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Abstract. In this paper, we give an upper bound of Hankel determinant of (H,(1)) for the classes of M (a),
a € C. Also, for M(a), we obtain a sharp estimate for the classical Fekete-Szeg6 inequality. That is, we
will get a sharp upper bound for the Hankel determinant H>(1) = c3 — c3. Moreover, in a class of analytic

functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations
below of the modulus of angular derivative have been obtained.

1. Introduction

Let A denote the class of functions f(z) = z + c2z% + ¢32° + ... which are analyticin D = {z : |z| < 1}. Also,
M (a) be the subclass of A consisting of all functions f(z) which satisfy

(7] re-e

where a € C. This class has found many interesting properties [14, 15, 18, 20].

The certain analytic functions which are in the class of M (a) on the unit disc D are considered in this
paper. The subject of the present paper is to discuss some properties of the function f(z) which belongs
to the class of M(a) by applying Schwarz lemma. Schwarz lemma has several applications in the field
of electrical and electronics engineering. The use of positive real function and boundary analysis of these
functions for circuit synthesis can be given as an exemplary application of the Schwarz lemma in electrical
engineering. Furthermore, it is also used for the analysis of transfer functions in control engineering and
multi-notch filter design in signal processing [12, 13].

In this paper, we will give the sharp estimates for the Hankel determinant of the class of analytic
function f € A will satisfy the condition (1.1). Also, the relationship between the coefficients of the Hankel

determinant and the angular derivative of the function f which provides the class M (a), will be examined.
In this examine, the coefficients c,, c3 and ¢4 will be used.

<1, (1.1)
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Let f € A. The g™ Hankel determinant of f for n > 0 and g > 1 is stated by Noonan and Thomas [19] as

Cn Cn+l  «+ Cnig-1
Cn+l  Cpy2 e Cn+q
Hy(n) = : D : ra=1
Cn+g-1 Cn+q - Cn+2g-2

From the Hankel determinant for n = 1 and q = 2, we have

1 C2

Hy(1) = &

=3 —Co.

Here, the Hankel determinant Hy(1) = ¢3 — C% is well-known as Fekete-Szeg6 functional [19]. We will get a
sharp upper bound for Hy(1) = ¢3 — ¢3 for M(a) in our study.
Let f(z) € M(a) and consider the following function

2
p(2) = (]%) fz)—a=1-a+ (63 -~ c%) 22+ (2c4 —4dcyes + 2c§) 2.
It is an analytic function in D and ¢(0) = 1 — a. Consider the function

_9@-00)
1-9(0)p(2)

Here, h(z) is an analytic function in D, h(0) = 0 and |k(z)| < 1 for z € D. Therefore, the function /(z) satisfies
the condition of Schwarz lemma [5]. By the Schwarz lemma, we obtain

h(z)

hz) = (P(Z);(P(O)
1-¢(0)p(2)
1-a+ (C3 - c%)z2 + (2c4 —4cocs + 203)23 +.-(1-a)
1-(1-27) (1 —a+ (C3 - cg) Z2 + (2C4 —4cycs + ch) z8 + )
_ (C3 - c%) z2 + (2C4 —4cocs + 2cg) 4.
- (1-a) (1 —a+ (63 - c%)z2 + (2C4 —4cycs + 2c§)z3 + )
and
hz) (C3 - c%) + (2C4 —4dcycs + 2c§)z + ..

