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On a Class of Toeplitz and Little Hankel Operators on L2(U, )

Namita Das?, Sworup Kumar Das?®
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Abstract. In this paper we establish certain algebraic properties of Toeplitz operators and a class of
little Hankel operators defined on the Bergman space of the upper half plane. We show that if K is a

compact operator on L2(U,), M(s) = =2, 1,(s) = Ei:;;sg where a = c+id € ID,s € U, and Jf(s) = f(-35)

then \1|irr11- IK = Timorg) KT por, Il = 0 and for @, ¢ € B*(ID), if Fa,oryTpom — TpomMayporr) is compact, then

. . . 1 w+i(-2)Imw
im (le([fia,omnda] ® [Mgopdol) + c([Aygomda] ® [, (yorndwDll = 0, where dg(s) = — )

—_——,W €
w=x+iy ﬁ w—i (s+ ZU)Z !
y=0

U,, I, is the little Hankel operator on L%(U,) with symbol ¢ and a; is a function defined on U, with |as| = 1,
for all s € U,.. Applications of these results are also obtained.

1. Introduction

Let L2(ID) be the Bergman space, the Hilbert space of functions, analytic on ID and square integrable with
respect to the measure dA. It is well known that L2(D) is a closed subspace of the Hilbert space L*(ID, dA)
with the set of functions { Vn + 1z"} as an orthonormal basis. For ¢ € L*(ID), we define the Toeplitz operator
T on L2(D) by T, f = P(¢f). For ¢ € L*(ID), the little Hankel operator Sy, : L2(ID) — L(ID) with symbol ¢
is defined by Sy f = PJ (¢ f), f € L2(ID), where P be the orthogonal projection from L?(ID, dA) onto L(ID) and
J is the mapping from L*(ID, dA) into itself such that J f(z) = f(z). For details see [13]. Let ¢ € L¥(ID). We
define the Hankel operator 7, with symbol ¢ on L3(D) by fi, f = P(U¢f), where U is the operator defined
on L%(D, dA) by (Uf)(w) = W(J f)(w) = wf(w), where J f(w) = f(w), f € L>(D,dA). Let h*(D) is the space of
allbounded harmonic functions on D. Define a unitary operator U, on L2 by U, f(w) = (foa(w))k.(w), a € D.

Let L2(U,, dA) denote the space of complex valued, absolutely square integrable, Lebesgue measurable

functions on the upper half plane U, = {z = x+ iy € C : y > 0} where dA = dxdy is the area measure on U..
The space L?(U., dA) is Hilbert space with respect to the inner product

g = fU FS)7EALS)

The Bergman space of the upper half plane denoted as L2(U..) is the closed subspace of L*(U., dA) consisting

of those functions in L?(U,, dA) that are analytic. The function K(s) = — ﬁ, w, s € U, is the reproducing
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kernel for L2(U,) at w. For more details see [5]. Let P, be the orthogonal projection from L?(Uy,, dg) onto
L2(U,) is given by (P, f)(w) = (f, Ky). Let L*(U.) be the space of all complex valued, essentially bounded,
Lebesgue measurable functions on U... Define for ¢ € L*(U.), |||l = ess sup |¢(s)| < co. The space L*(U.)
selU,
is a Banach space with respect to the essential supremum norm. For ¢ € L*(U,), we define the Toeplitz
operator T, on L2(U.) by T, f = P.(¢f). The Toeplitz operator T,, is bounded and ||Ty|| < [|¢lle. The big
Hankel operator H,, from LZ(U,) into (L2(U,))* is defined by H,f = (I — P:)(¢f), f € L2(U,). The little
Hankel operator h, from L2(U,) into (L2(U,)) = {f : f € LA(U,)} is defined by hof = P.(¢f), where P,

is the orthogonal projection operator from L*(U,,dA) onto L2(U.). For i € L*(U,), define the operator
Sy : L2(U,) — L2(U,) as Sy f = P.J(Yf), where | : L*(U,,dA) — L*(U,,dA) is defined by Jf(s) = f(-5).
The operator Sy is unitarily equivalent to /1, for some ¢ € L*(U,). Hence both the operators h, and Sy, are
referred to as little Hankel operator on L2(U., ). These operators on the Hardy space of the right half plane
have been intensively studied in [11]. Let £(L3(U.)) be the set of all bounded linear operators from L2(U.)
into itself. Let LF (L2(U,)) and LC(L2(U,)) be the set of all finite rank operators and set of all compact
operators in £(L2(U,)) respectively.

