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Abstract. This paper focuses on the study of the existence of a mild solution to time and space-fractional
stochastic equation perturbed by multiplicative white noise. The required results are obtained by stochastic
analysis techniques, fractional calculus, semigroup theory and Leray-Schauder nonlinear alternative.

1. Introduction

In this paper, we are interested in the existence of solutions for nonlinear fractional difference equations cDαt [u − h (u)] = ∆u (t) + u · ∇u + f (v) W (t) , x ∈ D, t > 0,
cDαt [v − h (v)] = ∆v (t) + v · ∇v + 1 (u) W (t) , x ∈ D, t > 0,

(1)

subject to the initial conditions u (x, 0) = u0 (x) , x ∈ D, t = 0,
v (x, 0) = v0 (x) , x ∈ D, t = 0,

(2)

and the Dirichlet boundary conditions u (x, t) = 0, x ∈ ∂D,
v (x, t) = 0, x ∈ ∂D,

(3)

where u ∈ D ⊂ Rd, u (x, t) represents the velocity field of the fluid, the state u (·) ∈ H, H is the separable
real Hilbert space equipped with inner product ⟨·, ·⟩, the operator ∆ is the Laplacian, f , 1 and h are a
functions satisfying some hypotheses are detailed below in Section 3, the termes f (v) W (t) = f (v) d

dt W (t)
and 1 (u) W (t) = 1 (u) d

dt W (t) describes a state dependent random noise, where W (t)t∈[0,T] is a Ft−adapted
Wiener process defined in completed probability space (Ω,F,P) with expectation E and associate with the
normal filtration

Ft = σ {W (s) : 0 ≤ s ≤ t} ,
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and cDαt is the standard Caputo fractional derivative of order α (0 < α < 1) for the function u (x, t) with
respect time t which is defined by cDαt u (x, t) = 1

Γ(1−α)

∫ t

0
∂u(x,s)
∂s (t − s)−α ds, 0 < α < 1,

∂u(x,t)
∂t , α = 1,

(4)

where Γ : (0,+∞)→ R, defined by

Γ (u) =

+∞∫
0

tu−1e−tdt,

is called Euler’s gamma function.

Fractional order differential operators are global while many integer order differential operators are
local. Therefore, fractional calculus can be useful to describe many of real-world problems that cannot
be covered in the classic mathematical literature, see [17]. Since the next state of many systems depend
on its current and historical states, researchers need to use a method that co-ups well with the real life
problems. These problems happen in anomalous transport [18], economics [1], relaxation electro-chemistry
[14]. However, it has been shown recently that fractional integrals and derivatives possess better modeling
capabilities for describing challenging phenomena in physics, material science, biology, stochastic compu-
tation, finance, etc, see, for example, [2, 7, 23]. Random differential and integral equations are typically
used to model subdiffusion phenomena, see [8, 25]. Because of the fractional time derivative of the state
variable in the model, a solution at a time instance t is related to the solution at all the time previous to
t. For example, a stochastic model for drug distribution in a biological system was described by Tsokos
and Padgett [26] to a closed system with a simplied heat, one organ or capillary bed, and re-circulation
of a blood with a constant rate of flow, where the heart is considered as a mixing chamber of constant volume.

The existence and non-existence results for partial differential equations (Navier-Stokes equations
(NSEs)) in [13]. Chemin et al. [4] studied the global regularity for the large solutions to the NSEs. Miura
[19] focused on the uniqueness of mild solutions to the NSEs. Germain [9] presented the uniqueness criteria
for the solutions of the Cauchy problem associated to the NSEs. However, The existence and uniqueness
of solutions for the stochastic Navier-Stokes equations (SNSEs) with multiplicative Gaussian noise were
proved in [20, 28]. The large deviation principle for SNSEs with multiplicative noise had been established
in [29, 31]. The time-fractional Navier-Stokes equations has been recently treated by a number of authors.
It is presented as a useful approach for the description of long memory processes which are governed by
anomalous diffusion processes [22, 33] and due to its significant role in simulating the anomalous diffu-
sion in fractal media [6, 32]. The research on numerical approximation and techniques for the solution of
stochastic differential equations driven by fractional Brownian motion (FBM) has attracted intensive inter-
est. Most early established numerical methods are developed for handling the space fractional or the time
fractional stochastic differential equations driven by FBM. The existence, uniqueness and other quantita-
tive and qualitative properties of solutions to fractional stochastic partial differential equations or nonlinear
neutral stochastic differential equations with time-dependent delay have been extensively considered by
many authors, see, [10, 11, 21, 24, 30] for details. So, the subject of the present paper, is a class of system of
fractional stochastic partial differential equations satisfying certain global Lipschitz and growth condition
and it seem that little is known about existence of mild solutions for coupled fractional stochastic partial
differential equations. Hence, the main aim of this paper is to fill this gap and to enrich this academic area.
By the motivation of the above works, the main contribution of this paper is to establish the existence of
mild solution for the problem (1) − (3). Using mainly the Hölder’s inequality, stochastic analysis and the
approach is based on the Leray-Schauder nonlinear alternative.

The outline of this paper is as follows. In Section 2, we will introduce some notations and preliminaries,
which play a crucial role in our theorem analysis. In Section 3, we give the main result of this paper.
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2. Preliminaries

In this section, we give some notions and certain important preliminaries, which will be used in the
sequel.
Let

(
Ω,F,P, {F}t≥0

)
is a filtered probability space with a normal filtration {F}t≥0 satisfying that F0 contains

all P-null sets, where P is a probability measure on (Ω,F), F is the Borel σ−algebra, and the operator A as
infinitesimal generator of a strongly continuous semigroup on the Hilbert space H = L2 (D). In particular,
let

A = −∆, D (A) = H1
0 (D) ∩ L2 (D) ,

where H1
0 (D) is the usual Sobolev space. It is clear that the operator A is self-adjoint. Let ek denote the

eigenvectors corresponding to eigenvalues λk such that

Aek = λkek, ek =
√

2 sin (kπ) , λk = π
2k2, k ∈N+.