2 q- (1-o) (1 —a+ (03 - c%)z2 + (204 — 405 +2c§)z3 + )
Letting z — 0, then we have

s -al i)
1-1-af 1-1-af "~

and hence
IHy(1)] < 1-11-af.
Now, let us show the sharpness of this inequality. Let

¢(z) — (0) _ 2
1-p(0)p(z)
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and therefore

_ Z2+9(0)
1+ (p(O)zz.
From the definition of ¢(z), we take
2 2
z , z=+ ¢(0)
(—) f@)—a= ———-, (1.2)
f(2) 1+ ¢(0)22
2+ (0
l-a+ (6‘3 - ci)z2 + (2c4 —dcyes + 2c§)z3 +o = Z—i()
1+ ¢(0)z?
2 4 (0 1-11-af)z?
(63 — cﬁ)z2 + (264 —4coc3 + 2c§)z3 +...= Z—i() +a-1= %
1+ ¢(0)z2 I+(1-a)z
and therefore
1-11-af
(C3 - C%) + (2C4 —4cycs + 2C;>Z + .= ﬁ

Passing to limit (z — 0) in the last equality yields
|es — 3| = IH2(1) = 111 - af.

In other words, from equality (1.2), we take

f@=

z
Z —aP :
1-cz-2z f %T)ltz)dt
0
We thus obtain the following lemma.
Lemma 1.1. If f(z) € M(a), then we have the inequality
Hy(1)| <1-11-af. (1.3)

This result is sharp with equality for the function

f@) =

z

. .
(1-11-af)
1- CZ—2Z bf mdt
Since the area of applicability of Schwarz Lemma is quite wide, there exist many studies about it. Some
of these studies, which is called the boundary version of Schwarz Lemma, are about being estimated from
below the modulus of the derivative of the function at some boundary point of the unit disc. The boundary
version of Schwarz Lemma is given as follows [11]:

Lemma 1.2. Let w : D — D be an analytic function with w(z) = cyz¥ + c,gﬂz?’*1 + ..., p = 1. Assume that there is a
¢ € dD so that w extends continuously to c, [w(c)|) = 1 and w’(c) exists. Then

1
lw'(c)l = p + (1.4)

and
[ (©)] = p. (15)
Inequalities (1.4) and (1.5) are sharp.



S. Aydinoglu, B. N. Ornek / Filomat 36:11 (2022), 3679-3688 3682

Inequality (1.4), (1.5) and its generalizations have important applications in the geometric theory of
functions and they are still hot topics in the mathematics literature [1-4, 6-11, 16]. Mercer considers some
Schwarz and Carathéodory inequalities at the boundary, as consequences of a lemma due to Rogosinski
[9]. In addition, he obtain a new boundary Schwarz lemma, for analytic functions mapping the unit disk
to itself [10].

The following lemma, known as the Julia-Wolff lemma, is needed in the sequel (see, [17])

Lemma 1.3 (Julia-Wolff lemma). Let w be an analytic function in D, w(0) = 0 and w(D) c D. If, in addition,
the function w has an angular limit w(c) at ¢ € D, |w(c)| = 1, then the angular derivative w’(c) exists and
1<’ (o) < 0.

Corollary 1.4. The analytic function w has a finite angular derivative w’(c) if and only if w’ has the finite angular
limit w’(c) at ¢ € dD.

2. Main Results

In this section, we discuss different versions of the boundary Schwarz lemma and Hankel determinant for
M (@) class. Assuming the existence of an angular limit on a boundary point, we obtain some estimations
from below for the moduli of derivatives of analytic functions from a certain class. In the inequalities
obtained, the relationship between the Hankel determinant and the second angular derivative of the f(z)
function was established.

Theorem 2.1. Let f(z) € M(a). Suppose that, for some ¢ € dD, f has an angular limit f(c) at ¢, f(c) = 7 and

1+a
f'(¢c) = 1. Then we have the inequality
” 2 |af?
) 2 = e

(1-n-af)it+af
This result is sharp for « € R.
Proof. Consider the following function

_ 9@ -9(0)

h(z) —,
1-¢0)p(2)

where

2
z oy

and a € C. h(z) is an analytic function in D, h(0) = 0 and |k(z)| < 1 for z € D. Also, since f(c) = 1=,
f'(c) = = and ¢ € 9D, we have [i(c)| = 1. That is;

