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Abstract. An extension of the GCED matrices from the domain of natural integers to the unique factoriza-
tion domain is given. The structure of these type of matrices defined on both arbitrary sets and GCED-closed
sets are presented. Moreover, we present exact expressions for the determinant and the inverse of such

matrices. The domains of Gaussian integers and polynomials over finite fields are used to illustrate the
work.

1. Introduction and Preliminaries

LetT = {x1,x2, ..., X} be a well ordered set of m distinct positive integers with 1 < x, < ... < x,,. The GCD
matrix on T is defined as (T)uxm = (xi, x;), where (x;, x;) is the greatest common divisor of x; and x;, and the
power GCD matrix on T is (T")uxm = (xi, x;)", where r is any real number. A Set T = {x1,xy, ..., X} is said to
be factor-closed set if x is an element of T for any divisor x of x; in T, and it is said to be gcd-closed if (x;, x;)

is also in T, for all x; and x; in T. Smith [15] showed that if T = {1,2,...,m}, then det(T) = ﬁ(i)(i), where
i=

¢ is Euler’s totient function and 7 is a multiplicative function. Moreover, Smith showed that his results
are true for factor-closed sets. Beslin and Ligh [3, 4], factorized the GCD matrices if T is a gcd-closed set,
and computed their determinants. Chun [5] introduced the concept of power GCD matrices, and a general
formula for their structures, determinants and inverses were given over the domain of natural numbers. Li

[13] showed that det(T) = ,Ir_fll(j)(xi) if and only if T = {x1,xy, ..., xn} is a factor closed set of ordered distinct

positive integers. Haukkanen and Sillanpaa [10] studied the GCD matrices for gcd-closed sets. Haukkanen
[9], in his famous paper “On Smith’s Determinant” gave a counter example for the conjecture of Bourque-
Ligh that the least common multiple matrix, LCM matrix, on any gcd-closed set is invertible. Beslin and
El-Kassar [2] extended the concept of GCD matrices and Smith’s determinant to UFDs. El-Kassar et al.
[6-8] extended many results concerning GCD matrices defined on factor-closed sets to arbitrary principal

ideal domains. Hong et al. [11] generalized the power GCD matrices defined on factor-closed sets from the
standard settings Z to UFDs.

Raza and Waheed [14], studied the GCED matrices defined on a finite set T = {x1, xo, ..., X} of distinct
positive integers that are arranged in an increasing order. They defined the GCED square matrix (T) having
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tij = (xi,xj)e , the greatest common exponential divisor of x; and x;, as it’s i jth entry. They gave structure
theorems and calculated the determinant of these matrices. Also, they calculated the determinant and the
inverse when the matrices are defined on exponential factor-closed sets. It is well known that (Z* \ {1}, |.)
is a poset under the exponential divisibility relation but not a lattice, since the GCED does not always exist.
More details are given in the next section. Korkee and Haukkanen [12] embedded this poset in a lattice and
studied the GCED matrices as an analogue of the GCD matrices.

In this paper, we extend the concept of exponential divisors over UFDs. Also, we determine the structure
of the GCED and the inverse of the GCED matrices defined on an arbitrary finite ordered subsets of these
domains, as well as their determinant and trace. In addition, some examples in Z[i] and Z,[x], where p is a
prime integer, are given in order to describe what have been done.

Why working in UFDs? In a UFD:

e Every non-zero and non-unit element can be written as a product of irreducibles.

The decomposition of each element is unique up to order and associates.
e Any two elements in a UFD have a greatest common divisor.
e The elements in a UFD can be ordered.

Also, the work done in the literature used the classical domain (domain of natural integers), which is
an example of a UFD and hence the previous work is a special case when taking the domain of integers as
our UFD. Working in UFDs, many domains can be taken such as Z,[x] and Z[i].

Throughout this paper,
e Disa UFD.

e p;is a prime element in D.

a;, b; and c; are positive integers.

e z ~ w means z and w are two associates.

T = {x1,x2,...,%,} is a finite ordered set (increasing order) of nonzero, non-unit and non-associate
elements in D.

2. Exponential Divisors in UFDs

In this section, we introduce the concept of the exponential divisors over D.

r r
Definition 2.1. A nonzero element d = Hp?" in D is an exponential divisor of a = pr" if a; | ciforeveryl <i<r,
i=1 i=1

denoted by d |, a.

