Filomat 36:11 (2022), 3827-3843

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2211827K

University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Optimal Quadrature Rules for Numerical Solution of the Nonlinear
Fredholm Integral Equations

Manochehr Kazemi?, Mohammad Reza Doostdar®

?Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran
b Department of Mathematics, Zarandieh Branch, Islamic Azad University, Zarandieh, Iran

Abstract. In this paper, an iterative method of successive approximations to the approximate solution
of nonlinear Hammerstein- Fredholm integral equations using an optimal quadrature formula for classes
of functions of Lipschitz types is provided. Also, the convergence analysis and numerical stability of the

proposed method are proved. Finally, some numerical examples verify the theoretical results and show the
accuracy of the method.

1. Introduction

In this investigation, we propose a numerical method for the following nonlinear Hammerstein- Fred-
holm integral equation of the second kind

b
x(t) = f(t) + /\f K(t,s)g(s,x(s))ds, te€]a,b], (1)

where x(t) is an unknown function on [4, b] and also, f(t), K(¢, s) are known functions on [a, ], [4, b] X [a, b],
respectively.

The mathematical modeling of physical phenomena, many problems in applied mathematics, engineer-
ing, mechanics, mathematical physics and many other fields can be transformed into the second-kind of
integral equations [8, 11, 15, 21, 22, 24]. There are many numerical methods for solving these equations.
The Galerkin and collocation methods are the two commonly used methods for the numerical solutions
of these equations [2, 9]. Numerical solutions of linear and nonlinear integral equations have been pre-
sented, including, block-pulse functions (BPFs)[7, 17], degenerate kernel method [1], triangular functions
(TFs)[10], Chebyshev polynomials [31], Taylor-series expansion method [16], Least squares approxima-
tion method[28], operational matrices [27], Bernoulli polynomials [4], B-spline wavelets [19] and wavelet
method [3, 20]. Classical theorems on the existence and uniqueness of the solution of nonlinear integral
equations can be found in [11, 29]. Existence results for functional integral equations are obtained us-
ing the measure of noncompactness and Darbo conditions in [14] and [18] respectively. The method of
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successive approximations and its iterative methods are applied in [6, 13]. Wu in [30] figured out the
optimal quadrature formula for classes of crisp continuous functions of Lipschitz type. In this paper, we
will discuss iterative method of successive approximations according to the Optimal quadrature to acquire
the numerical solution of nonlinear Hammerstein integral equation (1). To prove the convergence and
numerical stability of the method, we just used Lipschitz conditions relevant to the function g and it do
not need smoothness conditions, while there are some numerical methods to prove convergence which
is used smoothness conditions. This paper is divided into five sections. Second section deals with the
basic concepts. In Section 3, a sequence of successive approximations is introduced by using the explained
Optimal quadrature formula. Also, the convergence and numerical stability of the method of successive
approximations used to approximate the solution of nonlinear Hammerstein integral equation (1), are
proved. In Section 4, some numerical problems are carried out. Some conclusions are drawn in Section 5.

2. Preliminaries

2.1. Quadrature formula
Definition 2.1. A function f : [a,b] — R is called Lipschitz, if there exists a constant L > 0 such that the inequality

|f(x) = f(OI < Lix - ],

holds for all x,t € [a,b]. Also, for 0 < C <1, a function f : [a,b] — Ris Lipschitz of order Cif | f(x)— f(£)] < Lix—#°,
forany x,t € [a,b].

For Lipschitzian function the following result holds:

Theorem 2.2. Let f : [a,b] — R, be a L-Lipschitz function. Then, for any divisions a = xg < x1 < ... <x, = band
any points &; € [xi-1,x;],i = 1,2, ...,n we have

fb f(tdt - Zn_:(xi - xi-1)f(&)

i=1

<3 gua — xi)? + (- &)
< % iznl‘(Xi —xi1)%.
Proof. It is known that the integrals are additive related to interval. This leads us to
| e an(x" _ xi_1>f(5,->| - 21 i Foyt - an]m - xz-_nf(a)'

- ;“ f Ftydt - Z;‘ f FEdt
< Zn: f‘Xi fHat - f""' f(&)dt
< Zl', f £ - Fe&o)
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By the definition of a L-Lipschitz function, we have

ZflIf(t)—f(éi))dtsLZflIt—5i|dt
=1 v i=1 YXi-1
<L (’iéi—tdt int— Ndt
i_Zl(«fX:[—l( ) * 51,( x) )

= Ié Z[(é, - x,-_1)2 + (xi — éi)2]
i=1

L n
< 5 Z(xi —xi-1)?,
i1

which completes the proof. [

Corollary 2.3. Assume that f : [a,b] — R, is a L-Lipschitz function. Then

b
f fOdt —[(x—a)f(u) + (©-x)f()]] < L[jI(b —a)* + (x - #)2],

forany x € [a,bl,u € [a,x], v € [x,b].