1+a

[ c 2, [ c 2 1 _1
¢ ()= m fle—a= — 1+a—a_

1+a
and
- (0 1 - (0 (1=
o) = | 2220 | _|1=¢O =‘1_(1_f) =5|=1.
1-90)p@)| [1-@O]| 1-0-ol la
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Therefore, h1(z) satisfies the assumptions of the Schwarz lemma on the boundary, we obtain

2
2 < o=~ o= 1020
JE— 2 1 =2
11 - 90)p(c)| 1-1-a)l
_ _ 2
= i lreln e
and hence
2
fl/(c)' > 2 |(X|

(1-n-af)it+af
Now, we shall show that the inequality (2.1) is sharp. Let
p@) =90 _ ,

1-9(0)p(2)
that is,
_ Z2+9(0)
1+ sz.

If we take the derivative of both sides of the above equation, then
2z (1 + sz) —2z¢(0) (z2 + (p(O))
(1+90)2)

and, in particular, we have

¥'(2)

2(1+(0)) - 29(0) (1 + p(0)) Zﬁ—wwﬁ)
'(1) = — = —.
(1+¢00) (1+(0)

Also, ’(1) = f7(1) (1 + a)* and ¢(0) =1 — a. Therefore

//1 1 2 2(1—|1—6¥|2)
L
and
2(1-11-af
fl/(1)| — ( )

1+af2-af
For a € R, we get

2c
1+al@2-a)

f//(1)| —

From (2.1) for « € R, we have
202 B 20
(1-0-w)a+af (+’@-a)

f//(1)| >
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The inequality (2.1) can be strengthened as below by taking into account ¢; and c3 which are second

and third coefficients in the expansion of the function f(z) = z + 0222 + ¢32° + .... Due to these coefficients,
modulus of the Fekete-Szego functional (H,(1)) is included in the inequality (2.2).

Theorem 2.2. Under the same assumptions as in Theorem 2.1, we have

a2 2(1-11-af)
+ .
(1-1-af)1+af 1—11-af +|Hy (1)

()] = 2.2)

The result is sharp for « € R.

Proof. Let h(z) be the same as in the proof of Theorem 2.1. Therefore, from (1.4) for p = 2, we obtain

1—|dy| 1—|1—0¢|2 )
2+ <@l = ——=—|f"©|1+af,
T3y < Ol=— )
W -
where |dy| = ! 2(!O)I = 1|f|31—ci||2 = 15’;(_1;%2.
Therefore, we take
1-— |H2(1)|2 )
ii-af _1-[1-af, )
2+ < lf7©|11+alP,
[H2(DI 2
H(Dl = 2
1+ 1_‘;—_&'2 ||
and so
2 2(1-11-af
profs —__[p, 20z )
(1-n-aP)p+aP | 1-11=-af +H(D)

Now, we shall show that the inequality (2.2) is sharp. Let

p@) = pO) _ ,z+a
1-pO)p@)  1+az

where a = % < 1 and which is equivalent to

_ 22 +az> + ¢(0) (1 + az)

¥(z)

Cltaz+ @(0) (23 + az?)
Then

(322 + 20z + a(p(O)) (1 +az + ¢(0) (23 + azz))

¢'(2) = — ;
(1 +az + @(0) (23 + azz))

(a + W(3z2 + 2az)) (23 +az> + p0)(1 + az))

(1 +az + W (23 + azz))2
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in particular,

@'(1) = aB+a) _ a(3+ﬂi(—llllz) _ @ 3(1—I1—0z|2)+|H2(1)|
ral=0 (14 Lol )o-a) 27¢ 1-L-alf Q)

Also, for o € R, we have (1) (1 + a)? = ¢’(1), and ¢(0) = 1 — . Therefore

a 3a(2-a)+|Hy(1))|

7 2 _
FOA+ e = =) T O
and so
)= @ 3aC-) )

1+a)?Q2-a) a@-a)+[Hx(D)] "

From (2.2) for a € IR, we have

I SR
T (1-n-aP)iieaP | 1-1l-af +Ha(D)
o 3a (2 — a) + |[Hy(1)]

1+a)?Q2-—a) ®@2-a)+[Hy(1)
O

This completes the proof.
In the following theorem, inequality (2.2) has been strengthened by adding the consecutive terms c,, c3
and ¢4 of f(z) function.

