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Properties of Dual Toeplitz Operator on the Orthogonal Complement
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Abstract. In this paper, we characterize the hyponormal dual Toeplitz operators with special symbols
on the orthogonal complement of the pluriharmonic Bergman space of the unit ball. Also we completely
characterize the pluriharmonic symbols for (semi)commuting dual Toeplitz operators.

1. Introduction

For any integer n > 1, let Bn denote the open unit ball in Cn. The boundary of Bn is the sphere Sn and
the closure of Bn with the Euclidean metric on Cn is denoted by Bn. Let dν denote the Lebesgue measure
on the unit ball Bn of Cn, normalized so that the measure of Bn equals 1. The space L2 = L2(Bn, dν) is the
completion of the collection of all functions f on Bn for which

∥ f ∥ = [
∫

Bn

| f (z)|2dν(z)]
1
2 < ∞,

equipped with the inner product

⟨ f , 1⟩ =
∫

Bn

f (z)1(z)dν(z).

The Bergman space A2 = A2(Bn, dν) is the closed subspace of L2(Bn, dν) consisting of all holomorphic
functions, and let P denote the orthogonal projection from L2(Bn, dν) onto A2 = A2(Bn, dν). Then P is an
integral operator represented by

P( f )(w) = ⟨ f ,Kw⟩ =

∫
Bn

f (z)Kw(z)dν,

where Kw(z) = K(z,w) is the reproducing kernel of A2 = A2(Bn, dν). By computation, we know

K(z,w) = 1 +
∑

α∈Nn−{0}

(|α| + n)!
n!α!

zαw̄α,
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where {0} = (0, · · · , 0), α = (α1, · · · , αn) ∈ Nn, α! = α1! · · ·αn!, zα = zα1
1 · · · z

αn
n , |α| =

∑n
i=1 αi andN is the set of

nonnegative integers. The pluriharmonic Bergman space A2
h = A2

h(Bn, dν) is the closed subspace of L2(Bn, dν)
consisting of all pluriharmonic functions. Let Q denote the orthogonal projection from L2 onto A2

h, then
(Q f )(z) = ⟨ f ,Rz⟩,where Rz = Kz + K̄z − 1. In fact,

(Q f )(z) = (P f )(z) + (P f )(z) − (P f )(0).

Given a function f ∈ L∞(Bn), the multiplication operator M f , the Toeplitz operator T f , the Hankel operator
H f , the dual Toeplitz operator S f and dual Hankel operator R f with symbol f are defined respectively by

M f : L2
→ L2, M f (h) = f h, h ∈ L2;

T f : A2
h → A2

h, T f (h) = Q( f h), h ∈ A2
h;

H f : A2
h → (A2

h)⊥, H f (h) = (I −Q)( f h), h ∈ A2
h;

S f : (A2
h)⊥ → (A2

h)⊥, S f (h) = (I −Q)( f h), h ∈ (A2
h)⊥;

R f : (A2
h)⊥ → A2

h,R f (h) = Q( f h), h ∈ (A2
h)⊥.

They are all bounded linear operators. Under the decomposition L2 = A2
h⊕(A2

h)⊥, the multiplication operator
M f is represented as(

T f R f
H f S f

)
.

SinceM f M1 =M1M f ,we have
T f1 = T f T1 + R f H1;

S f1 = S f S1 +H f R1.

This shows close relationships among the above four types of operators. Many studies for dual Toeplitz
operators offer some insights into the study for Toeplitz operators. So it is reasonable to focus on the dual
Toeplitz operators. Although dual Toeplitz operators differ in many ways from Toeplitz operators, they do
have some analogous properties. The general problem that we are interested in is the following: what is
the relationship between their symbols when two dual Toeplitz operators commute?

For Toeplitz operators, this problem has been studied for a long time. In the case of the classical Hardy
space, A. Brown and P. R. Halmos [5] showed that two Toeplitz operators with general bounded symbols
commute if and only if either both symbols are analytic, or both symbols are conjugate analytic, or a
nontrivial linear combination of the symbols is constant.

