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Limiting Directions of Julia Sets of Entire Solutions of Complex
Difference Equations

Zheng Wanga, Zhigang Huanga

aSchool of Mathematical Sciences, Suzhou University of Science and Technology

Abstract. In this paper, entire solutions of a class of non-linear difference equations are studied. Under
some conditions, we find that the set of common limiting directions of Julia sets of solutions, their derivatives
and their primitives must have a definite range of measure.

1. Introduction and main results

In this paper, we use the fundamental results and the standard notations of the Nevanlinna value
distribution theory for meromorphic functions(see [10, 12]). For a meromorphic function f in the whole
complex planeC, we denote by T(r, f ), m(r, f ) and N(r, f ) the characteristic function , the proximity function
and the counting function of f , respectively. The order ρ( f ) and the lower order µ( f ) are, respectively,
defined by

ρ( f ) = lim sup
r→∞

log+ T(r, f )
log r

and µ( f ) = lim inf
r→∞

log+ T(r, f )
log r

,

where log+ x = max{0, log x}, x > 0. The deficiency of the value a is defined by

δ(a, f ) = 1 − lim sup
r→∞

N(r, 1
f−a )

T(r, f )
.

Here, when a = ∞, we have

δ(∞, f ) = 1 − lim sup
r→∞

N(r, f )
T(r, f )

.

We define f n, n ∈ N as the nth iterate of f , that is, f 1 = f , · · · , f n = f ◦ ( f n−1). The Fatou set F ( f ) of f is
the subset of C where { f n(z)}∞n=1 forms a normal family, and its complement J( f ) = C \ F ( f ) is called the
Julia set of f . It is well-known that F ( f ) is open, J( f ) is closed and non-empty. For an introduction to the
dynamics of meromorphic functions, we refer the reader to see [2, 9].
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Definition 1.1. A ray ending at the orgin arg z = θ, θ ∈ [0, 2π) is called a limiting direction of Julia sets of f (z), if
there exits an unbounded sequence {zn} ⊂ J( f ) such that

lim
n→∞

arg zn = θ.

The set of arguments of all limit directions of J( f ) is denoted by ∆( f ) = {θ ∈ [0, 2π)|the ray arg z = θ is a
limiting direction of J( f )}. Clearly, ∆( f ) is closed, so it is measurable, and we use mes∆( f ) to denote its
linear measure.

The example below can help the readers understand the definition intuitively.

Example 1.2. It is well known that J( f ) is the whole complex plane if f (z) = exp z, and J(1) is the real axis if
1(z) = tan z. Clearly, mes∆( f ) = 2π, and mes∆(1) = 0 sinceJ(1) has only two limit directions, that is arg z = 0, π.

Baker [3] first observed that, for a transcendental entire function f , J( f ) cannot lie in finitely many
rays emanating from the origin. For the case that f (z) is a transcendental entire function of finite lower
order, Qiao [16] proved that mes∆( f ) = 2π if µ( f ) < 1/2 and mes∆( f ) ≥ π/µ( f ) if µ( f ) ≥ 1/2. Furthermore,
Qiao[15] obtained the following result.

Theorem 1.3. [15] Let f (z) be a transcendental entire function of lower order µ < ∞. Then there exists a closed
interval I ⊂ R such that all θ ∈ I are the common limiting directions of J( f (n)), n = 0,±1,±2, ..., and mes I ≥
min{2π, π/µ}. Here f (n) denotes the n-th derivative or the n-th integral primitive of f for n ≥ 0 or n < 0, respectively.

Later, in [21], Zheng et.al proved that for a transcendental meromorphic function f (z) with µ( f ) < ∞

and δ(∞, f ) > 0, ifJ( f ) has an unbounded component, then mes∆( f ) ≥ min{2π, 4
µ( f ) arcsin

√
δ(∞, f )

2 }. In [17],
Qiu and Wu showed that the conclusion is still valid without the assumption that J( f ) has an unbounded
component. Then a nature question arise: is there a similar result about the limiting directions of entire
functions with infinite lower order? Indeed, Huang and Wang [13] studied the limiting direction of a
class of entire functions with infinite lower order, which is exactly solutions of a class of linear differential
equations.