For any σ > 0, let Hσ be the domain of the fractional power A
σ
2 = (−∆)

σ
2 , which can be defined by

σ > 0, A
σ
2 ek = γ

σ
2
k ek, k = 1, 2, . . .

and

Hσ = D
(
A
σ
2

)
=

v ∈ L2 (D) , s.t. ∥v∥2Hσ =
∞∑

k=1

γ
σ
2
k v2

k < ∞

 ,
where vk = ⟨v, ek⟩ with the inner product ⟨·, ·⟩ in L2 (D), the norm ∥Hσv∥ =

∥∥∥A
σ
2 v

∥∥∥, the bilinear operator
B (u, v) = u ·∇v andD (B) = H1

0 (D) with the slight abuse of notation B (u) = B (u,u). Then, we can rewrite the
first equation in (1) supplemented with the first boundary conditions in (2) − (3) as follows in the abstract
form  cDαt [u (t) − h (u (t))] = Au (t) + B (u (t)) + f (v (t)) W(t)

dt , t > 0,
u (0) = u0,

(5)

Similarly, we can rewrite the second equation in (1) supplemented with the second boundary conditions in
(2) − (3) as follows in the abstract form

 cDαt [v (t) − h (v (t))] = Av (t) + B (v (t)) + 1 (u (t)) W(t)
dt , t > 0,

v (0) = v0,

where {W (t) , t ≥ 0} is a Q-Wiener process with linear bounded covarience operator Q such that a trace class

operator Q denote Tr (Q) =
∞∑

k=1
λk < ∞, which satisfies that Qek = λkek, k = 1, 2, . . ., then the Wiener process

is given by

W (t) =
∞∑

k=1

√
λkβk (t) ek,

where
{
βk

}∞
k=1 is a sequence of real-valued standard Brownian motions.

Let L2
0 = L2

(
Q

1
2 (H) ,H

)
be a Hilbert-Schmidt space of operators from Q

1
2 (H) to H with the norm

∥∥∥ϕ∥∥∥L2
0
=

∥∥∥∥ϕQ
1
2

∥∥∥∥
Hσ
=

 ∞∑
n=1

ϕQ
1
2 en


1
2

,
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i.e.,

L2
0 =

ϕ ∈ L (H) :
∞∑

n=1

∥∥∥∥λ 1
2
nϕQ

1
2 en

∥∥∥∥2
< ∞

 ,
where L (H) is the space of bounded linear operators from H to H.
For an arbitrary Banach space K, we denote

∥v∥Lp(Ω,K) =
(
E ∥v∥pK

) 1
p , ∀v ∈ Lp (Ω,F,P,K) , ∀p ≥ 2.

Definition 2.1. An F−adapted process X on [0,T]×Ω is elementary processes if for a partitionϕ = {t = 0 < t1 < . . . < tn = T}
and

(
Fti

)
−measurable random variables

(
Xti

)
i<n , Xt satisfies

Xt (ω) =
n−1∑
i=0

Xi (ω)χ[ti,ti+1) (t) , f or 0 ≤ t ≤ T, ω ∈ Ω.

The Itô integrale of the simple process X is defined by

T∫
0

X (s) dW (s) =
n−1∑
i=0

X (ti) (W (ti+1) −W (ti)) ,

whenever Xti ∈ L2 (
Fti

)
for all i ≤ n.

The following result is one of the elementary properties of square integrable stochastic processes.

Lemma 2.2. ([15, 16] Itô Isometry for Elementary Processes) Let (Xl)l∈N be a sequences of elementary processes.
Assume that

T∫
0

E |X (s)|2 ds < ∞,

where |X|2 =
∞∑

l=1
X2

l . Then

E


∞∑

l=1

T∫
0

Xl (s) dW (s)


2

= E


∞∑

l=1

T∫
0

X2
l (s) ds

 < ∞.
Remark 2.3. For a square integrable stochastic process X on [0,T], it’s Itô integral is defined by

T∫
0

X (s) dW (s) = lim
n→∞

T∫
0

Xn (s) dW (s) ,

taking the limit in L2, with Xn defined in Definition 2.1. Then the Itô isometry holds.

We shall also need the following result with respect to the operator A (see [34]).

Lemma 2.4. Let ν > 0 and T (t) = e−tA, t ≥ 0 is a semigroup generated by an operator −A on Lp. Then, there exists
a constant Cν dependent on ν such that

∥AνT (t)∥L(K) ≤ Cνt−ν, t > 0,

in which L (K) denotes the Banach space of all bounded operators from K to itself.
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Next we will introduce the following lemma to estimate the stochastic integrals, which contains the
Burkhoder-Davis-Gundy’s inequality.

Lemma 2.5. ([12]) For any 0 ≤ t1 < t2 ≤ T and p ≥ 2 and for any predictable stochastic process v : [0,T]×Ω→ L2
0

which satisfies

E




T∫
0

∥v (s)∥2L2
0

ds


p
2
 < ∞,

then, we have

E


∥∥∥∥∥∥∥∥

t2∫
t1

v (s) dW (s)

∥∥∥∥∥∥∥∥
p < C

(
p
)

E




t2∫
t1

∥v (s)∥2L2
0

ds


p
2
 .

The existence results is based on Leray-Schauder nonlinear alternative [29].

Lemma 2.6. (Nonlinear alternative for single valued maps). Let E be a Banach space, C a closed and convex subset
of E and U an open subset of C with 0 ∈ U. Suppose that F : U → C is a continuous and compact (that is F

(
U
)

is
relatively compact subset of C) map. Then either
(i) F has a fixed point in U, or
(ii) there is a u ∈ ∂U ( the boundary of U in C) and λ ∈ (0, 1) with u = λF (u).