Initiated by Brown and Halmos’s pioneering work, the problem of characterizing when two Toeplitz
operators commute has been one of the topics of constant interest in the study of Toeplitz operators on
classical function spaces over various domains. On the Bergman space of the unit disk, S. Axler and Z.
C̆uc̆ković [3] studied commuting Toeplitz operators with harmonic symbols, and obtained the similar result
to Brown and Halmos’s. K. Stroethoff [25] later extended that result to essentially commuting Toeplitz
operators. S. Axler et al. [4] showed that if two Toeplitz operators commute and the symbol of one of them
is nonconstant analytic, then the other one must be analytic. Z. C̆uc̆ković and N. Rao [6] studied Toeplitz
operators that commute with Toeplitz operators with monomial symbols. On the Bergman space of several
complex variables, by making use ofM-harmonic function theory, D. Zheng [31] characterized commuting
Toeplitz operators with pluriharmonic symbols on the Bergman space of the unit ball. B. Choe and Y. Lee
[10, 11, 16] studied commuting and essentially commuting Toeplitz operators with pluriharmonic symbols
on the unit ball. Y. Lu [18] characterized commuting Toeplitz operators on the bidisk with pluriharmonic
symbols. B. Choe et al. [12] obtained characterizations of (essentially) commuting Toeplitz operators with
pluriharmonic symbols on the Bergman space of the polydisk.

The fact that the product of two harmonic functions is no longer harmonic adds some mystery in the
study of operators on harmonic Bergman space. Many methods which work for the operators on analytic
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Bergman space lose their effectiveness on harmonic Bergman space. On the harmonic Bergman space of the
unit disk, S. Ohno [34] first characterized the commutativity of T f and Tz, where f is a analytic function. B.
Choe and Y. Lee [35] studied commuting Toeplitz operator with harmonic symbols and one of the symbols
is a polynomial. In [14], B. Choe and Y. Lee proved that if f , 1 ∈ H∞ and suppose one of them is noncyclic,
then T f T1̄ = T1T f̄ if and only if either f or 1 is constant. On the pluriharmonic Bergman space of the unit
ball, commuting Toeplitz operators was studied in [15, 17].

However, the study on the problem for dual Toeplitz operators started recently. K. Stroethoff and
D. Zheng [24] characterized the commutativity of dual Toeplitz operators with bounded symbols on the
orthogonal complement of the Bergman space of the unit disk and studied algebraic and spectral properties
of dual Toeplitz operators. On the Bergman space of the unit ball and the polydisk, commuting dual
Toeplitz operators was studied in [19–21]. J. Yang and Y. Lu [26] gave complete characterization for the
(semi)commuting dual Toeplitz operators with harmonic symbols on harmonic Bergman space.

In recent years the Dirichlet space has received a lot of attention from mathematicians in the areas
of modern analysis, probability and statistical analysis. Many mathematicians are interested in function
theory and operator theory on the Dirichlet space. T. Yu and S. Wu [28, 29] investigated commuting dual
Toeplitz operators with harmonic symbols on the Dirichlet space. T. Yu [30] obtained the commutativity of
dual Toeplitz operators with general symbols on Dirichlet space.

A bounded operator T is said to be hyponormal if [T∗,T] = T∗T − TT∗ ≥ 0, where T∗ denotes the adjoint
of T. An equivalent definition of hyponormality is ∥Tu∥ ≥ ∥T∗u∥ for all vectors u. Such operators are of
interest because of Putnam’s inequality (see Theorem 1 in [34]), which says that hyponormal operators
satisfy

∥[T∗,T]∥ ≤
|σ(T)|
π
,

where σ(T) is the spectrum of T.
We are interested in understanding what symbolsφyield dual Toeplitz operators Sφ that are hyponormal.

An analogous question can be asked in the setting of the Hardy space of the unit disk and it was answered
by Cowen [33].

There are several obvious examples of hyponormal Toeplitz operators acting on the Bergman space. For
instance, T|z|2 is hyponormal because (recalling the fact that T∗f = T f ), it is self-adjoint. The operator Tz is
also hyponormal because if f ∈ A2(D), then

∥Tz f ∥2 =
∫

D
|z f |2dz =

∫
D
|z f |2dz ≥

∫
D
|P(z f )|2dz = ∥T∗z f ∥2.

The same reasoning shows that T1 is hyponormal for any 1 ∈ H∞.
While a complete characterization of hyponormal Toeplitz operators acting on the Bergman space has

remained elusive, there has been a substantial amount of work on understanding the case when f is a
polynomial in z and z̄.

