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Abstract. This paper deals with local spectral properties of Extended Hamilton operators and their adjoint
operators. The relationship between the local spectral properties (strongly decomposability, hyperinvariant
subspace problem, etc.) of Extended Hamilton operators and the corresponding properties of their adjoint
operators is obtained.

1. Introduction

The Hamiltonian system is an important branch in dynamical systems, and has various applications
in our daily life. While infinite dimensional Hamiltonian operators come from the corresponding infinite
dimensional Hamiltonian systems, and have deep mechanical background, their spectral theory is the
theoretical foundation of the separation of the variables method solving mechanical problems, and plays a
significant role in elasticity mechanics and other related fields[6,9,12].

The various results on infinite dimensional Hamiltonian operators frequently appear. In [2], the authors
study the symmetry with respect to imaginary axis of the spectrum of infinite dimensional Hamiltonian
operators; in the proof process, some properties between operators and their adjoint operators are applied.
In[7], the decomposability, Weyl type theorems and invariant subspace problem of Hamilton operators
and the similar properties with their adjoint operators are studied. In[8], extended Hamilton operator is
introduced and studied, and various properties of extended Hamilton operators are obtained. In [11], the
strongly decomposability, Weyl type theorems and hyperinvariant subspace problem of Hamilton operators
and the similar properties with their adjoint operators are given. In this paper, local spectral properties
of extended Hamilton operators and their adjoint operators are studied. The relationship between the
local spectral properties (strongly decomposability, hyperinvariant subspace problem, etc.) of extended
Hamilton operators and the corresponding properties of their adjoint operators is obtained.

This paper is organized as follows. In section 2, we state some definitions and notations. The main
results and examples of this paper, together with their proofs, are presented in section 3.
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2. Preliminaries

Let X be an infinite dimensional Hilbert space. Throughout this paper, an operator is always bounded.
According to [8], extended Hamilton operators and bounded Hamilton operators can be defined as follows.

Definition 2.1. Let H : X × X −→ X × X be a bounded operator. If (JH)∗ = JH, then H is called an infinite

dimensional Hamilton operator, where J =
[

0 I
−I 0

]
with I being the identity operator on X, 0 the zero operator on

X, and (JH)∗ the adjoint operator of JH.

Remark 2.2. Evidently J∗ = −J.

Definition 2.3. A bounded operator T : X×X −→ X×X is called extended Hamilton operator, provided there is an

antilinear unitary operator J on X × X for which J2 =

[
−I 0
0 −I

]
and (JT)∗ = JT. At this time, T is called extended

Hamilton operators with J as antilinear unitary operator.

Definition 2.4. We say that T satisfies
(1) property (h) if σ(T) \ σSF−+ (T) = πa

00(T), where πa
00(T) = {λ ∈ isoσa(T) : 0 < α(T − λ) < ∞}.

(2) property (1h) if σ(T) \ σSBF−+ (T) = Ea(T), where Ea(T) = {λ ∈ isoσa(T) : 0 < α(T − λ)}.

Remark 2.5. The definition of σSF−+ (T), σSBF−+ (T), α(T − λ) is introduced in [1,3,4].

Definition 2.6. [5]A linear subspace Y of X is said to be T- hyperinvariant if SY ⊂ Y for every bounded linear
operator S on X that commutes with T.

According to [5], the local resolvent set ρT(x) of T at point x ∈ X is defined as the union of all open subset
U of C for which there is an analytic function f : U → X which satisfies (T − λ) f (λ) = x for all λ ∈ U. The
local spectrum σT(x) of T at x is then defined as σT(x) = C\ρT(x). The local spectral subspace of T is defined
as XT(F) = {x ∈ X : σT(x) ⊆ F} for all sets F ⊆ C.

Lemma 2.7. [5] A bounded operator T on X, is strongly decomposable if and only if T is decomposable and XT(F) =
XT(F ∩U1) + · · · + XT(F ∩Um) for every open cover {U1, ...,Um} of an arbitrary closed set F ⊆ C.

3. Main results

Lemma 3.1. Let T be an extended Hamilton operator with J as antilinear unitary operator.Then
(1) σT∗ (Jx) = −σT(x)∗, σT(J∗x)∗ = −σT∗ (x) for all x ∈ X.
(2) XT∗ (F) = JXT(−F∗) for all F ⊆ C.

Proof. (1) Let λ0 ∈ ρT(x), then there exists an analytic function f : U→ X (U is a neighborhood of λ0 )which
satisfies (T−λ) f (λ) = x for everyλ ∈ U. Hence (T∗+λ̄)J∗ f (λ) = J(T−λ) f (λ) = Jx on U. So (T∗−λ)J∗ f (−λ̄) = Jx
on −U∗. Since J∗ f (−λ̄) is analytic on −U∗, then −λ̄0 ∈ ρT∗ (Jx). Hence σT∗ (Jx) ⊂ −σT(x)∗. By the similiar way
,we can obtain σT∗ (Jx) ⊃ −σT(x)∗. we can obtain the second equality, by the similiar fashion.