Theorem 2.3. Let f(z) € M(a). Suppose that, for some c € D, f has an angular limit f(c) at c, f(c) = 15 and
f'(c) = 7. Then we have the inequality
" 2af? (1-1-aP-Hy(1)])*
f (C)| = (1-1-aP)1+al® (1 * (1-11-aP) ~ H ()P +2(1-l1-af)|es—ca (S +2H(D)| |
The result is sharp for a € R.

(2.3)

Proof. Let h(z) be the same as in the proof of Theorem 2.1 and A(z) = z2. By the maximum principle, for
each z € D, we have the inequality |(z)| < |A(z)|. Therefore

z) _ _ ¢(E) - 90
A2) (1 - W@(z)) 22
(C3 - c%) z2 + (2C4 —4cyes + 26§)Z3 + ..

1-1-a)(1-a+(c3—c2)z2+(2cs —4cyes +2¢3) 28 + ... )| 22
2 2

3@)

(C3 - c%) + <2C4 —4coes + 2c§)z + ..

[1 -(1-2) (1 —a+(c3— c%) 22 + (2c4 —4cycs + 2c§) z3 + )]

is analytic function in D and |9(z)| < 1 for |z| < 1. In particular, we have
_ 2

s a3l _ )
I-N—af 1-11-af

19(0) = (2.4)
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and

|2C4 —4cyes + 2c§| 2 |C4 ) (c§ + 2H2(1))|
19(0)] = s = >
1-]1-¢ 1-]1-¢

Furthermore, the geometric meaning of the derivative and the inequality |i(z)| < |A(z)| imply the inequality

ch'(c) )
o) |h () = A (c)| = )

The composite function

_9(2) - 9(0)

C1-3(0)8(2)

g(z)| <1forlz] <1and |g(c)| =1forc € dD. For p = 1, from (1.4), we obtain

is analyticin D, g(0) = 0,

2 : 1-BO)P .,
oy S 7@ = ——5 ¥
1+ |70 |9 ) |1—%S(c)|2 c

1+130) ., ,
< T‘W{Ih(C)I—IA ©)l)
1 4 JH0) ,
1Nn-af [1=11=al",,
) 1——1fi(_1§'|2{ mad (C)|'1+“'2_2}'
Since
_ 2
g'(z) = %S'(z)

(1-3000%0)

and, in particular, we have

2|es—ca(c2+2H(1))]

yo| = YO T
1-19(0) 1 _( Hy ()l )2
1-[1-af?
2 'c4 —o(d+ 2H2(1))’
= (1-11-aP) = .
(1-11-af) - |Ha (1)
We observe that
2 I-f1—aP+H,(D)| | 1-[1=af® | 1 2
(1ot Ja )] = 1—|1—a|2—le<1>\{ o |f7 O+ al 2}

(1—|1—(v|2)2—|H2(1)|2
which is equivalent to
o 2
iy > 2daf (1-11-af’-|H> (1) ‘
f (C)| = (1-1-aP)+af 1+ (1-11-aP) ~ H> ()P+2(1-[1-af ) cs—ca (2 +2Ho (D)
To prove the sharpness of the inequality (2.3), let

¢(z) — (0) — 3
1-p(0)p(z)
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which is equivalent to

_ 2+9(0)
- 1+Wz3‘

If we take the derivative of both sides of the above equation, then
322 (1 + (p(0)23) - 3229(0) (23 + (p(O))
(1 + (p(O)z3)2

¢'(z) =

and, in particular, we have

3(1-lpof)
P@)=—"T7"
(1+90)