A pluriharmonic function in the unit ball is the sum of a holomorphic function and the conjugate
of a holomorphic function. It is clear that all pluriharmonic functions on Bn are M-harmonic. A good
reference for the function theory of the unit ball is Rudin’s book [23]. In this paper, we want to characterize
the hyponormal and commuting dual Toeplitz operators with pluriharmonic symbols on the orthogonal
complement of the pluriharmonic Bergman space of the unit ball.

We state our main result now. We postpone the proofs of these theorems until Section 3 and 4.

Theorem 1.1. Suppose that φ is a bounded holomorphic function on Bn, Sφ is hyponormal if and only if φ is a
constant function.

Theorem 1.2. Suppose that f , 1 ∈ L∞(Bn) are pluriharmonic functions, then S f1 = S f S1 if and only if one of the
following statements holds:

(1) Both f and 1 are holomorphic;
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(2) Both f and 1 are holomorphic;

(3) Either f or 1 is constant.

Theorem 1.3. Suppose f , 1 ∈ L∞(Bn) are pluriharmonic functions, then S1S f = S f S1 if and only if one of the
following statement holds:

(1) Both f and 1 are holomorphic;

(2) Both f and 1 are holomorphic;

(3) There are constants α and β, not both zero, such that α f + β1 is constant.

2. Some Lemmas

For two multi-indexes α = (α1, · · · , αn) and β = (β1, · · · , βn), the notation α ≻ βmeans that

α , β, and αi ≥ βi, i = 1, · · · ,n.

The standard orhonormal basis for Cn consists of the vectors d1, d2, · · · , dn, where dk is the ordered n-tuple
that has 1 in the k-th spot and 0 everywhere else. A direct computation gives that

Q(zαz̄β) =


α!

(α−β)!
(n+|α|−|β|)!

(n+|α|)! zα−β, α ≻ β;
n!α!

(n+|α|)! , α = β;
β!

(β−α)!
(n+|β|−|α|)!

(n+|β|)! z̄β−α, α ≺ β;
0, else.

LetN = span{zαz̄β −Q(zαz̄β) : α, β ⪰ 0} and we have the following Lemma.

Lemma 2.1. SetN is dense in (A2
h)⊥.

Proof. Since polynomials are dense in L2 and I−Q is a bounded operator, we get thatN is dense in (A2
h)⊥.

The following Lemma will be useful for the proof of the main theorem.

Lemma 2.2. Suppose f ∈ L∞(Bn) is holomorphic, then we have R f ((A2
h)⊥) ⊂ A2, R f̄ ((A2

h)⊥) ⊂ A2.

Proof. SinceN is dense in (A2
h)⊥, it suffices to prove R f [zαz̄β −Q(zαz̄β)] ∈ A2 for α, β ∈Nn

− {0}. Since f ∈ L∞

is holomorphic, we have f =
∑
|m|≥0 amzm. For α = β, it follows

R f [zαz̄α −Q(zαz̄α)]

= R f

[
zαz̄α −

n!α!
(n + |α|)!

]
= Q

∑
|m|≥0

amzm+αz̄α −
n!α!

(n + |α|)!

∑
|m|≥0

amzm


=

∑
|m|≥0

am

[
(m + α)!

m!
(n + |m|)!

(n + |m| + |α|)!
−

n!α!
(n + |α|)!

]
zm
∈ A2.

For α ≻ β, a direct computation gives that

R f

[
zαz̄β −

α!
(α − β)!

(n + |α| − |β|)!
(n + |α|)!

zα−β
]

=
∑
|m|≥0

am

[
(α +m)!(n + |α| + |m| − |β|)!
(α +m − β)!(n + |α| + |m|)!

−
α!(n + |α| − |β|)!
(α − β)!(n + |α|)!

]
zα+m−β,
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which is also in A2. For α ≺ β, it is obtained that

R f

[
zαz̄β −

β!
(β − α)!

(n + |β| − |α|)!
(n + |β|)!

z̄β−α
]

= Q

∑
|m|≥0

amzα+mz̄β −
β!

(β − α)!
(n + |β| − |α|)!

(n + |β|)!

∑
|m|≥0

amzmz̄β−α


=
∑

m≻β−α

c(m, β, α)amzm+α−β,

where c(m, β, α) = (m+α)!(n+|m|+|α|−|β|)!
(m+α−β)!(n+|α|+|m|)! −

β!
(β−α)!