Proof. Taking n =2, x1 = x, &1 = u, & = vin Theorem (2.2) we obtain the required inequality. [J

Remark 2.4. Ifwe put u=a,v=>b, x = B, then we acquire trapezoidal formula:

b —
[ roar- 0@+ s < G-,

which can be extended for uniform partitions,
Diﬂ=t0<t1<t2<...<tn_1<tn=b,

witht;=a+ih h= b%’, as can be viewed in the following result:

Corollary 2.5. For uniform partition D of [a, b], the following trapezoidal inequality holds:

b n .
I s = Y B s + s < -

Proof. By previous Remark, we have

L
< Z(ti —t1)%,

| foar= E st + s

3829
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where L is the Lipschitz constant of f. We obtain

ff(t)dt—}:(’_”[f(t, SO

Y (" o Z(i 5D )+ 1)

i=1 Xi-1

Z|f s~ C g+ )

O

2.2. Optimal quadrature formulas

In this section, we use acquired optimal quadrature formulas with given nodes among all quadrature
formulas for classes of functions of Lipschitz type in [30] to obtain numerical method to approximate the
solution Eq.(1).

Theorem 2.6. ([30]). Let f : [a,b] — R be a Riemann integrable and Lipschitz of order C function, then the following
quadrature formula

m+mn
2

n-1 __
() = 2L —afon + YA ) + 0 - 2L ), ©
i=2

. b L .
to approximate j; f(x)dx has the minimal error among all quadrature formulas that use given nodesa < 11 < ... <
Nn < b.

Remark 2.7. Ifwe takeny =a,n, =b,niy1—ni=h = ?,i =1,2,...,n -1, in the above Theorem, then we obtain
that

=
|
[y

N

L(f) = (f(mi) + (i),

I’
—_

i

which is the classical trapezoidal rule.

Theorem 2.8. ([30]). Let f : [a,b] — R be a Riemann integrable function on [a, b] of Lipschitz type with constant
L and order 0 < C < 1, then the following variant of classical trapezoidal rule

1)(b a)

Su(f) = — ) (4)

is the optimal quadrature formula for fu ! f(x)dx among all formulas (3). Also, we have

b b
(b —a)*
[t ) =supl [ s =5, <L =D 5

In this paper, it is assumed that = 1.
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3. Main results

Here, we provide a sequence of successive approximations for approximate the solution of (1) then we
illustrate the existence and uniqueness of the solution for this equation. Also, by using optimal quadrature
we present an efficient numerical method for approximating the solution of (1).

3.1. The sequence of successive approximations
Here, we consider the Fredholm integral equations (1). Assume that

1°. f e C([a,b],R), g € C([a,b] X R,R), K € C([a,b] X [4,b],R) ,
2°. there exists > 0, such that | f(t) — f(¢') |[< Blt —t'|, for all ¢, ¢’ € [a,]],
3°. there exist y,a > 0, such that | g(s,u) — g(s’,v) I< yls = s'| + alu — v|, for all 5,5" € [a,b],u,v € R,
4°. aAMg(b—a) < 1, where My > 0is such that [K(t, s)| < Mk, Vt,s € [a, b], according to the continuity of K,
5°. there exist 1,6 > 0, such that [K(t,s) — K(t',s")| < ult = #'| + O|s — §’|, for all ¢, ¥, 5,5" € [a, D].
Here, we consider X = {f : [2,b] = R; f is continuous} be the space of continuous functions with the metric
d(f,9) = ||f - gl| = supl|f(5) - 96s)

Now, we shall prove the existence and uniqueness of the solution of Eq. (1) by the method of successive
approximations. We define the operators T : X — X by

;s € [a,b]}.

b
Tx)(t) = f() + /\f K(t,s)g(s,x(s))ds, tela,b],VxeX

Theorem 3.1. Under the above assumptions, equation (1) has a unique solution x* € X. Moreover, for any xq € X,
the sequence of successive approximations (xy)men C C([a, b], R), defined by