Since ¢’(1) = (1) (1 + a)* and @(0) = 1 — o, therefore

1 A2
fra)a+a) = 3(1|—1_a!2)
(1+1-0)

and
" 3(1 B |1 B (X|2)
R

For o € R, we have

3(1-11-af
pry =2 - )2= S
2-a)y1+a) 2Q-a)1+a)

On the other hand, we obtain

_ 2+¢(0)
1+q0(0)z3,
1-a+ (C3 —Ci)ZZ + (2C4 —4cycs +2C2)Z + ... = m
and so
N 2 3N 3 Z+l-a
(C3—C2)Z +<2C4—4C2C3+2C2)Z + ... = m—(l—&)
(1-n-ap)2
1+(1-a)z8

If we divide both sides of the equation by z%, we have

(1 -1- oz|2)z

(C3 - C%) + (2C4 —4coc3 + ZCg)Z + .= m

3687
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Passing to limit (z — 0) in the last equality yields c; — ¢ = Hy(1) = 0. Similarly, using straightforward

calculations, we take 2c4 — 4coc3 + 2C§ =1-1]1- alz. Therefore, we obtain

2af? (1-[L-aP—|H()])*
(1-n-al)1+af® 1+ 2)? 2 2 2
(1-11-al?) —Ha(1)P+2(1-[1-af?)|es—c2 (2 +2H2(D))|
2af? ( (1-11-aP)’

= (1-11-af)|1+af® + (1-11-aP)*+(1-1-af) (1-1-af)

IT; (2 N 2(1—I1—alz)2)
T (1-1-aP)1+aP 2(1-[1-aP)*
- 8P

T (1-n-aP)i+al”

Thus, for a € R, we obtain

2laf? (1 (1-N-aP—|H: (1))’ )

+
(1-1n-af)i1+af® (1-11-aP)* ~ Hy ()P +2(1-[1-al)|es—ca (2 +2H (D)) |

_ 3a
T -a)1+a)?” U

Acknowledgement. The authors would like to thank the referees for their constructive comments and
suggestions on the earlier version of this paper.

References

(1]

[2]
[3]
[4]
[5]
[6]
[7]

(8]

[9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]
[18]
[19]

[20]

T. Akyel and B. N. Ornek, Sharpened forms of the Generalized Schwarz inequality on the boundary, Proc. Indian Acad. Sci. (Math. Sci.)
126 (2016) 69-78.

T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variab. Elliptic Equa. 58 (2013) 571-577.
H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010) 770-785.

V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, ]. Math. Sci. 122 (2004) 3623-3629.

G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.

M. Mateljevi’c, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press.

M. Mateljevi¢, N. Mutavd¢ and B. N. Ornek, Note on some classes of holomorphic functions related to Jack’s and Schwarz’s lemma,
Applicable Analysis and Discrete Mathematics, Accepted.

M. Mateljevi¢, M. Svetlik, Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings, Appl. Anal. Discrete Math.,
14(2020), 150-168. doi: 10.2298/AADM200104001M.

P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski’s lemma, Journal of Classical Analysis 12 (2018) 93-97.

P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018) 1140-1144.

R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517.

B. N. Ornek and T. Diizenli, Bound Estimates for the Derivative of Driving Point Impedance Functions, Filomat, 32(2018), 6211-6218.
B. N. Ornek and T. Diizenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits
and Systems II: Express Briefs 65(2018) 1149-1153.

M. Obradovic and S. Ponnusamy, On the class U. In: Proceedings of the 21st Annual Conference of the Jammu Mathematical
Society and a National Seminar on Analysis and its Application, pp. 11-26 (2011).

M. Obradovic and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis (Munich) 25(2006), 183-188.
B. N. Ornek, On the Schwarz lemma at the upper half-plane, Filomat, 33 (2019) 2053-2059.

Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992.

G. Szegt and M. Fekete, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 2(1933) 85-89

D. K. Thomas and J. W. Noonan, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223
(1976) 337-346.

A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class U (a), Comput. Mmethods Funct. Theory
13(2013), 613-634.