Ispired by the definition of the mild solution to the time-fractional differential equations (see, [6, 31, 33]),
we give the following definition of mild solution for our problem (5).

Definition 2.7. An Ft-adapted stochastic process (u (t) , : t ∈ [0,T]) is called a mild solution to (5) if the following
integral equation is satisfied

u (t) = Eα (t) u0 + h (u (t)) +

t∫
0

(t − s)α−1 Eα,α (t − s) B (u (s)) ds (6)

+

t∫
0

(t − s)α−1 Eα,α (t − s) f (v (s)) dW (s) ,

where the generalized Mittag-Leffler operators Eα (t) and Eα,α (t) are defined, respectively, by

Eα (t) =

∞∫
0

ζα (θ) T (tαθ) dθ,

and

Eα,α (t) =

∞∫
0

αθζα (θ) T (tαθ) dθ,

where T (t) = e−tA, t ≥ 0 is an analytic semigroup generated by the operator −A and the Mainardi’s Wright-type
function with α ∈ (0, 1) is given by

ζα (θ) =
∞∑

k=0

(−1)k θk

k!Γ (1 − α (1 + k))
.
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Lemma 2.8. ([3]) For any α ∈ (0, 1) and −1 < ν < ∞. Then

ζα (θ) ≥ 0 and
∫
∞

0
θνζα (θ) dθ =

Γ (1 + ν)
Γ (1 + αν)

, (7)

for all θ ≥ 0.

The linear bounded operators {Eα (t)}t≥0 and
{
Eα,α (t)

}
t≥0 in (6) have the following properties.

Lemma 2.9. For any t > 0, 0 < α < 1 and 0 ≤ ν < 2. Then, there exist a constants C = CνΓ(1−ν)
Γ(1−αν) and D = CναΓ(2−ν)

Γ(1−αν)
such that

∥Eα (t)χ∥Hν ≤ Ct−
αν
2 ∥χ∥ ,

∥∥∥Eα,α (t)χ
∥∥∥

Hν ≤ Dt−
αν
2 ∥χ∥ . (8)

Proof. For t > 0 and 0 ≤ ν < 2, by means of Lemma 2.4 and (7), we have

∥Eα (t)χ∥Hν ≤

∞∫
0

ζα (θ) ∥AνT (tαθ)χ∥ dθ

≤

∞∫
0

Cνt−
αν
2 θ−νζα (θ) ∥χ∥ dθ

=
CνΓ (1 − ν)
Γ (1 − αν)

t−
αν
2 ∥χ∥

= Ct−
αν
2 ∥χ∥ , χ ∈ L2 (D) ,

and

∥∥∥Eα,α (t)χ
∥∥∥

Hν ≤

∞∫
0

αθζα (θ) ∥AνT (tαθ)χ∥ dθ

≤

∞∫
0

Cναt−
αν
2 θ1−νζα (θ) ∥χ∥ dθ

=
CναΓ (2 − ν)
Γ (1 − αν)

t−
αν
2 ∥χ∥

= Dt−
αν
2 ∥χ∥ , χ ∈ L2 (D) ,

The proof is completed.

Lemma 2.10. For 0 < α < 1 and 0 ≤ ν < 2 and 0 ≤ t1 < t2 ≤ T. Then, there exist a constants C′ =
2CνΓ(1− ν2 )
νTαν0 Γ(1− αν2 ) and

D′ =
2CνΓ(2− ν2 )

νTαν0 Γ(1+α(1− ν2 )) such that

∥(Eα (t2) − Eα (t1))χ∥Hν ≤ C′ (t2 − t1)
αν
2 ∥χ∥ , (9)

and ∥∥∥(Eα,α (t2) − Eα,α (t1)
)
χ
∥∥∥

Hν ≤ D′ (t2 − t1)
αν
2 ∥χ∥ . (10)

Moreover, for any t > 0, the operators Eα (t) and Eα,α (t) are strongly continuous
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Proof. For any 0 < T0 ≤ t1 < t2 ≤ T. It is obvious to see:

t2∫
t1

dT (tαθ)
dt

dt = T
(
tα2θ

)
− T

(
tθ1

)

= −

t2∫
t1

αtα−1θAT (tαθ) dt,

and by (7) and Lemma 2.4, we have

∥(Eα (t2) − Eα (t1))χ∥Hν = ∥Aν (Eα (t2) − Eα (t1))χ∥

=

∥∥∥∥∥∥∥∥
∞∫

0

ζα (θ) Aν
(
T
(
tα2θ

)
− T

(
tα1θ

))
χdθ

∥∥∥∥∥∥∥∥
≤

∞∫
0

αθζα (θ)

t2∫
t1

tα−1
∥A2+νT (tαθ)χ∥L2 dtdθ

≤

∞∫
0

Cναθ−
ν
2 ζα (θ)


t2∫

t1

t−
αν
2 −1dt

 ∥χ∥ dθ

=
2CνΓ

(
1 − ν2

)
νΓ

(
1 − αν2

) (
t−
αν
2

1 − t−
αν
2

2

)
∥χ∥

≤

2CνΓ
(
1 − ν2

)
νTαν0 Γ

(
1 − αν2

) (t2 − t1)
αν
2 ∥χ∥

= C′ (t2 − t1)
αν
2 ∥χ∥ , χ ∈ L2 (D) .