Theorem 1.4. [13] Let Ai(z)(i = 0, 1, ...,n−1) be entire functions of finite lower order such that A0 is transcendental
and m(r,Ai) = o(m(r,A0))(i = 1, 2, ...,n − 1) as r→∞. Then every non-trivial solution f of the equation

f (n) + An−1 f (n−1) + ... + A0 f = 0 (1)

satisfies mes∆( f ) ≥ min{2π, π/µ(A0)}.

Afterward, the research of limiting directions of entire solutions of complex differential equations has
attracted much attention, see[14, 18–20]. In view of the progress on the difference analogues of classical
Nevanlinna theory of meromorphic functions [6, 11], it is quite natural to investigate the limit directions of
solutions of complex difference equations.

Consider the complex difference equation

An(z)Pn( f (z + c1), ..., f (z + cm)) + ... + A1(z)P1( f (z + c1), ..., f (z + cm)) = A0(z), (2)

where Ai(i = 0, 1, ...,n) are entire functions, cq(q = 1, ...,m) are distinct complex numbers, and P j( j = 1, ...,n)
are distinct polynomials in m variables with degree less than d, that is

P j( f (z + c1), ..., f (z + cm)) =
∑

λ=(k1,...,km)∈Λi

aλ
m∏

i=1

[ f (z + ci)]ki . (3)

In this equation, aλ are nonzero complex numbers, Λi consists of finite multi-indices of the form λ =
(k1, ..., km), ki ∈ N, and maxλ∈Λi {

∑m
i=1 ki} < d. The example below shows that Eq.(2) actually has entire

solutions.
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Example 1.5. The difference equation

(
1
e

z − 1) f (z + 2) + e f (z + 1) − e(z − e) f (z) = ez+2

has an entire solutions f (z) = ez.

In 2020, Chen et.al[5] studied the shifts of solutions of Eq.(2) and proved the result as follows.

Theorem 1.6. [5] Let Ai(z)(i = 0, 1, ...,n) be entire functions, P j(z1, ..., zm)( j = 1, ...,n) be distinct polynomials of
degree less than d, and ck(k = 1, ...,m) be distinct finite complex numbers. Assume A0 is transcendental, µ(A0) < ∞
and T(r,Ai) = o(T(r,A0))(i = 1, 2, ...,n) as r→∞. For any nontrivial entire solution f of Eq.(2), we have

mes(R( f )) ≥ min{2π,
π
µ(A0)

},

where R( f ) =
⋂

i∈L ∆( f (z + ηi)), L is a set of positive integers, and {ηi : i ∈ L} is a countable set of distinct complex
numbers.

Remark 1.7. Actually, we do not know whether the solutions of Eq.(2) have infinite lower order. Especially, for a
finite order solution f (z) of Eq.(2), it seems meaningless, if we only consider the measure of limit directions of Julia
sets of f (z) or its shift, because we can estimate the lower bound of measure by Qiao’s result[16]. However, Theorem
1.6 is still meaningful to study the common limiting directions of Julia sets of shifts of f .

For entire functions and their derivatives, the difference between their local properties are astonishing,
because a small disturbance of the parameter may cause a gigantic change of the dynamics of some given
entire functions. Inspired by Theorem 1.3, we shall show that the Julia sets of f (z), its k-th derivatives and
its k-th integral primitive of shifts have a large amount of common limit directions and their distribution
densities influence each other, where f (z) is an entire solution of Eq.(2) and k ∈ Z. Set

E( f ) =
⋂
i∈L

∆( f (k)(z + ηi)),

where k ∈ Z, f (k) denotes the k-th derivative of f (z) for k ≥ 0 or k-th integral primitive of f (z) for k < 0, L is
a set of positive integers, and {ηi : i ∈ L} is a countable set of distinct complex numbers.