X = T(xk-1), (6)
with initial value xq := f(t) converges to x* € X. Furthermore, the following error estimates hold

(MeaA(b — a))k

d(x*/ Xk) < 1— MkOZA(b — ﬂ) d(X(), xl)/ (7)
. MyaA(b —a)
d(x’, xg) < Wd(xk-uxk)r (8)

and choosing xo = f € X, the inequality 7 becomes

(MraA(b — a))<*?
a(1 = MaA(b —a)

d(x*/ xk) < MO/ (9)

where
My = max{lg(s, f)I;s € [a,b], f = xo € R}
Proof. Firstly, we prove that T(X) C X. To this aim, we see that for all ¢ > 0 there are €1, &, > 0 such that

&1+ MpA(b—a)e; < €. Since f is continuous on compact set of [a, b], we infer that it is uniformly continuous,
therefore for 1 > 0 exists & > 0 such that

| f(t1) = f(t2) < €1 Vit t2 € [a,b],
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with |t1 - t2| < 6’.
As mentioned above, K also is uniformly continuous thus, for ¢; > 0 exists & > 0 such that

K(tlls) - K(tZI S) <& th/ € [al b]r
with |t1 - i’zl <&,
Let 6 = min{8’, 8"} and #, t, € [a,b], with |t — t2| < 6. We obtain

b
| T()(E1) = T(x)(t2) | < f(t1) = f(£2) | +Af IK(t1,8) — K(t2, 9)llg(s, x(s))Ids
a
<&+ AMy(b —a)ex < g,

we derive

| TGo)(t1) = T(x)(t2) < e
This shows that T(x) is uniformly continuous for any x € X, so continuous on [g, b], and hence T maps X
into X, (i.e. T(X) C X).
Now, we show that the operator T is a contraction map. So, for x, y € X and ¢ € [a, b], we have

b
IT()() = Ty)Hl < A f IK(t,5)g(s, x(s)) = K(t, 5)g(s, y(s))lds
a
< AMia(b = a)llx — yl|.

Consequently,

IT(x) = T()Il < AMar(b = a)llx = yll.
Since AMa(b — a) < 1, the operator T is a contraction on Banach space (X, ||.|[). Using the Banach’s fixed
point principle implies that Eq. (1) has a unique solution x* in X.

The same Banach’s fixed point principle leads to the estimates (7) and (8).
Choosing xp = f, we have

b
) = 10 < A [ 1Kt 9965, 3000 a5
b
<A ,f) 1 d
< f; max | g(s, f) | ds
< A(b - a)MiMo.
Taking supremum from the above inequality we get

llxo — x1ll < A(b — a)MMo.

In this way we obtain the inequality (9), which completes the proof. [

Now, we consider a uniform partition D : a = fy < t; < ... <t, = b of [a,b] with t; = a + ih, where h = ’%,
i=0,n. Applying the quadrature rule (4) and (5) to approximate of the integral in (6) we obtain,

fO(t) = f(t)/

o - Qi-1)(b-a) Qi-1)(b-a) _ 2i—=1)(b—-a)

() = f(H) +h ; K(t,a + T)g(d " T+ T)). (10)
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3.2. Convergence Analysis

In this section, we investigate the convergence of the iterative proposed method to the solution of
equation (1).

Proposition 3.2. Under the conditions (i)-(iii) of Theorem (3.1), the sequence of successive approximations (6) are
uniformly bounded. Moreover, let Gr(s) = g(s, xk(s)), k € N,s € [a, b] then the functions Gi(s),k € N is uniformly
Lipschitz with constant L’ = a + p(0 + A(b — a)(d — c)MC), where M is given in (12).

Proof. Let Gy : [a,b] = R, Go(s) = g(s, f(s)). Since G, f are continuous, we infer that Gy is continuous on the
compact set [a,b] and therefore My > 0 exist, such that

|Go(s)| < My Vs € [a, D] (11)
So,

b
le1(H) = xo(t)] < A f |K(t,5)g(s, x0(s)|ds
ub
< /\f MiMods = AMMy(b — a).