(n+|β|−|α|)!
(n+|β|)!

m!(n+|m|+|α|−|β|)!
(m+α−β)!(n+|m|)! .

The last case is similar, we omit the proof. Hence we get that if f ∈ L∞ and f is holomorphic, we have
R f ((A2

h)⊥) ⊂ A2. By a similar discussion, we can deduce that R f̄ ((A2
h)⊥) ⊂ A2.

The standard orhonormal basis for Cn consists of the vectors d1, d2, · · · , dn, where dk is the ordered n-tuple
that has 1 in the k-th spot and 0 everywhere else. In the following proposition, we give an answer to the
question that when a dual Toeplitz operator equals to zero.

Proposition 2.3. Suppose f ∈ L∞ is a pluriharmonic function. Then S f = 0 if and only if f ≡ 0.

Proof. Assume that S f = 0. Let

h1 = zd1 z̄d1 + · · · + zdn z̄dn −
n

n + 1
∈ (H2

h)⊥.

Put f (z) =
∑
∞

|α|=0 aαzα, a direct computation gives that

(S f h1)(z) = (I −Q)( f h1)(z)

= f (z)|z|2 −
∞∑
|α|=0

aαzα
n + |α|

n + |α| + 1

=

∞∑
|α|=0

aαzα[|z|2 −
n + |α|

n + |α| + 1
] = 0.

Since z is arbitrary, it follows that f ≡ 0. The converse part is easy to see.

If f , 1, h, and k are holomorphic functions in Bn, when is f 1̄ − hk̄ M-harmonic? In [31], Zheng give a
necessary and sufficient condition for this question. In the following lemma, we give a generalization. For
z,w ∈ Cn, the inner product of z and w is defined by ⟨z,w⟩Cn =

∑n
j=1 z jw̄ j. The following lemma is important

to the proof of commuting dual Toeplitz operators.

Lemma 2.4. [35] Suppose f1, ·, fN and 11, · · · , 1N are holomorphic functions. Then f111+· · ·+ fN1N is pluriharmonic
if and only if there is a N ×N unitary matrix

U =


u11 · · · u1N
...

. . .
...

uN1 · · · uNN

 =


u1
...

uN


and some 1 ≤ k ≤ N + 1 such that ⟨( f1, · · · , fN),u j⟩CN are constants for 1 ≤ j ≤ k − 1, and ⟨(11, · · · , 1N),u j⟩CN are
constants for k ≤ j ≤ N.
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3. Hyponormal dual Toeplitz operator

Let H be a complex Hilbert space and T be a bounded linear operator acting on H with adjoint T∗.
Operator T is said to be hyponormal if [T∗,T] = T∗T − TT∗ ≥ 0. That is for all u ∈ H,

⟨[T∗,T]u,u⟩ ≥ 0.

Lemma 3.1. Sφ is hyponormal if and only if ∥Rφu∥2 ≥ ∥Rφu∥2 for all u ∈ (A2
h)⊥.

Proof. Since ⟨[S∗φ,Sφ]⟩ = S∗φSφ − SφS∗φ = SφSφ − SφSφ = HφRφ −HφRφ, it follows that for all u ∈ (A2
h)⊥,

⟨[S∗φ,Sφ]u,u⟩ = ⟨(HφRφ −HφRφ)u,u⟩ = ⟨φQ(φu) − φQ(φu),u⟩

= ⟨Q(φu), φu⟩ − ⟨Q(φu), φu⟩ = ∥Rφu∥2 − ∥Rφu∥2.

The proof is completed.

With this lemma, we have the following proposition and theorem.

Proposition 3.2. Let φ(z) = zm where m is a nonzero multi-index, then Sφ is not hyponormal.

Proof. Given u(z) = zd1 zα+d1
−

α1+1
n+|α|+1 zα,where neither α ≻ m nor α ≺ m. A direct computation gives

Rφu = Q[zm+d1 zα+d1
−
α1 + 1

n + |α| + 1
zmzα] = 0,

and
Rφu = Q[zd1 z(m+α+d1)

−
α1 + 1

n + |α| + 1
zm+α]

= [
m1 + α1 + 1

n + |m| + |α| + 1
−
α1 + 1

n + |α| + 1
]zm+α.

Choose a multi-index α such that [ m1+α1+1
n+|m|+|α|+1 −

α1+1
n+|α|+1 ] , 0, it follows ∥Rφu∥ > ∥Rφu∥. Hence Sφ is not

hyponormal.