Theorem 1.8. Let Ai(z)(i = 0, 1, ...,n) be entire functions, P j(z1, ..., zm)( j = 1, ...,n) be distinct polynomials of degree
less than d, and cq(q = 1, ...,m) be distinct finite complex numbers. Assume A0 is transcendental, µ(A0) < ∞ and
T(r,Ai) = o(T(r,A0))(i = 1, 2, ...,n) as r→∞. For any nontrivial entire solution f of Eq.(2), we have

mes E( f ) ≥ min{2π,
π
µ(A0)

}.

Clearly, Theorem 1.6 is a corollary of Theorem 1.8 when k = 0. The next, we shall show the relationship
between the limiting directions of Julia sets of the solution f (z) of Eq.(2) and those of the derivatives of its
shifts. Indeed, we obtain the following result.

Theorem 1.9. Let Ai(z)(i = 0, 1, ...,n) be entire functions, P j(z1, ..., zm)( j = 1, ...,n) be distinct polynomials of degree
less than d, and cq(q = 1, ...,m) be distinct finite complex numbers. Assume A0 is transcendental, µ(A0) < ∞ and
T(r,Ai) = o(T(r,A0))(i = 1, 2, ...,n) as r→∞. For any nontrivial entire solution f of Eq.(2), we have

mes(∆( f ) ∩ E( f )) ≥ min{2π,
π
µ(A0)

}.

Furthermore, let ηi = 0 for every i. Then we have

mes((∆( f )) ∩ (∆( f (k))) ≥ min{2π,
π
µ(A0)

}.
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2. Preliminary Lemmas

Assuming 0 < α < β < 2π, we denote

Ω(α, β) = {z ∈ C| arg z ∈ (α, β)},

Ω(α, β, r) = {z|z ∈ Ω(α, β), |z| < r},

Ω(r, α, β) = {z|z ∈ Ω(α, β), |z| > r},

and use Ω̄(α, β) to denote the closure ofΩ(α, β). Before proceeding to prove our two theorems, we still need
the following lemmas.

Lemma 2.1. [4] If f is a transcendental entire function, then the Fatou set of f has no unbounded multiply connected
component.

Lemma 2.2. [21] Let f (z) : Ω(r, α, β) → H be analytic, where H is a hyperbolic domain. If there exists a finite
complex number a ∈ ∂H such that

CH(a) := inf
z∈H
{ρH(z)|z − a|} > 0,

where ρH(z) is the density of the hyperbolic metric on H, then there exists a constant K > 0, such that for sufficiently
small ε > 0, we have

| f (z)| = O(|z|K), z→∞, z ∈ Ω(r, α + ε, β − ε). (4)

Remark 2.3. (see [21]) The open set W is hyperbolic if C̄\W has at least three points. For any a ∈ C̄\W, note that
|z − a| ≥ δW(z), where δW(z) is the Euclidean distance of z ∈ W to ∂W. It is well known that if every component of
W is simply connected, then CW(a) ≥ 1/2.

Lemma 2.4. [1] Let f (z) be a transcendental meromorphic function of finite lower order µ, and f have one deficient
value a. Let Λ(r) be a positive function with Λ(r) = o(T(r, f )) as r→ ∞. Then for any fixed sequence of Pólya peaks
{rn} of order µ, we have

lim inf
r→∞

mes DΛ (rn, a) ≥ min

2π,
4
µ

arcsin

√
δ(a, f )

2

 , (5)

where DΛ(r, a) is defined by

DΛ(r,∞) =
{
θ ∈ [−π, π) :

∣∣∣∣ f (reiθ
)∣∣∣∣ > eΛ(r)

}
,

and for finite a,

DΛ(r, a) =
{
θ ∈ [−π, π) :

∣∣∣∣ f (reiθ
)
− a
∣∣∣∣ > e−Λ(r)

}
.