A unit u in D is not an exponential divisor for any nonzero, non unit element a in D and by convention
u | v for any unit v in D. Two elements in D have a common exponential divisor if and only if they have
the same prime factors. We denote the GCED of a and b by (a,b). or GCED(a, b). By conventlon (u, v)e =1

and (u,a). does not exist for any nonzero, non-unit element a in D. Two elements a = Hp and b = Hpc’
i=1 i=1
in D are exponentially coprime if ged(b;,¢;) =1, forevery 1 <i <r.
Asubset T = {x1,xa,...,x,} of D is a GCED closed set if (x;, x;). is also an element of T for all x;, x; in T,
where 1 <4, j < n. For example, the subset T = {1 + 3i, -1 + 7i, =8 + 6i} of Z[i] is a GCED closed set while
theset T =2 +4i,—1 + 7i,—8 + 6i is not.
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Definition 2.2. Given two functions f and g defined on D. Define the exponential convolution of f and g of a
r

nonzero element a = Hp?" in D as:
i=1

fop@= Y . Y f@ps. g pe.pl).

mby=c1  ab,=c,

Using the Mobius inversion exponential formula, g(a) = Z f (d)y(e)(g) if f(a) = Zg(d), where p©@(u) = 1 and
dl.a dl.a

1) = p(er)u(ca)-u(cr)-

3. Ordering in Special UFDs

The domains of Gaussian integers Z[i] and polynomials over finite fields Z,[x] are not ordered. We use
a well-defined linear ordering defined on these domains so that any two elements are comparable. The
ordering in these domains is given in the following two definitions.

Definition 3.1. (Ordering in the Set of Gaussian Integers) Let T = {z1,zy,...,2,} be a subset of Z[i]. Define an
ordering on T as follows: If q(z;) < q(z)), then z; < z;. If q(z;) = q(z;), where z; ~ a + ib and z; ~ c + id, such that
a,b,c,d>0,then z; < zj if b < d. The valuation function q is defined as: q(a + ib) = a® + b*. The relation < is a
well-defined linear ordering on T.

Example 3.2. T = {-2 + 3i, -2 — 3i,4 + 5i} is ordered set in Z [i]. zq = i(3+2i) = 3+2iand z; = —(2+3i) = 2+ 3],
S0 21 < zp < Z3.

Definition 3.3. (Ordering in polynomial rings over a field) Let T = {f1, f2, ..., fa} be a subset of Z,[x], where p is
a prime integer. Define an ordering on T as follows: If deg(f;) < deg(f;), then f; < f;. If deg(f;) = deg(f;) with
fi~ X"+ X"+ L+ ax +ag and fi ~ X"+ by x4 L+ bix + by with 0 < aj, by < p—1, then fi(x) < f(x) if
aj, < bj,, where jo is the smallest index j such that a; # b;. Again, the relation < is a well-defined linear ordering on
T.

Example 3.4. T = {x2 +2x+ 1,2 +3x+ 1L, x* +x2 + 1} is an ordered set in Zy[x]. a1 = 2 and by = 3, so

h<f<fs

Definition 3.5. (Positive Elements in UFDs) An nonzero element n in D is positive if n > 0, the zero element in D
and > is the ordering defined on D.

4. GCED Matrices in UFDs

In this section, we introduce the concept of GCED matrices defined on GCED-closed and GCED non-
closed sets over UFDs. Complete characterization for the factorization, determinant, trace and inverse of
such matrices is given. Moreover, examples in Z[i] and in Z,[x] are presented.

4.1. Structures and Determinants of the GCED Matrices

LetT = {x1,x3,...,x,} be a subset of D. The GCED matrix (T,) defined on T is the n X n matrix whose ijth
entry is (xij)e) = (xi, Xj)e, the greatest common exponential divisor of x; and x;.

Let R = {y1, Y2, ..., Ym} be the minimal GCED-closed set containing T (GCED closure of T), such that
Y1 < Y2 < -+ < Yp. Define the function g(m) as follows:

gomy= Y Y Ol e p).

abi=c1 a,b,=c,

where m = p{'py...p; is an element in D.
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Theorem 4.1. Let T = {x1,%»,...,x,} be a GCED-closed set in D. Then,

Y 1Y aw|= Y ga.

xk‘e(xnxj)f dlexy dle(xi/xj)e
dfex;
Xp <Xy

Proof. Letd |, (x;,xj). and let S = {xi, Xx,, ..., Xx, } be an ordered subset of T such that x;,, | (x,-, x]-)e and d |, x,

forevery 1 <m <r. Thend |, (xk,, Xk,, .., Xk, )e Which is an element in T as T is a GCED-closed set. Since T
is an ordered set, then (x¢,, Xk,, ..., X )e = Xk, Butd | xi,and d 1, x, whenever x, < x, as xi, is the minimal
element in S. So, each divisor of (xi, xj)e is found once in the sum. Hence,

Y 1Y aw|= Y ga.

xk‘e(xnxj)f dlexy dle(xi/xj)e
dfex;
Xp <Xy

O

Let R = {y1,¥y2,-..,Yym} be the GCED-closure of T = {x1,x,...,X,}, where y; < y» < --- < y,, and
X1 <Xp < -+ < Xy.