For ¢ € L*(UU,), the Hankel operator fi, with symbol ¢ on L2(U.) by fi,f = P.(Vof), where V is the
operator defined on L%(U,,dA) by (VG)(s) = —a(s)MsG(=35), where G € L2(Uy), M(s) = ﬁ and a is a function
defined on U, with |a(s)| = 1, for all s € U,.

Toeplitz operators on the Bergman space L2(D) with bounded harmonic symbols behave more like
Toeplitz operators on the Hardy space [13]. Similarly little Hankel operators on the Bergman space L2(ID)
have similar properties as Hankel operators on the Hardy space. For details see [11], [13]. There are many
algebraic relation between Toeplitz and Hankel operators on the Hardy space. For example, if f, g € L*(T)
where T is the unit circle then Ty, = T,T, + H#H, and Hz, = TyHy + HZT, and foreachz € D, T5-H,TT5- =

g f § ¢
HyTy = [HTik:1®k, + [Hyk:]® [Ty Hikz] and T TH, To = TeHy = [TrHgk:] ® k. — [Hzk:] ® [Ty, Hykz] where
T, and Hy are the Toeplitz and Hankel operators defined on the Hardy space HX(T) by T,f = Ppa(¢f)
and Hyf = Ppp(E(f)) respectively where Ef(w) = wf(w). For more details see [9]. But no strong con-
nection between Toeplitz and little Hankel operators on the Bergman space has been established yet. In
this paper we establish certain algebraic properties of Toeplitz and little Hankel operators defined on L2(U..).

Barria and Halmos [1], Feintuch [7], [8], Das [2] established various assymptotic properties of Toeplitz
and Hankel operators on the Hardy space and in the Bergman space. In this work, we present certain
asymptotic properties of Toeplitz and little Hankel operators on L2(U..).

Toeplitz and Hankel operators on the Hardy space also occur in several other guises. For example,
Toeplitz operators on the Hardy space of the disk can be represented as a Weiener-Hopf operators [3], [12]
and Hankel operators on the Hardy space of the disk are unitarily equivalent to certain Hankel integral
operators [11] on the Hardy space of the right half plane. Thus the two theories are equivalent and a given
result can be stated in terms of Toeplitz operators on the Hardy space or for Weiner-Hopf operators on the
Hardy space of the upper half plane. Similarly the results for Hankel operators on the Hardy space of the
disk can be stated in terms of Hankel integral operators defined on the Hardy space of the right half plane.
But despite this identification, it is necessary to study Hankel operators, Hankel integral operators, Toeplitz
operators and Wiener-Hopf operators since certain problems are more natural in one setting than the other.

In [9], Guo studied certain algebraic, asymptotic properties of Toeplitz and Hankel operators defined
on the Hardy space. In this paper we extend the results of Guo for Toeplitz and little Hankel operators
defined on the Bergman space of the upper half plane.

The organization of the paper is as follows. In section 2, we introduce the elementary functions
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dz(s), D(w, s), Dz(s) which plays important roles in describing certain algebraic properties of Toeplitz opera-
tor T¢ and the class of little Hankel operators fic where G € L*(U,.). In section 3 with the help of the unitary
operators V,, we describe the symbol correspondence between the Toeplitz operators and little Hankel
operators defined on L2(ID) and L2(U,). Further, we show that h— = —c(d, ® dg), where w = M~'a,a € D,