Also ∥∥∥(Eα,α (t2) − Eα,α (t1)
)
χ
∥∥∥

Hν =
∥∥∥Aν

(
Eα,α (t2) − Eα,α (t1)

)
χ
∥∥∥

=

∥∥∥∥∥∥∥∥
∞∫

0

αθζα (θ) Aν
(
T
(
tα2θ

)
− T

(
tα1θ

))
χdθ

∥∥∥∥∥∥∥∥
≤

∞∫
0

α2θ2ζα (θ)

t2∫
t1

tα−1
∥A2+νT (tαθ)χ∥L2 dtdθ

≤

∞∫
0

Cνα2θ1− ν2 ζα (θ)


t2∫

t1

t−
αν
2 −1dt

 ∥χ∥ dθ

=
2αCνΓ

(
2 − ν2

)
νΓ

(
1 + α

(
1 − ν2

)) (
t−
αν
2

1 − t−
αν
2

2

)
∥χ∥

≤

2CνΓ
(
2 − ν2

)
νTαν0 Γ

(
1 + α

(
1 − ν2

)) (t2 − t1)
αν
2 ∥χ∥

= D′ (t2 − t1)
αν
2 ∥χ∥ , χ ∈ L2 (D) .
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Thus

∥(Eα (t2) − Eα (t1))χ∥Hν → 0,

and ∥∥∥(Eα,α (t2) − Eα,α (t1)
)
χ
∥∥∥

Hν → 0,

as t1 → t2 which mean that the operators Eα (t) and Eα,α (t) are strongly continuous.

3. Existence results

In this section we present our main results on the existence of mild solutions of problem (5). To do this,
we impose the following hypotheses.
(H1) A is the infinitesimal generator of {T (t) , t ≥ 0} on H and also assuming that the operator Eα (t) , t > 0
is compact.
(H2) The functions f , 1 : Ω ×H→ L2

0 satisfies the following global Lipshitz and growth conditions:∥∥∥ f (u)
∥∥∥

L2
0
≤ R ∥u∥ ,

∥∥∥ f (u) − f (v)
∥∥∥

L2
0
≤ R ∥u − v∥ ,

and ∥∥∥1 (u)
∥∥∥

L2
0
≤ R′ ∥u∥ ,

∥∥∥1 (u) − 1 (v)
∥∥∥

L2
0
≤ R′ ∥u − v∥ ,

for any u ∈ H, v ∈ H and R, R′ are a positive constants.

(H3) The initial values u0, v0 : Ω→ Hν is a F0−measurable random variable, it hold that

∥u0∥Lp(Ω,Hν) < ∞, f or any 0 ≤ ν < α < 2.

and

∥v0∥Lp(Ω,Hν) < ∞, f or any 0 ≤ ν < α < 2.

(H4) The function h : L2
0 → L2

0 is continuous and there exists Lh > 0 such that

E ∥h (u1 (t)) − h (u2 (t))∥p
L2

0
≤ Lh ∥u1 (t) − u2 (t)∥p

L2
0
, t ∈ [0,T] , u1, u2 ∈ L2

0,

and

E ∥h (u (t))∥p
L2

0
≤ LhE ∥u (t)∥p

L2
0
, t ∈ [0,T] , u ∈ L2

0.

(H5) Let N > 0 be a real number, then the bounded bilinear operator B : L2 (D) → H−1 (D) satisfies the
following properties

∥B (u)∥H−1 ≤ N ∥u∥2 ,

and

∥B (u) − B (v)∥H−1 ≤ N (∥u∥ + ∥v∥) ∥u − v∥ ,

for any u, v ∈ L2 (D).
In the proof of main result, we need the following Lemmas.
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Lemma 3.1. Assume that conditions (H1) and (H5) hold. Let Φ1 be the operator defined by for each u ∈ K

Φ1 (u) =

t∫
0

(t − s)α−1 Eα,α (t − s) B (u (s)) ds. (11)

Then, Φ1 is continuous and maps K into itself.

Proof. It is obvious that Φ1 is continuous. Next we show that Φ1 (K) ⊂ K. By (H1), (H5), (8), (11), Lemma 2.5
and by applying Hölder inequality, we have

E ∥(Φ1u) (t)∥pHν = E

∥∥∥∥∥∥∥∥
t∫

0

(t − s)α−1 A1Eα,α (t − s) Aν−1B (u (s)) ds

∥∥∥∥∥∥∥∥
p

Hν

(12)

≤ Dp


t∫

0

(t − s)
p( α−1

2 )
p−1 ds


p−1 ∫ t

0
E
[
∥Aν−1B (u (s))∥p

]
ds

≤ DpC(p)Np

 p − 1

p
(
α+1

2

)
− 1


p−1

(T)p( α+1
2 )−1

t∫
0

E
[
∥u (t)∥pHν

]

= γ1

t∫
0

E
[
∥u (s)∥pHν

]
ds,

where γ1 = DpC
(
p
)

Np
[

p−1
p( α+1

2 )−1

]p−1
(T)p( α+1

2 )−1.

Which means that Φ1 (K) ⊂ K. This complete the proof.

Lemma 3.2. Assume that conditions (H1) and (H2) hold. Let Φ2 be the operator defined by for each v ∈ K

Φ2 (v) =

t∫
0

(t − s)α−1 Eα,α (t − s) f (v (s)) dW (s) .

Then, Φ2 is continuous and maps K into itself.
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Proof. By (H1) , (H2), (8), Lemma 2.5 and applying Hölder inequality, we have

E ∥(Φ2v) (t)∥pHν = E

∥∥∥∥∥∥∥∥
t∫

0

(t − s)α−1 Eα,α (t − s) f (v (s)) dW (s)

∥∥∥∥∥∥∥∥
p

Hν

(13)

≤ DpE




t∫
0

∥∥∥(t − s)α−1 Eα,α (t − s)
∥∥∥2 ∥∥∥Aν f (v)

∥∥∥2

L2
0

ds


p
2


≤ DpC
(
p
) 

t∫
0

(t − s)
2p(α−1)

p−2 ds


p−2

2 t∫
0

E
∥∥∥Aν f (v)

∥∥∥p

L2
0

ds

≤ DpC
(
p
) ( p − 2

p (2α − 1) − 2

) p−2
2

T
p(2α−1)−2

2

t∫
0

E
∥∥∥Aν f (v)

∥∥∥p

L2
0

ds

= γ2

t∫
0

E
[
∥v (s)∥pHν

]
ds,

where γ2 = C
(
p
)

DpRp
[ p−2

p(2α−1)−2

] p−2
2 T

p(2α−1)−2
2 .