Theorem 4.2. (T,) = CyC', where the n x m matrix C = (ci;) is defined as:

R le xi
Y 0, else

and ¢ is an m X m diagonal matrix defined as:

g =diag| Y g(d), ) g, Y, 9(@)|-

dla]/l dle}/Z dlz’ym
dfeyn eyr
Yr<Um

Proof. The ij™ entry of CyC' is

m

(cyc), = Yew| Yo |ex= | Y o)

k=1 dleyk Yilexi | dleyk
d'feyr yklex/' d)ffyr
Yr<Vk Yr<Uk

= ), | Y@= ). s@.

Yle(xixp)e | dleyk dle(xi,xj)e
e lr
Yr<bk



W. Zeid et al. / Filomat 36:11 (2022), 3775-3784 3779

By the Mdbius inversion exponential formula, it follows that

Zg(d) =m.

dl.m

Hence,

(Cl’bct)i]’ = (x;, xj)g = ((Te))ij-

0
n
Theorem 4.3. det(T,) = Z (detC(kl,kz,_,,,k,l))zn Z g(d) |, where C, ,,...x,) is the submatrix of C con-
1<k <ky<...<k,<m i=1 d|€yki
eV
Yir <Yk

sisting of ki, kil .., k" colummns of C.

Z g(d) exists. (T,) =
dleyki

dt. Yy
Yir <yk1'

Proof. Let D, be an extension field of D(x), the field of fractions of D, in which

CyC! = AA!, where A = C2. Apply the Cauchy-Binet formula to get

det(Te) (d(?fA(k1 szn--,kn))(dEtAikl ,kz,...,kn))

1<k <...<k,<m

(detA(kl,kz,m,kn))z’

1<k <...<k,<m

where A 1, _«y is the submatrix of A consisting of k' k", ... k" columns of A. Moreover, detAx. k, ) =
(1/2rrn) g 1 2 n (1r2/ /n)

n

detCioie, iy |[[| X, 9()| Hence,

i=1 d|fykl

d)(eykr
Yir <Uk;

n

det(T,) = Z (dEtC(kl,kz,.,.,k,,))ZH Z g(d) |-

1<ky <ko<...<k,<m =1 | dleyy,

d)feyky
Yir <Yk;

O

Remark 4.4. If < is the ordering defined on D, then Z g(d) > 0.

d‘eyki
d)f('}/ky
Yir <Yk;
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Example 4.5. Let T = {-2 + 4i, -1 + 7i,—12 — 16i} which is not a GCED-closed set in Z[i]. Its GCED-closure is
R=1{1+3i,-2+4i,-1+7i,-12 — 16i}. The GCED matrix (T,) defined on T is:

—2+4i 1+3i -2 +4i
(T)=| 1+3i -1+7i -=1+7i
2+4i -1+7i -12-16i
And
143 0 0 0 11 1
1100 .
0 -=3+i 0 0 10 1
. _
o= (1’} 0 0 244 0 01 1|
0 0 0 -8-24i|l0 0 1
110F[
det(T)=|1 0 1| Y g@d) gd) ) g
1 1 1 d|3y1 dle]/Z d‘(’yii
d)fuyl d)ffyr
Yr<y3

—_
—_

0 2
#1000 Yg@d) g g

1 1 1) an dleyn dleya
d*gyl d)fu]/r
yr<y4

2
#1010 Y gd) 9@ 9@

11 1(ay  dy  dews
d{e}/v d*u]/r
Yr<ys Yr<Va

2
#0101 Y g@d) @) g

1 1 11 depe dleys dleys

d*eyl d)(L’yY date Yr
Yr<ys Yr<la

—_
o
o

= —388 + 616i.

Corollary 4.6. Let T = {x1,x2,...,%,} be a GCED-closed subset of D. Then,

n

der(T) = [ ]| Y o9@|-

k=1 dlgxk
afex;
X <Xk

Proof. The matrix C is a lower triangular with main diagonal (1,1, ..., 1),, since T is a GCED-closed set and

n

det(T,) = H Z g@d)].

k=1 d|CXk
afex;
X <X
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Corollary 4.7. Let T = {x1,x2,...,x,} be a subset of D, then

n

(1) = Y X

i=1

n

Theorem 4.8. Let T = {x1,xy,...,%,} be a subset of D. Then, det(T.) = H Zg(d) if and only if T is GCED-
k=11 dl.x
i
Xp <Xy

closed.