0, = (M o 1,)(s) and c is a constant. In section 4 we prove the main results of the paper. We establish
certain algebraic properties of Toeplitz operators and little Hankel operators defined on L2(U.). We show
that T](Qﬂ)has(lpoM)T OMTa = has(woM)T oMTig,p — Cz([has(woM)T(pon@] ® dz) + C([has(lpoM)dw] ® [T, h(poM w]) and
Ty0) Tpomha, oy Tg: = Tpomlia por Tio,p — A([Tpomhia, ozl ® dz) — c([lijpomdz] ® [T, 8 (WoM) dy]) hold.
Using these results we then show that if K is a compact operator then ||K — T](QH)KTQHH — Qasla — 1.
As an application of these results, we show that if T € £(L2(U,)) and assume T is a finite sum of finite

products of Toeplitz operators with symbols ¢;; € L*(U,). Thatis, T = Z H Ty, M @ijoM™ € C(D) for
i=1 j=1

alli=1,---,n,j=1,--- ,mjthenT = T, + Kwhere poM™ e C(D)and K € L(L(U,)) is a compact operator.

If in addition ¢ € V(U,) then ‘l‘irr11_ |IT — T;\/IOTQTTM%H =0

2. Preliminaries

In this section we introduce the elementary functions dz(s), D(w, s), Dg(s) which plays important role in
describing certain algebraic properties of Toeplitz operator T and the class of little Hankel operators fig
where G € L*(U,).

Define M : U, — D by M(s) = ers = z. Then M is one-to-one, onto and M~ : D — U, is
given by M71(z) = l1 —. Thus M is its self inverse. Further M (s) = (z:j;z and M) (z) = ﬁ Let

W : L2(D) — L2(U,) be defined by (Wg)(s) = g(Ms)—22—. The map W is one-to-one and onto. Hence W~
y (W)s) = g(Ms) A p

exists and W' : L2(U,) — LZ(ID) is given by (W™'G)(z) = (2i) ViG(M}(2))

(1 +2)

Fora € D and f € L2(U,), define V, from L2(U,) into itself by (V,f)(s) = (f o 74)(s)l(s), where the
functions 7,(s) are automorphisms from U, onto U, given by 7,(s) = E;B:SZ' wherea = c+id € D and
s € Uy and 7,(s) = mic)':' g and ,(s) = H—l . It is not difficult to see that 7,,(s) = —I,(s).

1 =20)I -a _ _ -
For s,w € U,, define dg(s) = —24_ l(l)ﬂ Ifw= i1 f thenga e Danda = ﬂ = Muw.
Vrw—i (s+w)? 1+a i+w

That is, M~'a = w. Then

1 w+i (=2i)(Im w)
VW —i (—w + w)?
(2)0Ma+i Imw
Vi M1 — i (w = w)?
(=2i) lm-i'l w—w

N (z‘ _a) . (20)(w — w)?

+

dg(-w) =

Y

1
1 ihEe]
1-a

Val-iLt —ijw-w
1 2 1+a 1
ml+a 2 i i



Now

Hence

Now

dz(s) =

2
1Dzl

L 1+a
Vr (1 +a)i(1-a)1 +a)+ 1 -a)l+a)
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1+a)1+a)

1 (1 +a)?
ivall+a-a—laP +1+a—a—laf]
1 (1+a)
iy 2(1-laP)
1 (1+a)?

Qi) yr (1 —laP)’

d(s)dz(—10)

(2)w+i Imw 1 (1+a)

VR W—i(s+w)? (20)yr 1 —aP

(20 ( 2+ (%) 1 @+ap

Vi \ =i - i) (s +il2)2 (2) ym 1 —laP

(~2i) (LZ”) [(liT”)—( 11+u)](1+ﬂ)2 1 (1+a)?

\Vr —(ﬁ+1) 2)[s(1 +a) +i(1 —a)]> 2i)yr 1—la?

1o(EEE i[E ] asep 147
Qi) | etlia J[s(1+a) +i(1-a)]* 1 - a2
11+a (1+a? 2(1-aP) 1 + 7y

2nl+a(l—laP) 1 +a)l+a)[s(1+a) +i(l—a)]
l(1+a)2 (1 +a)?
[

n\l+a/ [i+s+a(s—1i)]?
l(1+a)2 (1 +a)?
n\1+a) [i+s—a(i-s)P
1 (1 + a) (1 +a)?