That is Φ2 (K) ⊂ K. This complete the proof.

Lemma 3.3. Suppose (H1) holds. Then

E
[
∥Eα (t) u0∥Hν

]
≤ E [∥u0∥Hν ] .

Proof. By Lemma 2.4, we have

E
[
∥Eα (t) u0∥Hν

]
≤ E


∞∫

0

ζα (θ)
(
∥AνT (tαθ) u0∥

2
) 1

2 dθ


≤ E


∞∫

0

ζα (θ)

 ∞∑
n=1

〈
Aνe−tαθAu0, en

〉2


1
2

dθ


≤ E


∞∫

0

ζα (θ)

 ∞∑
n=1

〈
Aνu0, e−tαθλ

ν
2
n , en

〉2


1
2

dθ


≤ E


∞∫

0

ζα (θ) ∥u0∥Hν dθ

 = E [∥u0∥Hν ] .

Now, let Φ3 be the operator defined by for each u ∈ K

(Φ3u) (t) = Eα (t) u0 + h (u (t)) .

Lemma 3.4. Suppose (H1) , (H3) and (H4) hold. Then Φ3 is continuous and maps K into K



N. Bouteraa / Filomat 36:11 (2022), 3573–3591 3583

Proof. The continuity of Φ3 follows from (H3) and (H4).
Next, we show that Φ3 (K) ⊂ K. From (H1), (H4), (8) and Lemma 3.3, we have

E ∥(Φ3u) (t)∥p
L2

0
≤ E [∥u0∥Hν ] + E ∥h (u (t))∥p

L2
0
≤ E [∥u0∥Hν ] + LhE ∥u (t)∥p

L2
0
.

So, we conclude Φ3 (K) ⊂ K.

Remark 3.5. In a similar manner, we get a similar previous lemmas in Section 3, when, we take f (v) = 1 (u) and
consider the following second integral equation ( that is, the mild solution to the second abstract formulation to
(1) − (3)):

v (t) =

t∫
0

(t − s)α−1 Eα,α (t − s) B (v (s)) ds +

t∫
0

(t − s)α−1 Eα,α (t − s) 1 (u (s)) dW (s) + Eα (t) v0 + h (v (t)) .

Now, we present the existence result of this paper. Let

Y =

u ∈ C ([0,T] ,Hν) , sup
t∈[0,T]

E ∥u (t)∥Hν < ∞ almost surely and ν ≥ 0

 .
From (6) and Remark 3.5, we consider the operator

Υ : Y × Y→ Y × Y,

Υ (u (t) , v (t)) = (F (u (t) , v (t)) ,G (u (t) , v (t))) , (u, v) ∈ Lp (Ω,H) , : t ∈ [0,T] ,

where

F (u, v) (t) =

t∫
0

(t − s)α−1 Eα,α (t − s) B (u (s)) ds

+

t∫
0

(t − s)α−1 Eα,α (t − s) f (v (s)) dW (s) + Eα (t) u0 + h (u (t)) ,

and

G (u, v) (t) =

t∫
0

(t − s)α−1 Eα,α (t − s) B (v (s)) ds

+

t∫
0

(t − s)α−1 Eα,α (t − s) 1 (u (s)) dW (s) + Eα (t) v0 + h (v (t)) .

Note that, the product space (Y × Y, ∥(u, v)∥) is a Banach space equipped with norm ∥u∥ + ∥v∥. Clearly,
the fixed point of Υ = (F,G) are solutions of problem (1)− (3). Then, the coupled system of boundary value
problems (1) − (3) can be written by

Υ (u, v) = (F (u, v) ,G (u, v)) .

Now, we set F = F1 + F2, where

(F1u) (t) = Eα (t) u0 + h (u (t)) ,
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and

(F2 (u, v)) (t) =

t∫
0

(t − s)α−1 Eα,α (t − s) B (u (s)) ds +

t∫
0

(t − s)α−1 Eα,α (t − s) f (v (s)) dW (s) ,

for t ∈ [0,T].

Lemma 3.6. Assume (H1), (H3) hold and 0 < ν < α ≤ 2, p ≥ 2. Then

E ∥Eα (t2) − Eα (t1)∥pHν ≤ (C′)p (t2 − t1)
αν
2 E ∥u0∥

p .

Proof. We set

I1 = F1 (t2) − F1 (t1) = Eα (t2) u0 − Eα (t2) u0

For any p ≥ 2. By (9), it follows that

E
[
∥I1∥

p
Hν

]
= E

[
∥Aν(Eα (t2) u0 − Eα (t1) u0)∥p

]
≤ (C′)p (t2 − t1)

αν
2 E ∥u0∥

p .

It is obviously to see that the term ∥(F1 (t2) − F1 (t1))∥Y → 0 as t1 → t2, which means that the operator F1 is
strongly continuous.

Lemma 3.7. Assume (H1) , (H2), (H5) hold and 0 < ν < α ≤ 2, p ≥ 2. Then, the operator F2 is uniformly bounded.

Proof. From Lemmas 3.1, 3.2 and by means of the extension of Gronwall’s lemma, we have

sup
t∈[0,T]

E
[
∥F2 (u, v) (t)∥pHν

]
≤ ∞,

that is, the operator F2 is uniformly bounded.

Lemma 3.8. Assume (H1) , (H2), (H5) hold and 0 < ν < α ≤ 2, p ≥ 2. Then the operator F2 is equicontinuous.