Proof. The necessary condition follows from corollary 4.6. Now, assume that T is not a GCED-closed set
and the equality holds. Theorem 4.3 gives

det(T,) = Z (dEtC(kl,kz,.,.,k,,))zﬁ Z g(d)|.

1<ky <k <...<k,<m i=1 dleyk‘.

d)feyky
Yir <Yk;

This sum runs over the all combinations of the kf.h columns of the matrix C, where 1 < i < n. In each
combination we get a new term in this sum, as yy, related to the chosen column k;. Since T is a subset of

R, then det(T,) = H Z g(d) |+ s, where s > 0. Consequently, det(T.) > H Z g(d) | which contradicts the

k=1 | dlx k=1 | dlox
exy afexy
X <Xk Xp<Xp
necessary condition that the equality holds. d

4.2. Inverse of the GCED Matrix
Let T = {x1,x,...,x,} be a GCED-closed subset of D. We have defined the n x n matrix C = (c;) as:

. 1, yjle xi
g 0, else.

Theorem 4.9. The inverse of C is the n X n matrix W = (w;;) which is defined as:

2 uOd), if x; o xi
-~

dle 7

W=y oy

date x_],/ Xr<Xj

0, otherwise.

Proof. The ij" entry of CW is given by

(cw);j zicikwkj = Z Z uOd) | = ZH(E)(d) .
k=1

Xglexi dl, % dl, &
Xjlexk %j

=z
|

K

ﬂ
dr, 7 e

X <Xg X <Xj
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By a similar argument to that given in theorem 1, we have

Y| 2 u@ = ) ) =

Xk, Xi Xk Xi
—le=|dl= dl. =
xXjexj [T °Xj

Xr
a3

Xp<Xj

O

if X =x]'

[5)-{o

otherwise

Theorem 4.10. The inverse of the n X n GCED matrix (T,) is the matrix My = (m;;)«) where

Y uo@ Zl y

g(d) "

Xilex Xk
!.‘e k dlex_ d“'x
x/‘exk i dlexy j
Xr ek Xr
d'fE; dtex, d)fe_
< X <Xj Xj
Xr <Xk Xy <Xk

Proof. My =T} = (CyC)™" = W'y™'W, where W = C and ¢! = diag

(e)

— e
S M DI
Xilexx dle X g ) dle Xk
Hlex | N dlox p
d){e X_z d}ffxr d)ff X_)
Xy <Xk Xp <X X, <x;{
|

O@d)|.

3782

1 1 1 So
Y@ Y oY @
dlex1 dlexz dlexn
d'fexl d{exr
X, <Xy

Example 4.11. Let T = {xz +2,3 +2x2 +2x+ 1, x* +x% + 1} which is GCED-closed set in Zs[x]. The GCED

matrix defined on T is:

x2+2 X2 +2
24+2 P22 +2x+1
242 P +2x2+2x+1

(Te) =

X2 +2
B2+ 2x+1 |,
4+l
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Then,

1
= @ (y2 = @2
my = P (x" + z)g(x2 " Z)M (x°+2)

1
g3 + 2x% + 2x + l)‘u
+ (O + 2% +2x +2) + Ot + 2% + 1)]x
1
g3 +x2 +2x +2) + gx* + x%2 + 1)
X [uO03 + 2%+ 2x +2) + u@(ct + 2%+ 1)]
_ 1 N 1 _ 1
2+2 xB+x2+2x+2  (x+1)2

+u@03 + 2% +2x + 1) O3 +2x2 +2x + 1)

My = y(“>(9c3 +2x2 +2x + 1) ©x? +2)

1
g3 +2x2 + 2x + 1)‘u
+ @0 + 2% +2x +2) + Ot + 2% + 1)]x
1
g3 +x2 +2x+2) + g(x* +x% + 1)
1
B+ +2x+2

pOE + 2% +2x +2)

myz = W90 + 2% +2x +2)
1
g3 +x2+2x+2) + g(x* +x2 + 1)

+u@0t + 22 +1)] 1O +2)
= 0.

Completing the computation, we get

_ 1 IS S 0
(x +1)2 B+a2+2x+2
Mox = 1 ¥ +2 1
e~ ———— -
B+a2+2x+2 2x{+x 2x4+x3+1x2+2x
0

2x% + x3 +x2 4+ 2x 2x4 + x3 + x2 4+ 2x
5. Conclusion

We considered the GCED matrices defined on GCED closed and non-GCED closed sets over a unique
factorization domain D. We gave a complete characterization of their structure, determinant, trace, and
inverse.
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