1+a (i + )2 [1 (HS)]Z
10 + a)? 1
7 (i +35)2 (1 — aMs)?
D(s, w)
DE(S).

D(s, w) 5
(o and (d(-)* = D@, )
= (Dg, Dz

f IDo(s)PAA(S)
U,

4400
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f ID(s, w)[2dA(s)

+

f o) Pld(s) PAA(S)
U,

o (~T)P fU 1A (s) PAAS)

\dz(—70) Pldl13
ldz(~w)* Since [|dzll2 = 1.

Thus
IDzll = ldz(—=w)| and |dz(s)| [|Dgll = |Dgz(s)l. Further, Dz € L¥(Uy).

3. The symbol correspondence

In this section with the help of the unitary operators V,, we describe the symbol correspondence
between the Toeplitz operators and little Hankel operators defined on L2(ID) and L2(U,). Further we show
that ig- = —c(dy ® dg), where w = M™'a,a € D, 0, = (M o 1,)(s).

Lemma 3.1. Foreacha € ID,—]JVV; = B(s)V,V ], where B is a function defined on U, with |(s)| = 1, for all s € U.,.

Proof. First we shall show that U = W-1VIW. Now we proceed to show that for G € L? (U,), then

(WUWLG)(s)

) _ 1
WU(<21> V(G o MO S)z)

. e 1
= w(s(zo V(G o M7H)(5) a +§)2)
N o M) L 1
= _\/H (Ms(Zz) Vri(Go M )(Ms)—(1 RyyEr s)z)

_ o 1
= = GoM! 11

( 4)(Ms( M )(Ms>(1+m)2 (m)Z)
= (-4)MsG(M™ (Ms)) (MY (Ms) M (s)

(=2i) (=20
_ (C)MEG(-5) (M) (Ms)M (s)
(-4)
= MsG(-5)(M™) (Ms)M (s). (1)
Notice that Ms = J_s == oo Loand

M_l(MS) = - = < =
1+ i=s 3
Ms 1+(i+s) 1+i+§
i+5—i+5
s 25 s e _
= e i—==i—=i{5=-5
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Again since (M~! o M) (s) = 5. Thus (M~!) (Ms)(M (s)) = 1, for all s € U,. Now from (1) it follows that

;o , _ _2. _2, '.__
(M) MM (M5 = —e 1"
(1+Ms)? ([i+5)i+5

—2i =2 i-5§

(1+Ep 9015
1+s

L (i +5)?2 1 i-3
- (4)(2+§+2—§)2(i+5)22+§
- 81

i)z (i+s)?
i+s\(i-5

i=s i—stits _ 20 2i 1 _ i+s 1 _ 48 _ i+B+i-5 :
AsMs+1=722+1=507 =2 Hencei+s = 315 andas%—g_g,som+1—;_§+1— - , that is
1+Ms _

2i H - _ - Ms
= <L, N 1—5_21—7_—1—7'
Ms i—-s ence 1+Ms 1+Ms

Hence
i+5 Ms Ms+1
i+51+Ms 2

(M) (M M5 = (-2i)

- sl Msgr
1+871+ Ms
Thus
1
(WUW'G)(s) = _i+51+Msee G(=3)
1+51+Ms

~a(s)MsG(=5) = (VG)(s),
where «a is a function defined on U, with |a(s)| = 1, for all s € U,.

Now

=(VVaf)(s)

—[V(V*f)(§
z +s51+ Ms—

= VN

i+s1+Ms—

= T e e W)

and

(Va(VIAE) = (VP o 1a)6)as)
= (VA(Ta(9)a(s)
1+ Ta(s) 1+ M(7,(5))

= —- —— M(T(S))f(_'fa(s))lu(s)'
1+ Ta(8) 1+ M(7,(5))
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. Pt _ la2-1 _ laP1 _(c=D4sd _ (c=1)+sd
Notice that [,(s) = T+ dF So Iz(-s) = CoCoE = [r00F Further —1,(s) = — Tros=d = T’ and
(c—=1)+sd

T7(—8) = e ESrT e Thus we obtain

—JVVz = B(s)V, V], where |(s)| = 1,for all s € Us,.