Proof. For any 0 ≤ t1 < t2 ≤ T, from

(F2 (u, v)) (t2) − (F2 (u, v)) (t1) (14)

=

t2∫
0

(t2 − s)α−1 Eα,α (t2 − s) B (u (s)) ds +

t2∫
0

(t2 − s)α−1 Eα,α (t2 − s) f (v (s)) dW (s)

−

t1∫
0

(t1 − s)α−1 Eα,α (t1 − s) B (u (s)) ds −

t1∫
0

(t1 − s)α−1 Eα,α (t1 − s) f (v (s)) dW (s) .
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We set

I2 =

t2∫
0

(t2 − s)α−1 Eα,α (t2 − s) B (u (s)) ds −

t1∫
0

(t1 − s)α−1 Eα,α (t1 − s) B (u (s)) ds (15)

=

t1∫
0

(t1 − s)α−1 [
Eα,α (t2 − s) − Eα,α (t1 − s)

]
B (u (s)) ds

+

t1∫
0

[
(t2 − s)α−1

− (t1 − s)α−1
]

Eα,α (t2 − s) B (u (s)) ds

+

t2∫
t1

(t2 − s)α−1 Eα,α (t2 − s) B (u (s)) ds

= I21 + I22 + I23,

and

I3 =

t2∫
0

(t2 − s)α−1 Eα,α (t2 − s) f (u (s)) dW(s) −

t1∫
0

(t1 − s)α−1 Eα,α (t1 − s) f (v) dW (s) (16)

=

t1∫
0

(t1 − s)α−1 [
Eα,α (t2 − s) − Eα,α (t1 − s)

]
f (v (s)) dW (s)

+

t1∫
0

[
(t2 − s)α−1

− (t1 − s)α−1
]

Eα,α (t2 − s) f (v (s)) dW (s)

+

t2∫
t1

(t2 − s)α−1 Eα,α (t2 − s) f (v (s)) dW (s)

= I31 + I32 + I33.

For the first term I21 in (16), by (H5), (10), Lemma 2.5 and Hölder’s inequality, we have

E
[
∥I21∥

p
Hν

]
= E


∥∥∥∥∥∥∥∥

t1∫
0

(t1 − s)α−1 [
Eα,α (t2 − s) − Eα,α (t1 − s)

]
B (u (s)) ds

∥∥∥∥∥∥∥∥
p (17)

≤ Np(D′)p (t2 − t1)
pα(ν+1)

2


t1∫

0

(t1 − s)
p(α−1)

p−1 ds


p−1 t∫

0

E
[
∥A−1B (u (s))∥pH1

]
ds

≤ Np(D′)pC(p)Tpα−1

(
p − 1

pα − 1

)p−1  sup
t∈[0,T]

E
[
∥u (s)∥2p

H1

] (t2 − t1)
pα(ν+1)

2 .
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Using (H5), (10), Lemma 2.5 and Hölder’s inequality, we have

E
[
∥I22∥

p
Hν

]
= E


∥∥∥∥∥∥∥∥

t1∫
0

[
(t2 − s)α−1

− (t1 − s)α−1
] [

AνEα,α (t2 − s)
]

B (u (s)) ds

∥∥∥∥∥∥∥∥
p (18)

≤ Dp


t1∫

0

{[
(t2 − s)α−1

− (t1 − s)α−1
]
× (t2 − s)

−α(ν+1)
2

} p
p−1

ds


p−1

×

t∫
0

E
[
∥A−1B (u (s))∥pH1

]
ds

≤ DpNpC(p)T

 p − 1

p
(
α − α(ν+1)

2

) 
p−1  sup

t∈[0,T]
E
[
∥u (s)∥2p

H1

] (t2 − t1)
pα(1−ν)−2

2 ,

and

E
[
∥I23∥

p
Hν

]
= E


∥∥∥∥∥∥∥∥

t2∫
t1

(t2 − s)α−1 AνEα,α (t2 − s) B (u (s)) ds

∥∥∥∥∥∥∥∥
p (19)

≤ Dp


t2∫

t1

(t2 − s)α−1− α(ν+1)
2 ds


p−1 t2∫

t1

E
[
∥A−1B (u (s))∥pH1

]
ds

≤ NpDpC(p)

 p − 1

p
(
α − α(ν+1)

2

)
− 1


p−1  sup

t∈[0,T]
E
[
∥u (s)∥2p

H1

] (t2 − t1)
pα(1−ν)

2 .

Similarly, using (H1) , (H2) , (H5), Lemma 2.5 and Höder’s inequality, we have

E
[
∥I31∥

p
Hν

]
= E


∥∥∥∥∥∥∥∥

t1∫
0

(t1 − s)α−1 [
Eα,α (t2 − s) − Eα,α (t1 − s)

]
f (v (s)) dW(s)

∥∥∥∥∥∥∥∥
p (20)

≤ C
(
p
)

E




t1∫
0

∥∥∥(t1 − s)α−1 Aν
[
Eα,α (t2 − s) − Eα,α (t1 − s)

]∥∥∥2 ∥∥∥ f (v (s))
∥∥∥2

L2
0

ds


p
2


≤ C
(
p
)

(D′)p (t2 − t1)
pαν

2


t1∫

0

(t1 − s)
2p(α−1)

p−2 ds


p−2

2 t1∫
0

E
∥∥∥ f (v (s))

∥∥∥p

L2
0

ds

≤ Cp(D′)pRpT
2pα−p−1

2

(
p − 1

2pα − p − 2

)p−1  sup
t∈[0,T]

E
[
∥u (s)∥p

] (t2 − t1)
pαν

2 ,

and
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E
[
∥I32∥

p
Hν

]
= E


∥∥∥∥∥∥∥∥

t1∫
0

[
(t2 − s)α−1

− (t1 − s)α−1
] [

AνEα,α (t2 − s)
]

f (v (s)) dWs

∥∥∥∥∥∥∥∥
p (21)