Lemma 2.5. [22] Let f (z) be a meromorphic function on Ω(α − ε, β + ε) for ε > 0 and 0 < α < β < 2π. Then

Aα,β(r,
f ′

f
) + Bα,β(r,

f ′

f
) ≤ K(log+ Sα−ε,β+ε(r, f ) + log r + 1).
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3. Proof of Theorem 1.8

Clearly, every nontrivial entire solution f of Eq.(2) is transcendental. Suppose on the contary that
mes E( f ) < σ := min{2π, π/µ(A0}. Then t := σ −mes E( f ) > 0. For every i ∈ L and k ∈ Z, ∆( f (k)(z + ηi)) is
closed, and so E( f ) is a closed set. Denoted by S := (0, 2π)\E( f ) the complement of E( f ). Then S is open
and contains at most countably many open intervals. Thus, we can choose finitely many open intervals
Ii = (αi, βi)(i = 1, 2, ...,m) in S such that

mes(S\
m⋃

i=1

Ii) <
t
4
. (6)

For every θi ∈ Ii, arg z = θi is not a limiting direction of some f (k)(z + ηmθi
), where mθi ∈ L only depends

on θi. Then there exists an angular domain Ω(θi − ξθi , θi + ξθi ) such that

(θi − ξθi , θi + ξθi ) ⊂ Ii and Ω(r, θi − ξθi , θi + ξθi ) ∩J( f (k)(z + ηmθi
)) = ∅ (7)

for sufficiently large r, where ξθi is a constant depending on θi. Hence,
⋃
θi∈Ii

is an open covering of
[αi + ε, βi − ε] wiht 0 < ε < min{(βi − αi)/6, i = 1, 2, ...,m}. By Heine-Borel theorem, we can choose finitely
many θi j, such that

[αi + ε, βi − ε] ⊂
si⋃

j=1

(θi j − ξθi j , θi j + ξθi j ).

From (7) and Lemma 2.1, there exist a related ri j and an unbounded Fatou component Ui j of F ( f (k)(z +
ηmθi j

)) such thatΩ(ri j, θi j−ξθi j , θi j+ξθi j ) ⊂ Ui j, see [4]. We take an unbounded and connected closed section Γi j

on boundary ∂Ui j such that C\Γi j is simply connected. Clearly, C\Γi j is hyperbolic and open. By remark 2.3,
there exists a a ∈ C\Γi jsuch that CC\Γi j (a) ≥ 1/2. Since the mapping f (k)(z+ ηmθi

) : Ω(ri j, θi j − ξθi j , θi j + ξθi j )→
C\Γi j is analytic, it follows from Lemma 2.2 that there exists a positive constant d such that

| f (k)(z + ηmθi j
)| = O(|z|d) as |z| → ∞ (8)

for z ∈ Ω(ri j, θi j−ξθi j+ε, θi j+ξθi j−ε). Selecting r∗i j > ri j such that z+cq−ηmθi
∈ Ω(ri j, θi j−ξθi j+ε, θi j+ξθi j−ε)(q =

1, ...,m), when z ∈ Ω(r∗i j, θi j − ξθi j + 2ε, θi j + ξθi j − 2ε). Thus,

| f (k)(z + cq)| = O(|z + cq − ηmθi j
|
d) = O(|z|d) as |z| → ∞ (9)

holds for z ∈ Ω(r∗i j, θi j − ξθi j + 2ε, θi j + ξθi j − 2ε).
Case 1. Suppose that k ≥ 0. We note the fact that

f (k−1)(z) =
∫ z

0
f (k)(ζ)dζ + c,

where c is is a constant, and the integral path is the segment of a straight line from 0 to z. From this and (9),
we can deduce f (k−1)(z+ cq) = O(|z|d+1) for z ∈ Ω(r∗i j, θi j − ξθi j + 2ε, θi j + ξθi j − 2ε). Repeating the discussion k
times, we can obtain

f (z + cq) = O(|z|d+k), z ∈ Ω(r∗i j, θi j − ξθi j + 2ε, θi j + ξθi j − 2ε). (10)

Case 2. Suppose that k < 0. For any angular domainΩ(θi j−ξθi j +2ε, θi j+ξθi j −2ε), we set α∗i j = θi j−ξθi j +2ε
and β∗i j = θi j − ξθi j − 2ε. Then we have