(2) Let x ∈ XT∗ (F), then σT∗ (x) ⊆ F. It follows from (1) that σT(J∗x) ⊆ −F∗ and so J∗x ∈ XT(−F∗). Hence
XT∗ (F) ⊆ JXT(−F∗). By the similiar way ,we can obtain XT∗ (F) ⊇ JXT(−F∗). Therefore XT∗ (F) = JXT(−F∗).

Lemma 3.2. Let T be an extended Hamilton operator with J as antilinear unitary operator.Then
(1) σ(T)∗ = −σ(T∗), πa

00(T)∗ = −πa
00(T∗),Ea(T)∗ = −Ea(T∗).

(2) σSF−+ (T)∗ = −σSF−+ (T
∗), σSBF−+ (T)∗ = −σSBF−+ (T

∗).



W. Bai, A.Chen / Filomat 36:11 (2022), 3675–3678 3677

Proof. (1) Since T∗ − λ = J(T + λ̄)J and J is bijection, then σ(T)∗ = −σ(T∗), σa(T)∗ = −σa(T∗) and α(T + λ̄) =
α(T∗ − λ). Therefore πa

00(T)∗ = −πa
00(T∗),Ea(T)∗ = −Ea(T∗).

(2) If λ is not belong to σSF−+ (T
∗), then T∗−λ is upper semi-Weyl operator[1], i.e. α(T∗−λ) < ∞,R(T∗−λ) is

closed and ind(T∗−λ) ≤ 0. Since T∗−λ = J(T+λ̄)J, then α(T+λ̄) < ∞,R(T+λ̄) is closed and ind(T+λ̄) ≤ 0, and
hence T + λ̄ is upper semi-Weyl operator, so −λ̄ is not belong to σSF−+ (T). i.e. −σSF−+ (T)∗ ⊆ σSF−+ (T

∗).Replacing
T by T∗ shows that −σSF−+ (T)∗ ⊇ σSF−+ (T

∗). Therefore σSF−+ (T)∗ = −σSF−+ (T
∗).

If λ is not belong to σSBF−+ (T
∗), then T∗ − λ is upper semi B-Weyl operator[1], i.e. for some n ≥ 0,

α((T∗ −λ)[n]) < ∞,R((T∗ −λ)[n]),R((T∗ −λ)n) are closed and ind((T∗ −λ)[n]) ≤ 0. Since T∗ −λ = J(T + λ̄)J, then
α((T + λ̄)[n]) < ∞,R((T + λ̄)[n]),R((T + λ̄)n) are closed and ind((T + λ̄)[n]) ≤ 0, and hence T + λ̄ is upper semi
B-Weyl operator, so −λ̄ is not belong to σSBF−+ (T). i.e. −σSBF−+ (T)∗ ⊆ σSBF−+ (T

∗).Replacing T by T∗ shows that
−σSBF−+ (T)∗ ⊇ σSBF−+ (T

∗). Therefore σSBF−+ (T)∗ = −σSBF−+ (T
∗).

In the following theorem we give a duality theorem of strongly decomposable operators. In general, the
strongly decomposability of T∗ is not transmitted to operator T([10]).

Theorem 3.3. Let T be an extended Hamilton operator with J as antilinear unitary operator. Then T is strongly
decomposable if and only if T∗ is strongly decomposable.

Proof. If T is strongly decomposable, then T is decomposable, by Lemma 2.7. By Theorem 3.4 of [8], it
follows that T has property (β) or property (δ). Then we know from Theorem 2.2.5 of [5] that, T∗ has
property (δ), so T∗ is decomposable. Now we consider an arbitrary closed set F ⊆ C and a finite open cover
{U1, ...,Um} of F. Then {−U∗1, ...,−U∗m} is a cover of −F∗. Given any x ∈ XT∗ (F), we have −σT(J∗x)∗ ⊆ F, by
Lemma 3.1 and the definition of XT∗ (F). Moreover J∗x ∈ XT(−F∗). The strong decomposability of T leads
to J∗x ∈ XT((−F)∗ ∩ (−U

∗

1)) + · · · + XT((−F)∗ ∩ (−U
∗

m)), it is immediate that x ∈ J(XT((−F)∗ ∩ (−U
∗

1)) + · · · +
XT((−F)∗ ∩ (−U

∗

m))) = XT∗ (F ∩U1) + · · · + XT∗ (F ∩Um), therefore XT∗ (F) ⊆ XT∗ (F ∩U1) + · · · + XT∗ (F ∩Um). To
show the opposite inclusion, let x ∈ XT∗ (F ∩U1) + · · · + XT∗ (F ∩Um) be arbitrary. Then J∗x ∈ J∗XT∗ (F ∩U1) +
· · · + J∗XT∗ (F ∩Um) = XT(−(F ∩U1)∗) + · · · +XT(−(F ∩Um)∗). Moreover J∗x ∈ XT(−F∗), so x ∈ XT∗ (F).therefore
XT∗ (F ∩U1) + · · · +XT∗ (F ∩Um) ⊆ XT∗ (F). Thus XT∗ (F ∩U1) + · · · +XT∗ (F ∩Um) = XT∗ (F). By Lemma 2.7, this
establishes the strong decomposability of T∗.