For arbitrary ¢ € [a, ], it follows that
b
be(t) — e (8] <AK(E9) f 1965, x61(5)) — 96, x-2(5))|dxdy

b
< My f 1965, 311(5)) — 95, Xe_a(S))|dxdy

< aAMi(b — a) max |xx-1 (f) — xe-2(H)],
a<x<b

and by induction,
[ee(t) = X1 (8)] < (@AM = ) 1 = o]
So,
Jei(t) = x0(8)| <Jei(t) = xica (B)] + .. + |ea(t) = x0(8)]
< ((ac/\MK(b —a)Y ! + (@AM (b — )2 + ... + aAMg(b — a) + 1)“x1 — x|
1 — (@AM (b — )k

= T M=) MM - a)
AMi(b — )My
iy Vel

Let My > 0 such that |f(t)] < M for all t € [a, b]. Then
/\MK(b - H)MO

|Xk(f)| < )Xk(t) - XO(t)| + 'XO(t)‘ < m + My = 1
for all t € [a, b]. Moreover, considering
M = max(Mo, max{lg(t, u) : t € [a,b],u € [-11]}), (12)

we get

IG(D)] = 1g(t, xx (D) < M,
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forallt € [a,b] and k € N. Let £, € [a,b]. We obtain

o) = xo(#)] < plE— ¢,

X (t) = Xou(t)

<|fH - £y
b ’
+A f | K(t,s) = K(t',9)) Il g(s, x1-1(5)) | dxdly

<Blt=t|+ A0 -a)Mp|t -t

= Lo|t—t'

with Ly = g + A(b —a)Mp and

+ alxo () — xo(t')|

<(@+apt-t

|Go() = Go(t))

<ylte-+

7

|Gx(t) - Gi(t')

<yle-+

+ alx(t) - ()

+aLolt—t|= (v +alo|t—t|=L|t -+

7

<yt-+

forall t € [a,b] and k € N. So, the sequence of functions (Gi)ien are uniformly Lipschitz with the constant
L'=y+aB+Ab-aMy). O

Corollary 3.3. Under the conditions (i)-(vi), the functions K(t,s)g(s, x(s)), for arbitrary fixed t € [a, b] and for all
k € N, are uniformly Lipschitz with constant

L =My + a(B + A(b — a)Mp)) + M.

Proof. Let arbitrary s, s’ € [a, b], we have

< |K(t, 9)g(s, xx(s)) — K(t, 9)g(5", x¢(5")
+|K(t,5)g9(s', x(s")) — K(t,8))g(s", x4("))
< |K(t,8)\19(s, x(5)) — g(s”, xx(s"))
+1g(s, xi(s")1IK(t, 8) — K(t, s")

< MiL'|s —§'| + Mo|s — &', (13)

|K(t, 5)g(s, x1(s)) — K(t,5)9(5, x¢(5))

for k € N. Then, according to (12), (13), and denoting L = ML’ + Mo = Mk()/ +af+ A - a)My)) + Mo, it
follows that

|K(t, 5)g9(s, x(s)) — K(t,5)9(s", x¢(s")| < Lls = ',

for any fixed t € [a,b] and k € N. Thus, the functions K(t,s)g(s, xi(s)) for all k are Lipschitzian. [

Theorem 3.4. Consider the Eq. (1) with the hypotheses of Theorem 3.1. Then the iterative procedure (10) converges
to the unique solution of Eq. (1), x*, and its error estimate is as follows

(MraA(b — a))<+! L(b —a)?

a(l =M —a) " (1 = AMea(b—a)’ (14

d(x*, Xx) <
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Proof. Using (9) we have

(MraA(b — a))+1
a(l — MraA(b — a))
Therefore, we shall to obtain the estimates for ||xx(t) — X(t)|l. We apply the quadrature formula (5) in (6)
obtaining

xo(t) = f(1),

d(x", xx) < d(x’, xx) + d(xg, X) <

Mo + [|xi(t) = (DIl (15)

n s _ s _ . b _
(B = F(b) + h; K(t,a+ W)g(a N W,xkq(u N W))
+ Ex(b), (16)
with
L(b —a)?
() | = 7)
Form (16), (10) and (17), for k = 1, we obtain
_ 2
) -1 1<l ) 1< 20
(18)
From (16), (10) we obtain
Lb-a)?* . b-avy
) - 5u(t) | < 2 4na) A a ) (|K(t, si)llg(si, xi1(s)) = g(si,fk_l(si))D
— )2 — g <
< % + AMM% ; |- (1) = B (s3)],
where
s=at W (19)
Now, from (16), (10) for k = 2 it follow that
—g)? L _ )2
R L Ve 0)
< (1 + AMeap— ) 2C yr ay. 1)
By induction, for k € N, k > 3, we obtain
i, k-1, L0 — )
| xx(t) — X (D) | < [1 + AMga(b — a)... + (AMa(b — a)) ]T
< 1-(AMya(b - a))k L(b — a)? 22)

1= AMia(b —a) 4n
- L(b—a)?
T 41 - AMga(b - a)n’
Hence, from (15), (18 and (22) we conclude that
_ L(b — a)?