Sα∗i j+ε
′,β∗i j−ε

′ (r, f (k+1)(z + cq)) ≤ Sα∗i j+ε
′,β∗i j−ε

′ (r,
f (k+1)(z + cq)

f (k)(z + cq)
) + Sα∗i j+ε

′,β∗i j−ε
′ (r, f (k)(z + cq)) (11)
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for |k|ε′ = ε. By (9) and Lemma 2.5, we can obtain

Sα∗i j+ε
′,β∗i j−ε

′ (r, f (k+1)(z + cq)) = O(log r). (12)

Using the discussion |k| times, we have

Sα∗i j+ε,β
∗

i j−ε
(r, f (z + cq)) = O(log r). (13)

It means that

f (z + cq) = O(|z|d
′

), z ∈ Ω(r∗i j, θi j − ξθi j + 3ε, θi j + ξθi j − 3ε), (14)

where d′ is a positive constants.
Substituting (10) or (14) into (3), whatever k is positive or not, one can see that there exist positive

constants M and d0, such that for sufficiently large z ∈
⋃m

i=1
⋃si

j=1Ω(r∗i j, θi j − ξθi j + 3ε, θi j + ξθi j − 3ε), we have

|Pl( f (z + c1), ..., f (z + cm))| <M|z|d0 , l = 1, ...,n. (15)

Next, we define

Λ(r) = max{
√

log r,
√

T(r,A1), ...,
√

T(r,An)}
√

T(r,A0). (16)

It is clear that Λ(r) = o(T(r,A0)) and T(r,Ai) = o(Λ(r)), i = 1, 2, ...,n. Since A0 is entire, ∞ is a deficient value
of A0 and δ(∞,A0) = 1. By Lemma 2.4, there exists an increasing and unbounded sequence {rk} such that

mes DΛ (rk) ≥ σ − t/4, (17)

where

DΛ(r) := DΛ(r,∞) =
{
θ ∈ [−π, π) : log

∣∣∣∣A0

(
reiθ
)∣∣∣∣ > Λ(r)

}
. (18)

Clearly,

mes


 m⋃

i=1

Ii

 ∩DΛ (rk)

 = mes (S ∩DΛ (rk)) −mes


S\ m⋃

i=1

Ii

 ∩DΛ (rk)


≥ mes (DΛ (rk)) −mes E( f ) −mes

S\ m⋃
i=1

Ii


≥ σ −

t
4
−mes E( f ) −

t
4
=

t
2
.

(19)

Let Ji j = (θi j − ξθi j + 3ε, θi j + ξθi j − 3ε). Then

mes

 m⋃
i=1

si⋃
j=1

Ji j

 ≥ mes

 m⋃
i=1

Ii

 − (3m + 6ζ)ε,

where ζ =
∑m

i=1 si. Choosing ε small enough, we can deduce

mes


 m⋃

i=1

si⋃
j=1

Ji j

 ∩DΛ (rk)

 ≥ t
4
.

Thus there exists an open interval Ji0 j0 of all Ji j such that for infinitely many k,

mes
(
Ji0 j0 ∩DΛ (rk)

)
>

t
4ζ
> 0. (20)
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Let F = Ji0 j0 ∩DΛ(rk). Then by (18), we have∫
F

log+
∣∣∣∣A0

(
rkeiθ
)∣∣∣∣dθ ≥ t

4ζ
Λ (rk) . (21)

On the other hand, substituting (15) into Eq.(2), we obtain∫
F

log+
∣∣∣∣A0

(
rkeiθ
)∣∣∣∣ dθ ≤ ∫

F

 n∑
i=1

log+
∣∣∣∣Ai

(
rkeiθ
)∣∣∣∣ dθ +O

(
log rk

)
≤

n∑
i=1

m (rk,Ai) +O
(
log rk

)
=

n∑
i=1

T (rk,Ai) +O
(
log rk

)
.

(22)

(21) and (22) gives out
t

4ζ
Λ
(
r j

)
≤

n∑
i=1

T
(
r j,Ai

)
+O
(
log r j

)
,

which is impossible since T (r,Ai) = o(Λ (r)) (i = 1, ...,n) as r→∞. Hence, we get mes E( f ) ≥ σ.