Theorem 3.3. Suppose that φ(z) = zαzβ, then Sφ is hyponormal if and only if α = β.

Proof. First assume that α = β, then Sφ = S∗φ, and Sφ is self-adjoint. It follows that [Sφ,S∗φ] = 0 which implies
that Sφ is normal operator.

Secondly, if α ≻ β. Given u = zd1 zm+d1
−

m1+1
n+|m|+1 zm,where neither m + β ≻ α nor m + β ≺ α.

Rφu = Q[zα+d1 zm+β+d1
−

m1 + 1
n + |m| + 1

zαzm+β] = 0,

and

Rφu = Q[zβ+d1 zm+α+d1
−

m1 + 1
n + |m| + 1

zβzα+m]

= zm+α−β
[

(m + α + d1)!
(m + α − β)!

(n + |m| + |α| − |β|)!
(n + |m| + |α| + 1)!

−
m1 + 1

n + |m| + 1
(m + α)!

(m + α − β)!
(n + |m| + |α| − |β|)!

(n + |m| + |α|)!

]
=

(m + α)!(n + |m| + |α| − |β|)!
(m + α − β)!(n + |m| + |α|)!

[ m1 + α + 1
n + |m| + |α| + 1

−
m1 + 1

n + |m| + 1

]
zm+α−β,



Y. Hu et al. / Filomat 36:12 (2022), 4265–4276 4271

which implies that Sφ is not hyponormal with the condition α ≻ β.
The proof of the case α ≺ β is similar.
If neither α ≻ β nor α ≺ β, α = (α1, α2, · · · , αn), β = (β1, β2, · · · , βn),without loss of generality, α1 > β1, α2 <

β2. Put m = (m1, 0,m3, · · · ,mn),which m1,m3, · · · ,mn large enough that m1 + β1 > α1,m3 + α3 > β3,m3 + β3 >

α3 · · · ,mn + αn > βn,mn + βn > αn. Let u = zm+d1 zd1
−

m1+1
n+|m|+1 zm, a direct computation gives

Rφu = Q(zα+m+d1 zβ+d1
−

m1 + 1
n + |m| + 1

zα+mzβ) = 0,

and

Rφu = Q(zβ+m+d1 zα+d1
−

m1 + 1
n + |m| + 1

zβ+mzα)

=
(β +m)!(n + |β| + |m| − |α|)!
(β +m − α)!(n + |β| + |m|)!

[
β1 +m1 + 1

n + |β| + |m| + 1
−

m1 + 1
n + |m| + 1

]
zm+β−α.

Choose a m such that β1+m1+1
n+|β|+|m|+1 −

m1+1
n+|m|+1 , 0, it follows that ∥Rφu∥ > ∥Rφu∥ which implies that the operator

is not hyponormal.

Theorem 3.4. Suppose that φ is a bounded holomorphic function on Bn, Sφ is hyponormal if and only if φ is a
constant function.

Proof. If φ is a constant, it follows that Sφ = S∗φ,which implies that Sφ is normal. It suffices to prove that Sφ
is not hyponormal when φ is not a constant holomorphic function. By lemma 3.1, we only need to prove
that there exist a function u ∈ (A2

h)⊥ such that ∥Rφu∥ > ∥Rφu∥.

Let u = (I − Q)(Σn
j=1zd j zm+d j ) = Σn

j=1zd j zm+d j
−

n+|m|
n+|m|+1 zm, where m is a nonzero multi-index. Suppose that

φ =
∑
∞

|α|=0 aαzα, a direct computation gives

Rφu = Q

 ∞∑
|α|=0

aαz̄α(Σn
j=1zd j zm+d j

−
n + |m|

n + |m| + 1
zm)


=

∞∑
|α|=0

aα

[
Σn

j=1

m j + α j + 1
n + |m| + |α| + 1

z̄α+m
−

n + |m|
n + |m| + 1

z̄α+m
]

=

∞∑
|α|=0

aα
[ n + |m| + |α|
n + |m| + |α| + 1

−
n + |m|

n + |m| + 1

]
z̄α+m

=

∞∑
|α|=0

aα
|α|z̄α+m

(n + |m| + |α| + 1)(n + |m| + 1)
,

and

Rφu = Q

 ∞∑
|α|=0

aαzα(Σn
j=1zd j zm+d j

−
n + |m|

n + |m| + 1
zm)


=

∑
α≻m

aα
α!