Remark 3.5. From the error estimation (14), since aAM(b — a) < 1, we see that for k — oo, n — oo, it follows
d(x*, %) — 0, which is the convergence of the proposed method.
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3.3. The numerical stability analysis

An important property for an algorithm to have is that small changes in the initial data produce
correspondingly small changes in the final results. An algorithm that satisfies this property is called
numerically stable. So, with the purpose of studying the numerical stability of the iterative method (10),
considering the small changes in the first iteration, an another first iteration term yo(t) € C([a, ], R) is
considered in such a way that there exists ¢ > 0 for which |y0(t) - xo(t)| < g,Vs € [a,b]. Suppose that there
exist M, f’ > 0 with | yo(t) — yo(t') IS B’ | t =" |, Yt, ' € [a,b] and |yo(t)] < M, for all t € [a, b]. The obtained
new sequence of successive approximations is:

b
w(t) = 0+ 1 [ K06 pa0)s, k> 1. @)
Using the same iterative method (10) to solve (1) we have

?O(t) = ]/O(t)/

n

b2 L @i=Dl-a),  Qi-Db-a) w)), (24)

7t = f)+ —— ) Kt.a 5l S ke o

i=1

Definition 3.6. Let xo, yo € X be two initial value such that ||xo — yoll < €, for arbitrary small & > 0. We say that
the algorithm of successive approximation applied to the integral equation (1) is numerically stable with respect to the
choice of the first iteration iff there exist the constants the constants &1, &, > 0 which are independent by h, such that:

Ik — yill < &1 + &b, k e N U {0}.

Theorem 3.7. Assume the conditions of Theorem 3.4 are fulfilled. Then the iterative approach (10) is numerically
stable with respect to the selection of the first iteration.

Proof. In order to obtain the numerical stability we reproduce the proof of Theorem (3.4) and deliver the
corresponding constants My, M, Ly, L’, L given by |g(s, y(s)| < Mo, Ly = B+ A(b —a)Mp, L’ = y + a(B + A(b —
a)Mu),L = Mk(y +aB+A0b- a)My)) + M$, Similarly as above it follows that

) L(b - a)?
) =5 < T3 I M i =’

and we have

| xi(t) = v () |

N

| xi(t) = xi () | + | x(t) — yx(®) | +ly(t) =y (D) |
L(b —a)? L(b—a)?
S A aMa—ayn T O O e

We have
| xo(t) —yo(t) I< e, Vtela,b],

and
b
1 (®) = (O] < 1F® = FO + A f IK(t,5)9(s, x0(s)) = K(t, 9)g(s, yo(s))Ids

b
< a)\Mkf | x0(s) — yo(s) | ds
a
< aAM(b —a)e.
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For k > 2, by induction, we have

b
lea(t) - ya(0)] < AM, f | 21(5) = 1(5) | ds < (@AMy(b - @),

forallt € [a,b], k € N U {0} and aAMy(b — a) < 1, Then,

b
d0(t) — () < aAMy f | X1(5) = yia(s) | ds < (@AMi(b — a))Fe < e.

Now, we get

L(b - a)? L(b - ay?
I AMab—a)n T 41 =AM —a)n
L+I)b-a) b

—a
- M- m et

| %) =y () [ < €

where

~ _ (L+D)b-a)
=l &= 41 — AMga(b — a))’

O
Remark 3.8. Since aAMy(b —a) < 1, it is easy to see that
hl,glo 4% i) = 0.

This shows the stability of the method.

3837

Remark 3.9. The “a posteriori” error estimate is useful to get the stopping criterion. Such estimate can be obtained

as follows:
For given € > 0 (previously chosen) consider the first natural number k such that

(f) = (Bl < €,
and we stop to this k retaining the approximations xi(t) of solution. We observe

| X () — %x(t) | [ x"(t) = xi(£) | + | xx(t) — Zi(t) |
aAM(b — a) L(b — a)?