O

Lemma 3.2. For each w € U, (UzhizU, f)(w) = _h(PTME’ where b_u = (’;)”O]:j and ME is the multiplication operator
on L2(D) with symbol b,.
Proof. Notice that
(Uahz:Ua f)(w) = [Uzhi(f © ga)kal(w)
= UzPUG(f © @a)ka)(w)
= PUz(ww(f o ¢a)(@)ka(w))
= PUs(lwP(f o @a)(@)ka(w))
= Ppa(@)P(f © 9a)(@a())ka(a(w) ka(w))
= P(pa(w)P(f o pa © pa)@)(ky © Pa)([@)ka(w))
= Pps(@)pa(w) f@)(ka © 0o)@)kz())
= Plea(w)pa(w) f (@) (ks © @a)(w)kz(w))
= P(pa(@) f @)ko(0a(@0))pa(@)kz(a0))

= Plpa(w)f (E)%(ku © @a)(W)Pa(W)kz(w))

= PU(pa(w)f (W)%(ka © Qo) (W)Pa(w)kz(w))
(ks © @a)(w)ka(w)

= PU@) ) =L )k ()

= —tig:M pwizm f (since (k; o )k, = 1 for all a € D)
@0 (w)ka (w)

= —ﬁ@M Palkg f
Poka

Thus
( uEhz Uaf) = _h(PTME
O

Lemma3.3. (i) Let G € L*(U.). The little Hankel operator h¢ defined on L2(U.,) is unitarily equivalent to the
little Hankel operator hy, defined on L2(ID) with symbol ¢ given by ¢(z) = a(M‘l(E)) (%—5)2 (G o M‘l) (z)
=75 (G o M‘l) (2).

(i) IfG € h*™(U,), the Toeplitz operator T defined on L2(U..) with symbol G is unitarily equivalent to the Toeplitz
operator T, defined on L%(D) with symbol p(z) = G (il‘z) = (G o M Y)(2).

T+z

Proof. (i) Now the operator W maps Vn + 1z" to the function ‘2/—’; Vn + 1(Ms)" @ +15)2 = % n+1 (E)n G +15)2

which belongs to L2(U,). The Hankel operator fic defined on L2(U,) maps this vector to

P, (V(G(S)f,—i; V() ﬁ))
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Now
2i (i—s\" 1
-2 i+s5\" 1
= —P+(OL(S)MSG(—S)ﬁ Vn+1(:) (1_5)2)
o 4 20 i—s\(i+5)" 1
= —wPW (oc(s)G( s)ﬁ\/n+1(i+s)(z,_§) (i—§)2)
_ i— M1z
_ —WP[(ZI)\/_\/_\/n+1a( 1(z))G(—M—1(z))(m)
(i+M1(z)] 1 1
i-M(z)) (i-M1@z)p21+2)?
= -WP (—4)\/ma(M‘1(z))G(il_Z) i (i)
- 14z )\ ~i—ilZ Jli+ilZ
1 Vo1
i+ilZ) (1+27
- _WP (—4)\/n+1a(M1(z))G(i1_z) o) (L)
- T+z/{1+ 1+ £
-1 1
(1+ %_2)2 1+ 2)?
B 1-z\(2z 1+27? 1
- o)) () 0
3 _ oy 1-z L(1+2)?
- WP(zj(—a(M 1(2))G(11+Z)) Vi +1z (1+z)2)
= Wh (MO @)G (i 832(2 Vn+1)
= Wh —a(M*l(E))(GoMfl)(z)(%)Z(ZH Vi +1).
Thus
MW = W@y cem o)
Thus fic = Wh WL

(M- @)(GoM)(1)

(ii) The operator W maps Vn + 1z" to the function 2—\} Vn+1 (Hs )n

Toeplitz operator Tg maps this vector to P. (G(S)\—E \/n+1(l+s)

which belongs to L2(U.,). The

(i+s)?

) which is equal to

(i+s)2
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WPW (Ge) 2 Vi 1 (5) k) Now

i+s) (i+s)?