(α −m)!
(n + |α| − |m|)!

(n + |α|)!

[ n + |α|
n + |α| + 1

−
n + |m|

n + |m| + 1

]
zα−m

=
∑
α≻m

aα
α!

(α −m)!
(n + |α| − |m|)!

(n + |α|)!
|α| − |m|

(n + |α| + 1)(n + |m| + 1)
zα−m.
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It follows that

∥Rφu∥2 =
∞∑
|α|=0

|aα|2
|α|2

(n + |m| + |α| + 1)2(n + |m| + 1)2

n!(m + α)!
(n + |m| + |α|)!

=

∞∑
|α|=0

|aα|2n!α!
(n + |α|)!(n + |m| + 1)2

|α|2

(n + |m| + |α| + 1)2 C1

where C1 =
(α1+1)···(α1+m1)···(αn+1)···(αn+mn)

(n+|α|+1)···(n+|α|+|m|) . Also we have

∥Rφu∥2 =
∑
α≻m

|aα|2n!α!
(n + |α|)!(n + |m| + 1)2

(|α| − |m|)2

(n + |α| + 1)2 C2,

where C2 =
α!

(α−m)!
(n+|α|−|m|)!

(n+|α|)! . A direct computation gives

|α|
n + |m| + |α| + 1

−
|α| − |m|

n + |α| + 1
=

|m|(n + |m| + 1)
(n + |α| + 1)(n + |m| + |α| + 1)

> 0,

hence
|α|2

(n + |m| + |α| + 1)2 >
(|α| − |m|)2

(n + |α| + 1)2 .

Let m = d j, j = 1, 2, · · · ,n, it follows

C1 =
α j + 1

n + |α| + 1
,C2 =

α j

n + |α|
.

Hence

C1 − C2 =
α j + 1

n + |α| + 1
−
α j

n + |α|

=
(α j + 1)(n + |α|) − α j(n + |α| + 1)

(n + |α| + 1)(n + |α|)

=
n + |α| − α j

(n + |α| + 1)(n + |α|)
> 0.

Then we have ∥Rφu∥ > ∥Rφu∥which implies that Sφ is not hyponormal whereφ is not a constant holomorphic
function. The proof is complete.

4. Commuting dual Toeplitz operators

In this section, we will present the proof of the main results.

Theorem 4.1. Suppose that f , 1 ∈ L∞(Bn) are pluriharmonic functions, then S f1 = S f S1 if and only if one of the
following statements holds:

(1) Both f and 1 are holomorphic;

(2) Both f and 1 are holomorphic;

(3) Either f or 1 is constant.
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Proof. If (1) holds, we have that R1((A2
h)⊥) is contained in A2(Bn). It follows that H f R1 = 0. The desired result

follows from the equation S f1 = H f R1 + S f S1. The case (2) is similar. The case (3) is easy to get the desired
result.

To prove the necessity, suppose that S f1 = S f S1. Then we have H f R1 = 0. Since f and 1 are pluriharmonic
functions, there exist holomorphic functions f1, f2, 11, 12 such that f = f1 + f2, 1 = 11 + 12.Without loss of
generality, we assume that f (0) = 1(0) = 0. And 11 =

∑
|α|>0 aαzα, 12 =

∑
|β|>0 bβzβ. Let

h1 = zd1 z̄d1 + · · · + zdn z̄dn −
n

n + 1
∈ ((A2

h)⊥.

By a direct calculation, we have

Q(11h1) = Q

∑
|α|>0

aα(zα+d1 z̄d1 + · · · + zα+dn z̄dn −
n

n + 1
zα)


=

∑
|α|>0

aαzα
[

(α + d1)!(n + |α|)!
α!(n + |α| + 1)!

+ · · · +
(α + dn)!(n + |α|)!
α!(n + |α| + 1)!

−
n

n + 1

]
=

∑
|α|>0

aαzα
|α|

(n + |α| + 1)(n + 1)
.

Similarly, we have

Q(12h1) =
∑
|β|>0

bβzβ
|β|

(n + |β| + 1)(n + 1)
.

Since H f R1h1 = 0, it follows
(I −Q)[( f1 + f2)(Q(11h1) +Q(12h1))] = 0.