IA

| xi(f) — xp-1(8) | +

1— aAM(b —a) 41— AMga(b — a)n’
and
k() —xe-1(H) | < T a(®) = Xe(®) | + | Xe(t) = Xpa (B) | + | Do (B) — x-1(F) |
< e (-5
= 2(1-AMwab—ayn ' F R
So,

1+Mib—a) L{b-a)? aAMy(b — a)
A—aAMb-a)2 41 1—aiM(b—a)

I () — X)) <

| X(t) = X1 (8) |,
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and therefore, in order to obtain | x;(t) — Xx(t) |< € we require

14+ Mi(b—a) L{-a)?

&
A—aAMb-a) 41 2
and
aAM(b — a) _ _ €
1= M- | %) = T (t) < 5

Then we choose the smallest natural number n € N that is,

. 1+Mib—a) L{b-a)?
(1 —aAMi(b —a))> 2

Now, we get the last number k € IN that is,

N e 1-aAM(b—a) _ .
%00 = a0 < 5~y =

3.4. Algorithm of the approach
The iterative procedure 10 gives the following algorithm of computation for the solution of Eq. (1):
Step 0: Inputa, b, h, A, ¢’ ,n and the functions K, f.
Step 1 (the first iterative step): For j = 0,n compute % (t,) by (10).
Step 2 (the generic iterative step): For j = 0,n compute X(t;) by (10).

Step 3 (a condition of “do- while” type): If | Xi(t) — Xx—1(t;) |< ¢, print k and print x(ty), j= 0,1, STOP.

4. Numerical experiments

We have applied our method on some numerical examples, to observe the accuracy and efficiency of
the present method for solving Eq. (1). Also, we compare the numerical solutions obtained by using
the proposed method with the exact solutions. In order to analyze the error of the method we introduce
notations

en = |x'(t) — x(¢)], (25)
and
“eTLHOO = max{len(tj)|/j = O/ ]-/2/ sy 7’1}, (26)

where X(t) and x*(t) are the approximate solution and the exact solution of the nonlinear equation (1),
respectively, which is computed by the algorithm described in Section 3. The results, show that the errors
were obtained from our method is much smaller than the errors of the classical quadrature and whatever
the magnitude of n is much larger, the convergence will be faster. The computations associated with the
examples were executed using MAPLE 17.

Example 4.1. Consider the following nonlinear Fredholm integral equation

x(t) = E1?2 -1- Et + 1 1(3521L +5t2)(25% + x3(s))ds, te[0,1] 27)
16 21 J, 2 ' T
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t x'(t)) ej,n =10 d; ej,n =20 ej,n =40

0.1 -0.99 1.679719 x 10°® 1000 4.199074 x 10~7 1.049757 x 1078
02 -096 3.476824 x10™® 1000 8.691449 x 1077 2.172829 x 1078
03 -091 5391310 x 107® 1000 1.347712x 107® 3.369217 x 1077
04 -0.84 7423192 x 107¢ .1000 1.855610 x 107® 4.638919 x 10~
05 -0.75 9.572456 x 107®  .1000 2.392837 x 107 5.981936 x 1077
0.6 -0.64 1.183912 x 107° .1001 2.959394 x 10~  7.398267 x 1077
0.7 -0.51 1.422314 x 107> .1001 3.555281 x 10~ 8.887913 x 1077
0.8 -0.36 1.672456 x 107> .1001 4.180499 x 10™®  1.045087 x 107°
09 -0.19 1.934337 x 107> .1003 4.835046 x 107® 1.208715 x 107
NI 18 19 19

Table 1: Numerical results for n = 10,n = 20 and n = 40 in Example 4.1.

-5
o #10

le(t)]

051

0 Ve A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t

Figure 1: The absolute errors for n = 10, n = 20 and n = 40 in Example 4.1.

with the exact solution
x(f) = > - 1.

Applying the algorithm for n = 10, € = 107'5, we obtain the number of iterations NI = k = 18 iterations. For
more details, please see Table 1. In order to test the numerical stability regarding the choice of the first iteration, we
take ¢ = 0.1 (f(t) := f(t) + 0.1), and the differences between the effective computed values d; = [x15(t;) — Y5(t)l,
ti= 1]—0,]' =1,9, are in Table 1 that confirm the numerical stability of the algorithm.