4. Proof of Theorem 1.9

Suppose on the contrary that

mes(∆( f ) ∩ E( f )) < σ := min{2π, π/µ(A0}. (23)

Then

t := σ −mes(∆( f ) ∩ E( f )) > 0. (24)

Define

Λ(r) = max{
√

log r,
√

T(r,A1), ...,
√

T(r,An)}
√

T(r,A0). (25)

It is clear that Λ(r) = o(T(r,A0)) and T(r,Ai) = o(Λ(r)), i = 1, 2, ...,n. Since A0 is entire, ∞ is a deficient value
of A0 and δ(∞,A0) = 1. By Lemma 2.4, there exists an increasing and unbounded sequence {rk} such that

mes DΛ (rk) ≥ σ − t/4, (26)

where

DΛ(r) := DΛ(r,∞) =
{
θ ∈ [−π, π) : log

∣∣∣∣A0

(
reiθ
)∣∣∣∣ > Λ(r)

}
, (27)

and all rk < {|z| : z ∈ H}.
The next, we will prove that there exists an open interval

I = (α, β) ⊂ (E( f ))c (28)

such that

lim
k→∞

mes(∆( f ) ∩DΛ(rk) ∩ I) > 0, (29)
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where (E( f ))c := (0, 2π)\E( f ). Firstly, we prove

lim
k→∞

mes(DΛ(rk)\∆( f )) = 0. (30)

Suppose there exists a subsequence {rk j } such that

lim
j→∞

mes(DΛ(rk j )\∆( f )) > 0. (31)

Then there exist θ0 ∈ (∆( f ))c and ξθ0 > 0 such that

lim
j→∞

mes((θ0 − ξθ0 , θ0 + ξθ0 ) ∩ (DΛ(rk j )\∆( f ))) > 0, (32)

where ξθ0 is a constant only depending on θ0. Since arg z = θ0 is not a limiting direction of f , there exists
r0 > 0 such that

Ω(r0, θ0 − ξθ0 , θ0 + ξθ0 ) ∩J( f ) = ∅. (33)

By Lemma 2.1, there exists an unbounded Fatou component U0 ofF ( f ) such thatΩ(r0, θ0−ξθ0 , θ0+ξθ0 ) ⊂
U0, see [4]. We take a unbounded and connected closed section Γ0 on boundary ∂U0 such that C\Γ0 is
simply connected. Clearly, C\Γ0 is hyperbolic and open. By remark 2.3, there exists a a ∈ C\Γ0 such that
CC\Γ0 (a) ≥ 1/2. Since the mapping f : Ω(r0, θ0 − ξθ0 , θ0 + ξθ0 )→ C\Γ0 is analytic, it follows from Lemma 2.2
that there exists a positive constant d and 0 < ε <

ξθ0
2 such that

| f (z)| = O(|z|d) as |z| → ∞ (34)

for z ∈ Ω(r0, θ0−ξθ0+ε, θ0+ξθ0−ε). Selecting r∗0 > r0 such that z+cq ∈ Ω(r0, θ0−ξθ0+ε, θ0+ξθ0−ε)(q = 1, ...,m),
when z ∈ Ω(r∗0, θ0 − ξθ0 + 2ε, θ0 + ξθ0 − 2ε). Thus,

| f (z + cq)| = O(|z + cq|
d) = O(|z|d) as |z| → ∞ (35)

holds for z ∈ Ω(r∗0, θ0 − ξθ0 + 2ε, θ0 + ξθ0 − 2ε).
Substituting (35) into (3), one can see that there exist positive constants M and d0, such that we have

|Pl( f (z + c1), ..., f (z + cm))| <M|z|d0 , l = 1, ...,n, (36)

where z ∈ Ω(r∗0, θ0 − ξθ0 + 2ε, θ0 + ξθ0 − 2ε)
From (32), we have

lim
j→∞

mes((θ0 − ξθ0 + 2ε, θ0 + ξθ0 − 2ε) ∩DΛ(rk j )) > 0. (37)