≤ C
(
p
)

E




t1∫
0

∥∥∥∥[(t2 − s)α−1
− (t1 − s)α−1

] [
AνEα,α (t2 − s)

]∥∥∥∥2 ∥∥∥ f (v (s))
∥∥∥2

L2
0

ds


p
2


≤ C
(
p
)

Dp


t1∫

0

{[
(t2 − s)α−1

− (t1 − s)α−1
]
× (t2 − s)

−αν
2
} 2p

p−2 ds


p−2

2

×

t∫
0

E
[∥∥∥ f (v (s))

∥∥∥p

L2
0

]
ds

≤ C
(
p
)

DpRpT
(

2
(
p − 2

)
2pα (2 − ν) − 2

(
p + 2

) ) p−2
2

×

 sup
t∈[0,T]

E
[
∥u (t)∥p

] (t2 − t1)
2pα(2−ν)−2(p+2)

4 ,

and

E
[
∥I33∥

p
Hν

]
= E


∥∥∥∥∥∥∥∥

t2∫
t1

(t2 − s)α−1 AνEα,α (t2 − s) f (v (s)) ds

∥∥∥∥∥∥∥∥
p (22)

≤ C
(
p
)

E




t1∫
0

∥∥∥(t2 − s)α−1 AνEα,α (t2 − s)
∥∥∥2 ∥∥∥ f (v (s))

∥∥∥2

L2
0

ds


p
2


≤ C
(
p
)

Dp


t2∫

t1

(t2 − s)α−1− αν2


p−2

2

×

t2∫
t1

E
[∥∥∥ f (v (s))

∥∥∥p

L2
0

]
ds

≤ C
(
p
)

DpRp
(

2
(
p − 2

)
2pα (2 − ν) − 2

(
p + 2

) ) p−2
2

 sup
t∈[0,T]

E
[
∥u (t)∥p

] (t2 − t1)
2pα(2−ν)−2p

4 .

Taking expectation on the both side of (14) and taking into account the estimates (18)− (22), we deduce that

∥(F2 (u, v)) (t2) − (F2 (u, v)) (t1)∥Lp(Ω,Hν) ≤ C (t2 − t1)γ ,

where γ = min
{
αν
2 ,
αp(1−ν)−2

2p ,
2pα(2−ν)−2(p+2)

4p

}
when 0 < t2 − t1 < 1.

Otherwise, if t2 − t1 ≥ 1, then we set γ = max
{
α(ν+1)

2 , α(2−ν−1)
2 ,

2pα(2−ν)−2p
4p

}
.

Remark 3.9. We get a similar above Lemmas, when we take the operator G in a similar manner and change u by v
and f (v) by 1 (u).

To apply the nonlinear alternative of Leray-Schauder type, we first know that the operator Υ is com-
pletely continuous. The main result in this paper is the following.
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Theorem 3.10. Under assumptions (H1) , (H2) , (H3) , (H4) and (H5), problem (1) − (3) has at least one solution.

Proof. The proof consists several steps.
Step 1. The operator F sands bounded sets into bounded sets in Lp (Ω,K). Indeed, it is enought to show
that for any r > 0 and for each

(u, v) ∈ Br =

(u, v) ∈ (C ([0,T] ,Hν))2 , sup
t∈[0,T]

E ∥u (t)∥Hν < r, : sup
t∈[0,T]

E ∥v (t)∥Hν , ν ≥ 0

 ,
we have

∥Υ (u, v)∥ < ∞.

From, Lemmas 3.1, 3.2, 3.3, (14), (H1)− (H5) and applying the similar arguments in Lemma 3.4 and Lemma
3.7, we have

E ∥F (u (t) , v (t))∥Lp(Ω,Hν) =
(
E ∥F (u (t) , v (t))∥pHν

) 1
p
= ∥AνF (u (t) , v (t))∥Lp(Ω,H) ,

one has

E ∥F (u (t) , v (t))∥pHν
≤ 4p−1

∥Eα (t) u0∥
p
Hν + 4p−1

∥h (u (t))∥pHν + 4p−1E ∥Φ1 (u (t))∥pHν + 4p−1E ∥Φ2 (v (t))∥pHν

≤ 4p−1E [∥u0∥Hν ] + 4p−1LhE ∥u (t)∥p
L2

0
+ 4p−1γ1

t∫
0

E ∥u (t)∥pHν ds + 4p−1

t∫
0

E ∥v (t)∥pHν ds

≤ 4p−1E ∥u0∥
p
Hν + 4p−1 (

Lh + γ1
) t∫

0

E ∥u (t)∥pHν ds + 4p−1

t∫
0

E ∥v (t)∥pHν ds.

By means of the extention of Gronwall’s lemma, it holds that

sup
t∈[0,T]

E ∥u (t)∥pHν < ∞, sup
t∈[0,T]

E ∥v (t)∥pHν < ∞.

This indicates that F is bounded on [0,T].

Similarly,

E ∥G (u (t) , v (t))∥Lp(Ω,Hν) =
(
E ∥G (u (t) , v (t))∥pHν

) 1
p
= ∥AνG (u (t) , v (t))∥Lp(Ω,H)

and

E ∥G (u (t) , v (t))∥pHν ≤ 4p−1E ∥u0∥
p
Hν + 4p−1 (

Lh + γ1
) t∫

0

E ∥u (t)∥pHν ds + 4p−1

t∫
0

E ∥v (t)∥pHν ds.

By means of the extention of Gronwall’s lemma, it holds that

sup
t∈[0,T]

E ∥u (t)∥pHν < ∞, sup
t∈[0,T]

E ∥v (t)∥pHν < ∞.

