) 1
r2
∥LF∥Sr1

≤ ∥u1 − u2∥∞

[
∥LG∥∞ +M∥LF∥Sr1

∞∑
n=1

( e−r2(n−1)w
− er2nw

r2w

) 1
r2
]

≤ ∥u1 − u2∥∞

[
∥LG∥∞ +M∥LF∥Sr1

r2

√
1 + er2w

r2w

∞∑
n=1

e−nw
]
,

for all x ∈ R, with
1
r1
+

1
r2
= 1.

Since

∥LG∥∞ +M∥LF∥Sr1
r2

√
1 + er2w

r2w

∞∑
n=1

e−nw < 1

then, by using the Theorem of Banach’s fixed point, the function Γ has a unique fixed point, that certainly
is the unique µ−pseudo almost periodic solution of the equation (1).
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