It is obtained f1Q(12h1)+Q(11h1) f2 ∈ A2
h. By Theorem 5.6 in [31], we have f1Q(12h1)+Q(11h1) f2 ∈ A2

h implies
that one of the following statements holds:

(1) Both f and 1 are holomorphic ;

(2) Both f and 1 are holomorphic;

(3) Either f or 1 is constant;

(4) There is a nonzero constant t1 such that f1 − t1Q(11h1) and f2 + t1Q(12h1) are constants.

Then it suffices to prove that t1 = 0 in condition (4) when both Q(11h1) and Q(12h1) are not constants. It
follows that both 11 and 12 are not constant. Let

h2 = zm+d1 z̄d1 −
m1 + 1

n + |m| + 1
zm
∈ (A2

h)⊥,

m can be chosen such that

Q(11h2) = zm
∑
|α|≥1

aα[
α1 +m1 + 1

n + |m| + |α| + 1
−

m1 + 1
n + |m| + 1

]zα

is not a constant function as 11 is not a constant function. Since H f R1h2 = 0, a direct computation gives that

(I −Q)[( f1 + f2)(Q(11h2) +Q(12h2))] = 0.

It follows (t1Q(11h1) − t1Q(12h1))[Q(11h2) +Q(12h2)] ∈ A2
h.
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Case 1. If Q(12h2) is a constant function, then t1Q(12h1)Q(11h2) is pluriharmonic. Since Q(12h1) and
Q(11h2) are not constant functions, which is a contradiction.

Case 2. If Q(12h2) is not a constant function, it follows there exist a constant t2 such that

f1 = t2Q[11h2] = t2zm
∑
|α|≥1

aα[
α1 +m1 + 1

n + |m| + |α| + 1
−

m1 + 1
n + |m| + 1

]zα.

Since m can be sufficient large , then f1 = 0. Hence we get the desired result.

Theorem 4.2. Suppose f , 1 ∈ L∞(Bn) are pluriharmonic functions, then S1S f = S f S1 if and only if one of the
following statement holds:

(1) Both f and 1 are holomorphic;

(2) Both f and 1 are holomorphic;

(3) There are constants α and β, not both zero, such that α f + β1 is constant.

Proof. From the equation S f1 = H f R1 + S f S1, it follows that

S f S1 − S1S f = H1R f −H f R1.

Then S f S1 = S1S f if and only if H1R f = H f R1.
Assume that S f S1 = S1S f . Then for any v ∈ (A2

h)⊥,we have H1R f v = H f R1v. It is obtained that

(I −Q)[( f1 + f2)Q(11v + 12v)] = (I −Q)[(11 + 12)Q( f1v + f2v)]. (1)

By Lemma 2.2, we have Q(11v),Q( f1v) are holomorphic and Q(12v),Q( f2v) are holomorphic. Then we get

(I −Q)[ f1Q(11v) + f2Q(12v)] = 0

and
(I −Q)[11Q( f1v) + 12Q( f2v)] = 0.

It follows that

(I −Q)[ f1Q(12v) + f2Q(11v) − 11Q( f2v) − 12Q( f1v)] = 0. (2)

If one of f1, 11, f2, 12 is a constant function, without loss of generality, assume that f1 is a constant function,
it follows for any v ∈ (A2

h)⊥, we get

(I −Q)[ f2Q(11v) − 11Q( f2v)] = 0.

We have f2Q(11v)− 11Q( f2v) is pluriharmonic for all v ∈ (A2
h)⊥ . By Theorem 5.6 in [31], one of the following

holds:

(1) Both 11 and f2 are constants ;

(2) Both 11 and Q(11v) are constants;

(3) Both Q( f2v) and f2 are constants;

(4) Both Q( f2v) and Q(11v) are constants;

(5) There is a nonzero constant t such that 11 − tQ(11v) and f2 − tQ( f2v) are constants.
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If 11 is a constant function, we have both f and 1 are holomorphic. If f2 is a constant function, then f is a
constant function. Assume that neither f2 nor 11 is constant. Then for all v ∈ (A2

h)⊥, f2Q(11v) − 11Q( f2v) is
pluriharmonic if and only if one of the following holds:

(1) Both Q( f2v) and Q(11v) are constants;

(2) There is a nonzero constant t such that 11 − tQ(11v) and f2 − tQ( f2v) are constants.