This indicates that G is bounded on [0,T].
Step 2. Υ is continuous.
Let {(un, vn)}n≥0 with (un, vn)→ (u, v) , : (n→∞) in Y × Y. Then there is a number r > 0 such that

sup
t∈[0,T]

E ∥un (t)∥pHν ≤ r, sup
t∈[0,T]

E ∥vn (t)∥pHν ≤ r,
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and

sup
t∈[0,T]

E ∥u (t)∥pHν ≤ r, sup
t∈[0,T]

E ∥v (t)∥pHν ≤ r,

for all n and a.e., t ∈ [0,T] and for all n ∈ N. So, un, vn ∈ Br =

u ∈ Y, sup
t∈[0,T]

∥u∥Hσ ≤ r

 and u, v ∈ Br. By the

assumptions (H2) − (i) , (ii), we have

E ∥F (un (t) , vn (t)) − F (u (t) , v (t))∥pHν
≤ 3p−1E ∥h (un (t)) − h (u (t))∥

+3p−1E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 Eα,α (t − s) B (un (s)) ds +

∫ t

0
(t − s)α−1 Eα,α (t2 − s) B (u (t)) ds

∥∥∥∥∥∥
+3p−1E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 Eα,α (t − s) f (vn (s)) ds +

∫ t

0
(t − s)α−1 Eα,α (t2 − s) f (v (t)) ds

∥∥∥∥∥∥ .
Using the dominanted convergence theorem, we have

sup
t∈[0,T]

E ∥F (un (t) , vn (t)) − F (u (t) , v (t))∥pHν → 0,

as n→∞. Thus, F is continuous.
Similarly,

E ∥G (un (t) , vn (t)) − G (u (t) , v (t))∥pHν
≤ 3p−1E ∥h (un (t)) − h (u (t))∥

+3p−1E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 Eα,α (t − s) B (un (s)) ds +

∫ t

0
(t − s)α−1 Eα,α (t2 − s) B (u (t)) ds

∥∥∥∥∥∥
+3p−1E

∥∥∥∥∥∥
∫ t

0
(t − s)α−1 Eα,α (t − s) 1 (vn (s)) ds +

∫ t

0
(t − s)α−1 Eα,α (t2 − s) 1 (v (t)) ds

∥∥∥∥∥∥ .
Using the dominanted convergence theorem, we have

sup
t∈[0,T]

E ∥G (un (t) , vn (t)) − G (u (t) , v (t))∥pHν → 0,

as n→∞. Thus, G is continuous.
Step 3. The operator F maps bounded sets into equicontinuous sets in Lp (Ω,K). for each (u, v) ∈ Lp (Ω,H),
From Lemmas 3.2, 3.3 and 3.4 and taking expectation on the both side of (16) and in view of estimates (17)
and (19) − (22), we conclude that

∥(F (u, v)) (t2) − (F (u, v)) (t1)∥Lp(Ω,Hν) ≤ C (t2 − t1)γ ,

where γ = min
{
αν
2 ,
αp(1−ν)−2

2p ,
2pα(2−ν)−2(p+2)

4p

}
when 0 < t2 − t1 < 1.

Similarly

∥(G (u, v)) (t2) − (G (u, v)) (t1)∥Lp(Ω,Hν) ≤ C (t2 − t1)γ ,

where γ = min
{
αν
2 ,
αp(1−ν)−2

2p ,
2pα(2−ν)−2(p+2)

4p

}
when 0 < t2 − t1 < 1.

Therefore, the operator Υ is completely continuous. By the Arzela-Ascoli theorem, we can conclude that
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the operator Υ is compact.
Step 4. A priori estimate. Now, we show that there exists a constant M such that

sup
t∈[0,T]

E ∥u (t)∥pHν <M, sup
t∈[0,T]

E ∥v (t)∥pHν <M.

Let (u, v) a solution of the problem (1) − (3). Then

u (t) = Eα (t) u0 + h (u (t)) +

t∫
0

(t − s)α−1 Eα,α (t − s) B (u (s)) ds

+

t∫
0

(t − s)α−1 Eα,α (t − s) f (v (s)) dW (s) ,

and

v (t) = Eα (t) u0 + h (v (t)) +

t∫
0

(t − s)α−1 Eα,α (t − s) B (v (s)) ds

+

t∫
0

(t − s)α−1 Eα,α (t − s) 1 (u (s)) dW (s) .

Combining the proof of Lemma 3.2 and Lemma 3.3, we obtain

E ∥u (t)∥pHν

≤ 4p−1E ∥u0∥
p
Hν + 4p−1 (

Lh + γ1
) t∫

0

E ∥u (t)∥pHν ds + 4p−1

t∫
0

E ∥v (t)∥pHν ds,

and

E ∥v (t)∥pHν

≤ 4p−1E ∥v0∥
p
Hν + 4p−1 (

Lh + γ1
) t∫

0

E ∥v (t)∥pHν ds + 4p−1

t∫
0

E ∥u (t)∥pHν ds.

By means of the extention of Gronwall’s lemma, it holds that

sup
t∈[0,T]

E ∥u (t)∥pHν < ∞, sup
t∈[0,T]

E ∥v (t)∥pHν < ∞.

So, there exists a constant M such that

sup
t∈[0,T]

E ∥u (t)∥pHν <M, sup
t∈[0,T]

E ∥v (t)∥pHν <M.

Set, for ν ≥ 0 :

U =

(u, v) ∈ (C ([0,T] ,Hν))2 , sup
t∈[0,T]

E ∥u (t)∥Hν <M + 1, sup
t∈[0,T]

E ∥v (t)∥ <M + 1

 .
From the choise of U there is no (u, v) ∈ ∂U such that (u, v) = λΥ (u, v) for any λ ∈ (0, 1). And from the
consequence of the nonlinear alternative of Leray-Schauder we deduce that Υ has a fixed point denoted by
(u0, v0) ∈ U which is solution of the problem (1) − (3).
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