In order to more detailed testing of convergence, we consider n = 20 and for ¢ = 107 the number of iterations is
k =19. It is seen that ej, j = 0,n tend to zero as h decrease. For n = 40, & =102, we have k = 19 iterations. The
results |ley|l for € = 10715 and n € {10, 20,40}, respectively, are 1.934 x 1075, 4.835 x 107 and 1.209 x 107°. The
comparisons of the absolute errors for n = 10, n = 20 and n = 40 have been graphically shown in Figure 1.

Example 4.2. The following nonlinear Fredholm integral equation has been considered by other authors as a numerical
test [5, 12, 23, 25, 26],

1
x(t) = () +f K(t,s)g(s,x(s))ds, te[0,1], (28)
0
where
f(t) = sin(nt),
K(t,s) = %COS(TCt) sin(7ts),

g(s,x(5)) = (x(s))°,
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ti x*(t)) ej,n=10 ej,n =20 ej,n =40
0.1 0.380752038 2.41822181708501 x 10~ 4.5782956593141 x 10°® 8.285 x 10~
0.2 0.648806725 2.05706234347790 x 10™>  3.8945309034702 x 10°®  7.009 x 10~/
0.3 0.853351689 1.49454327529507 x 107> 2.8295423280022 x 107®  5.076 x 1077
0.4 0.974364644 7.98727898231050 x 107  1.4875784348888 x 107 2.784 x 1077
05 1 0 0 0

0.6 0.9277483875 7.98727898231050 x 107  1.4875784348887 x 107 2.784 x 1077
0.7 0.7646822990 1.49454327529507 x 107> 2.8295423280022 x 107®  5.076 x 1077
0.8 0.5267637791 2.05706234347790 x 10~  3.8945309034702 x 10~®  7.009 x 10~/
0.9 0.2372819503 2.41822181708501 x 10~  4.5782956593141 x 10® 8.284 x 1077
NI 8 9 9

with the exact

x(t) = sin(mtt) +

Table 2: Numerical results for n = 10, n = 20 and n = 40 in Example 4.2.

le()]

#10°

Figure 2: The absolute errors for #n = 10, n = 20 and n = 40 in Example 4.2.

solution

20 - V39
3

! cos(Ttt).

3840

Ezquerro et al. studied existence of the solutions of the above equation 28 in [12]. Moreover, Rashidinia et al.

in [25] analytically found solutions for the mentioned equation including x;(t) = sin(mt) +

20— V391
3

cos(mtt) and

Xo(t) = sin(mt) + %397 cos(mtt). But in [5] just x(t) = sin(mtt) + %ﬁ cos(mtt) has been considered. In [5] the
minimum absolute errors of approximation is 3.6765 x 10~ and the error just in the point t = 0.5 is zero. Also, in
[26] the minimum absolute errors of approximation is 7.796 X 102, By using the proposed method, we can present
the approximate solution for this example. Table 2 shows that the numerical results for this example. In Figure 2, we
have graphically shown the comparisons between the absolute errors for n = 10, n = 20 and n = 40.

Remark 4.3. The method can be extended even for Fredholm functional integral equations of the form

b
x(t) = f(t) +f g(t,s,x(s))ds, tela,b],

and an example to illustrate this extension is:

Example 4.4.

x(t) = L(zt(t + 1) 1n(ﬂ) +22+t+1)+ 1
S 2t+2 t+2 0

S

To () tIx(s)IdS' te[0,1],

(29)
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x*(t))

x14(t))

e;,n=10

d:

]
0.1)
(0.2)
(0.3)
(0.4)
(0.5)
(0.6)
0.7)
(0.8)
(0.9)
(1.0)

0.90909090909090909091
0.83333333333333333333
0.76923076923076923077
0.71428571428571428571
0.66666666666666666667
0.62500000000000000000
0.58823529411764705882
0.55555555555555555556
0.52631578947368421053
0.50000000000000000000

0.90908942291695715390
0.83333070000821070300
0.76922724200733572660
0.71428148585719846040
0.66666188591315761720
0.62499478344626185110
0.58822973397162923020
0.55554972547086757670
0.52630974875845654670
0.49999379674175039680