Thus, we can find an unbounded sequence {rk j e
iθ
} such that∫

F
log+

∣∣∣∣A0

(
rk j e

iθ
)∣∣∣∣dθ ≥ mes(F)Λ

(
rk j

)
, (38)

for all sufficiently large j, whereθ ∈ F := (θ0−ξθ0+2ε, θ0+ξθ0−2ε)∩DΛ(rk j ). On the other hand, substituting
(36) into Eq.(2), we obtain∫

F
log+

∣∣∣∣A0

(
rk j e

iθ
)∣∣∣∣ dθ ≤ ∫

F

 n∑
i=1

log+
∣∣∣∣Ai

(
rk j e

iθ
)∣∣∣∣ dθ +O

(
log rk j

)
≤

n∑
i=1

m
(
rk j ,Ai

)
+O
(
log rk j

)
=

n∑
i=1

T
(
rk j ,Ai

)
+O
(
log rk j

)
.

(39)
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(38) and (39) gives out

mes(F)Λ
(
r j

)
≤

n∑
i=1

T
(
r j,Ai

)
+O
(
log r j

)
, (40)

which is a contradiction since T (r,Ai) = o(Λ (r)) (i = 1, ...,n) as r→∞. This contradiction means that (30) is
true. From Theorem 1.6, taking ηi = 0, we have

mes∆( f ) ≥ σ. (41)

Combining this, (26) with (30), we can deduce

mes(∆( f ) ∩DΛ(rk)) ≥ σ −
t
4

(42)

for all sufficiently large k.
Since E( f ) is closed set, (E( f ))c is open and contains at most countably many open intervals. Thus, we

can choose finitely many open intervals Ii(i = 1, ...,m) such that

mes((E( f ))c
\

m⋃
i=1

Ii) <
t
4
. (43)

Then we have

mes(∆( f ) ∩DΛ(rk) ∩ (
m⋃

i=1

Ii)) +mes(∆( f ) ∩DΛ(rk) ∩ E( f ))

= mes(∆( f ) ∩DΛ(rk) ∩ (E( f ) ∪
m⋃

i=1

Ii))

≥ σ −
t
2
.

(44)

From (23),

mes(∆( f ) ∩DΛ(rk) ∩ (
m⋃

i=1

Ii)) ≥ σ −
t
2
−mes(∆( f ) ∩DΛ(rk) ∩ E( f ))

≥ σ −
t
2
−mes(∆( f ) ∩ E( f ))

=
t
2
.

(45)

Thus there exists an open intervals Ii0 = (α, β) ⊂
⋃m

i=1 Ii ⊂ E( f )c such that

mes(∆( f ) ∩DΛ(rk) ∩ Ii0) ≥
t

2m
> 0. (46)

Therefore, (29) holds.
From (29), there exist θi0 ∈ Ii0 and ξθi0 > 0 such that

lim
k→∞

mes((θi0 − ξθi0 , θi0 + ξθi0 ) ∩DΛ(rk) ∩ ∆( f )) > 0, (47)

where ξθi0 is a constant depent of θi0. Since arg z = θi0 is not the Julia limiting direction of some f (k)(z+ηmθi0
),

there exists ri0 > 0 such that

Ω(ri0, θ0 − ξθ0 , θ0 + ξθ0 ) ∩J( f (k)(z + ηmθi0
)) = ∅. (48)
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By the similar proof between (7) and (15), there exists r∗i0 > ri0 such that

|Pl( f (z + c1), ..., f (z + cm))| <M|z|d0 , l = 1, ...,n, (49)

where z ∈ Ω(r∗i0, θi0 − ξθi0 + 3εi0, θi0 + ξθi0 − 3εi0) for 0 < εi0 <
ξθi0

3 .
From (47), we have

lim
k→∞

mes((θi0 − ξθi0 + 3εi0, θi0 + ξθi0 − 3εi0) ∩DΛ(rk) ∩ ∆( f )) > 0

By the similar proof between (37) and (39), we can obtain (38) and (39). Then we can deduce a contradiction.
Therefore, we have

mes(∆( f ) ∩ E( f )) ≥ min{2π,
π
µ(A0)

}. (50)
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