Since 11 is holomorphic, 11 =
∑

m≥0 amzm. And 11 is not a constant, there exists a multi-index β ≻ 0 such that
aβ , 0. For any multi-index α ≻ β, let vα = zα+d1 z̄d1 −

α1+1
n+|α|z

α
∈ (A2

h)⊥. A direct computation gives

Q(11vα) = zα
∑
m≥0

am

[ m1 + α1 + 1
n + |m| + |α| + 1

−
α1 + 1

n + |α| + 1

]
zm.

We choose a α′ ≻ β such that
β1+α′1+1

n+|β|+|α′ |+1 −
α′1+1

n+|α′ |+1 , 0. Since aβ , 0, it follows that Q(11vα′ ) is not a constant.
Then we get that there is a nonzero constant t such that 11 − tQ(11vα′ ) is constant. Since α′ ≻ β, from the fact
that 11 − tQ(11vα′ ) is constant, we get aβ = 0,which is a contradiction. Hence if f1 is a constant function, we
have either both f and 1 are holomorphic or f is a constant function.

In the following proof , assume that none of f1, 11, f2, 12 is a constant function. It follows that f1Q(12v)+
f2Q(11v)−11Q( f2v)−12Q( f1v) ∈ A2

h.By Lemma 2.4, we get there is a 4×4 unitary matrix Uv such that for some
1 ≤ k ≤ 5, ⟨( f1,Q(11v), 11,−Q( f1v)),u j⟩C4 are constants for 1 ≤ j ≤ k − 1, and ⟨(Q(12v), f2,−Q( f2v), 12),u j⟩C4

are constants for k ≤ j ≤ 4.
Case 1. If there exists a v ∈ (A2

h)⊥ such that k = 1 or k = 5, it follows that f1, 11 are constants or f2, 12

are constants since U is a unitary matrix. Hence we get both f and 1 are holomorphic or both f and 1 are
holomorphic.

Case 2. If there exists a v ∈ (A2
h)⊥ such that k = 2 or k = 4. We just prove the case of k = 4, k = 2 is similar.

Since ⟨( f1,Q(11v), 11,−Q( f1v)),u j⟩C4 are constants for 1 ≤ j ≤ 3, it follows that there exist a nonzero constant
t1 and a constant c1 such that

f1(z) = t111(z) + c1.

Then by (2), we get

(I −Q)[t111Q(12v) + f2Q(11v) − 11Q( f2v) − t112Q(11v)] = 0,

which implies

11Q[(t112 − f2)v)] +Q(11v)[ f2 − t112]

is pluriharmonic. By Theorem 5.6 in [31], one of the following holds:

(1) Both Q[(t112 − f2)v)] and Q(11v) are constants;

(2) Both Q[(t112 − f2)v)] and f2 − t112 are constants;

(3) There is a nonzero constant t2 such that Q(11v) − t211 and Q[(t112 − f2)v)] + t2[ f2 − t112] are constants.

If f2 − t112 is a constant, it follows easily that f = t11 + c. Assume that f2 − t112 is not a constant. Then for
all v ∈ (A2

h)⊥, 11Q[(t112 − f2)v)]+Q(11v)[ f2 − t112] is pluriharmonic if and only if one of the following holds:

(1) Both Q[(t112 − f2)v)] and Q(11v) are constants;

(2) There is a nonzero constant t2 such that Q(11v)− t211 and [t1Q(12v)−Q( f2v)]+ t2[ f2− t112] are constants.
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Since 11 is not a constant, similar to the previous proof, we can find a vα′ ∈ (A2
h)⊥ such that neither Q(11v)

nor Q(11v) − t211 is constant, which is a contradiction. Hence we get that f = t11 + c.
Case 3. For all v ∈ (A2

h)⊥, we have k = 3. For each v, there exist constants t1, t2 and c1 such that

f1 = t1Q( f1v) + t2Q(11v) + c1.

Suppose that f1 =
∑

amzm and 11 =
∑

bmzm. For multi-index α, let v = zα+d1 z̄d1 −
α1+1

n+|α|+1 zα, there exist
holomorphic functions h1 and h2 such that Q( f1v) = zαh1 and Q(11v) = zαh2. Then for all multi-index m < α,
we get am = 0. Since α can be chosen sufficient large enough, hence we get f1 = 0. Similarly, it follows that
11 = 0 which implies both f and 1 are holomorphic.
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