148617395193701 x10~°
263332512263033 x107°
352722343350417 x107°
422842851582531 x107°
478075350904947 x107°
521655373814890 x107°
556014601782862 x107°
583008468797886 x107°
604071522766383 x107°
6.2032582496032 x107°

i
0.10000
0.10000
0.10000
0.10000
0.10001
0.10001
0.10002
0.10003
0.10005
0.10009

Table 3: The results for Example 4.4 for n = 10.

x*(t]-)

x14(t))

ej,n=20

d:

]
0.1)
(0.2)
(0.3)
(0.4)
(0.5)
(0.6)
0.7)
(0.8)
(0.9)
(1.0)

0.90909090909090909091
0.83333333333333333333
0.76923076923076923077
0.71428571428571428571
0.66666666666666666667
0.62500000000000000000
0.58823529411764705882
0.55555555555555555556
0.52631578947368421053
0.50000000000000000000

0.90909053751471516023
0.83333267495385743373
0.76922988737077813346
0.71428465712384497075
0.66666547142587757111
0.62499869581303321033
0.58823390403722967708
0.55555409799535300818
0.52631427926071434792
0.49999844915596956520

3.7157619393068 x10~7
6.5837947589960 x10~7
8.8185999109731 x10~7
1.0571618693149 x107°
1.1952407890955 x107°
1.3041869667896 x107°
1.3900804173817 x107°
1.4575602025473 x107°
1.5102129698626 x107°
1.5508440304348 x107°

j
0.10000
0.10000
0.10000
0.10000
0.10001
0.10001
0.10001
0.10002
0.10003
0.10004

Table 4: The results for Example 4.4 for n = 20.

with the exact solution

x(t) =

1

1+t

The results for ¢ = 10" and n = 10 (with the values d;, generated by initial perturbation f(t) := f(t)+0.1), n = 20
and n = 40 are in Tables 3, 4 and 5, respectively. Comparing the results in optimal and classical quadrature formulas
confirms the correctness of the theoretical results. We present these results in Table 6.

5. Conclusions

In this paper, an iterative method has been presented for approximating the solution of nonlinear
Hammerstein integral equation (1) based on optimal quadrature formula for classes of Lipschitz functions.
One of the advantages of the proposed method is easy to implement without complicated computations of
the integral terms. In Theorem 3.1 sufficient conditions for existence and uniqueness solution of nonlinear
Hammerstein integral equation (1) are given. In Proposition (3.2), we proved that the sequence of successive
approximations (6) are uniformly bounded and Lipschitz. Proof of the convergence and the error estimation
of the proposed method in terms of Lipschitz condition are given in Theorem 3.4.
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i X () x14(t)) ej,n =40 dj
(0.1)  0.90909090909090909091  0.90909081619401617083  9.2896892920081 x10=%  0.10000
(0.2) 0.83333333333333333333 0.83333316873401629663  1.6459931703670 x10~7  0.10000
(0.3)  0.76923076923076923077  0.76923054876044470726  2.2047032452351 x10~7  0.10000
(0.4) 0.71428571428571428571  0.71428544998947520455  2.6429623908116 x10~7  0.10000
(0.5)  0.66666666666666666667 0.66666636785051602191  2.9881615064476 x10~7  0.10000
(0.6)  0.62500000000000000000 0.62499967394728426653  3.2605271573347 x10~7  0.10001
(0.7)  0.58823529411764705882  0.58823494659164595108  3.4752600110774 X107 0.10001
(0.8) 0.55555555555555555556  0.55555519115974392238  3.6439581163318 x10~7  0.10001
(0.9) 0.52631578947368421053 0.52631541191485000112 3.7755883420941 x10~7  0.10002
(1.0) 0.50000000000000000000 0.49999961228358741264 3.8771641258740 x10~7  0.10002
Table 5: The results for Example 4.4 for n = 40.
llenlo (Opti) llenlloo (Clas)
n=10 n=20 n=40 n=10 n=20 n=40
Exa. 41 | 1.934x 107 4.835x10° 1209x10° | 1.749x 10 ¢ 4440x10° 1.103x 107
Exa. 42 | 2418 X105 4578 x107% 8.284x 107 | 3.096 x10™* 1.386x 107> 6.1309 x 106
Exa. 44 | 6203 x10° 1551 x10°  3.877 1077 | 4961 x 105 1.240x107° 3.101x10°°
Table 6: Comparing of ||l (opti) and |lex|le (clas) in Examples 4.1, 4.2 and 4.4.
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