For the reverse implication replace T by T∗.

Theorem 3.4. Let T be an extended Hamilton operator with J as antilinear unitary operator. Then λY is T-
hyperinvariant if and only if λ̄J∗Y is T∗- hyperinvariant, where λ ∈ C.

Proof. Let S be a bounded linear operator on X and ST∗ = T∗S, then JSJ∗T = TJSJ∗. Since λY is T-
hyperinvariant, we know from Definition 2.6 that JSJ∗λY ⊂ λY. Therefore SJ∗λY ⊂ J∗λY. i.e. J∗λY is T∗-
hyperinvariant.

To see the converse, suppose that J∗λY is T∗- hyperinvariant. Let S be a bounded linear operator on
X and ST = TS, then JSJ∗T∗ = T∗ JSJ∗. Since J∗λY is T∗- hyperinvariant, we know from Definition 2.6 that
JSJ∗ J∗λY ⊂ J∗λY. Therefore SλY ⊂ λY. i.e. λY is T- hyperinvariant.

In the following theorems we give the necessary and sufficient conditions for extended Hamilton
operator which satisfies property (h) and (1h).

Theorem 3.5. Let T be an extended Hamilton operator with J as antilinear unitary operator. Then T satisfies property
(h) if and only if T∗ satisfies property (h).

Proof. Let T satisfies property (h), then σ(T) \ σSF−+ (T) = πa
00(T). Given any λ ∈ σ(T∗) \ σSF−+ (T

∗), we have
−λ̄ ∈ σ(T) \ σSF−+ (T), by Lemma 3.2 . Since T satisfies property (h), then −λ̄ ∈ πa

00(T), and hence λ ∈ πa
00(T∗),

therefore σ(T∗) \ σSF−+ (T
∗) ⊆ πa

00(T∗). To show the opposite inclusion, let λ ∈ πa
00(T∗), then λ ∈ isoσa(T∗) and

0 < α(T∗ − λ) < ∞, and therefore −λ̄ ∈ πa
00(T). Since T satisfies property (h), then −λ̄ ∈ σ(T) \ σSF−+ (T). We

conclude from Lemma 3.2 that λ ∈ σ(T∗) \ σSF−+ (T
∗). Hence πa

00(T∗) ⊆ σ(T∗) \ σSF−+ (T
∗). So T∗ satisfies property

(h).
A similar argument shows that T∗ satisfies property (h), then T satisfies property (h).
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Theorem 3.6. Let T be an extended Hamilton operator with J as antilinear unitary operator. Then T satisfies property
(1h) if and only if T∗ satisfies property (1h).

Proof. Let T satisfies property (1h), then σ(T) \ σSBF−+ (T) = Ea(T). Given any λ ∈ σ(T∗) \ σSBF−+ (T
∗), we have

−λ̄ ∈ σ(T) \ σSBF−+ (T), by Lemma 3.2. Since T satisfies property (1h), then −λ̄ ∈ Ea(T), and hence λ ∈ Ea(T∗),
therefore σ(T∗) \ σSBF−+ (T

∗) ⊆ Ea(T∗). To show the opposite inclusion, let λ ∈ Ea(T∗), then λ ∈ isoσa(T∗) and
0 < α(T∗ − λ), and therefore −λ̄ ∈ Ea(T). Since T satisfies property (1h), then −λ̄ ∈ σ(T) \ σSBF−+ (T). We
conclude from Lemma 3.2 that λ ∈ σ(T∗) \σSBF−+ (T

∗). Hence Ea(T∗) ⊆ σ(T∗) \σSBF−+ (T
∗). So T∗ satisfies property

(1h).
A similar argument shows that T∗ satisfies property (1h), then T satisfies property (1h).

Remark 3.7. In general, the results of Theorem 3.5 and 3.6 do not hold if we replace extended Hamilton operator by
bounded operator.

Example 3.8. Let T be defined for each x = (xi) ∈ ℓ2 by T(x1, x2, x3, · · · , xn, · · · ) = ( 1
2 x2, 1

3 x3, 1
4 x4, · · · , 1

n xn, · · · ).
Then σ(T) = σa(T∗) = σw(T) = σSF−+ (T

∗) = π00(T) = {0}, πa
00(T∗) = ∅. Hence σ(T) \ σw(T) = ∅ , {0} = π00(T), i.e. T

does not satisfy Weyl’s theorem. Then T does not obey a-Weyl’s theorem. Hence T does not satisfy property (h), and
therefore does not satisfy property (1h). But σa(T∗) \ σSF−+ (T

∗) = πa
00(T∗) = ∅, i.e. T∗ satisfies a-Weyl’s theorem. Then

T∗ obeys property (h) and property (1h).
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