WPW! (G(s)j—% Vin+1 (ﬂ) (L)
ol o i 725

i+s/) (i+s)?

Iy 1) 1
:T n+ WP(Zz\/_G(L Z)(1+ )2( (L 12)) m)

1
—21\/_ Vn+ 1WP|G|i
[ ( ) 1+z) (Z_H-%)Z]
B (1+2)?
= )WP(G(l )Z " 1(1+z)2(z(1+z)+1(1—z))2)

:WP(G(

Yo i)

= WT, (" Vn+1),
where ¢(z) = G( 1+Z) (G o M‘l) (2).
|

Lemma 3.4. Let a € D and T, be the little Hankel operator on L2(U..) with symbol ¢. Then

Valiyg Vs = h(Mou)(s) S

M1 v
M(E) 2L e

M1y Ms

Proof. From Lemma 3.3 it follows that WAzW~! is a little Hankel operator fic on L2(U,) and we shall calculate
G by the formula established in Lemma 3.3. Observe that ¢,(z) = 1= and 7,(s) = (e 1)+Sd Hence Po(z) = —z

1 —az (1+c)s—d
and 7(s) = —;. Now Mo ¢, oM = 7,. Hence (M~! o ¢og o M)(s) = 1o(s). Thus (Mo TooM™! = ¢Po(z) =
Thus Z = —(M o 79 o M~1)(z). Again M(to(s)) = M(-1) = —M(s) and (gﬁg) = (le 3)%5) Now Wh:W-1 =
fic(let). That is, thmW’l = fig. Hence

oo M) = -a (M @) () GoM e

and therefore it follows

(Mo g0 M) (Ms) = a (M (Ms)) (1 +MS) (G o M)(Ms).
1+M
That is,
Mo = al- s)(“MS) G(s).
1+ Ms
Thus
— (1 + Ms
6o = )<M n»()(HMS)
(M) (Ms)

17 —
= — M o pr—
P NV v
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—— (M) (Ms)
- = S —
a(=s) (M) Ms

Thus
WhsWt =1

1 Ml o) -
M) a1y My

4406

Now again by Lemma 3.3, th)—aW‘l is a little Hankel operator on L2(U,) and let Wh(EW‘1 = lig. Then

-1 —
Wi W™ = hie.

Hence
1+z

1+z

- 2
(Moo M) = -a (M7®) (102 ) G oM ™))

and therefore it follows that

2
ot o M) = o (M) (T | (G vt
1+ Ms
Thus )
—_— _(1+ Ms
Mor, =—a(- — | G(s).
(Mo 1,)(s) = —a( S)(1 +Ms) (s)
Thus
—\2
— (1 + Ms
GE) = Mo u)(s)(l . MS)
————— (M) (Ms)
- Mor, —_—
T My =T 7
Thus
Wh@,}—W‘l = 7’—1 1 7(M*1)'(Ms)'
" ~ i (Mo, )5) S

Now it is not difficult to verify that
Vali

Ta=-

oy o Va = _h_ 1 roa Y () -
M) e s MoT) ) G

0
Let x and y be two vectors in L?. Define x ® y to be the following operator of rank one: for f € L?,
@ y)(f) = {f,y)x.
Theorem 3.5. For fixeds € U,,
lg- = —c(dw ® dz;),
wherew = M'a,a €D, 8, = (Mo 7,)(s).

Proof. The sequence of vectors { Vi + 12"} forms an orthonormal basis for L2(D). Forn>1,n €N,

nz(Vn+1Z2") = PU@EVn+1Z")
P(zzVn +1Z")
Vi + 1P(1z*Z")
0.
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and

fiz1 = PU(Z) = P(zz) = P(|z]*) = %

Hence
hg = 7’(1 ® 1) ’
where r is a constant. We shall now find the adjoint of the operator W!. Notice that

1
(1+2)?
- -2i
- V(G o M)(2) 1 +2)2
~Vr(G o MT@DM™) (2)
Now for f € LX(D), G € L2(U,),

(G, (WY f)

W6 = @)Vr(GoM ™))

(WG, f)
= (—Vr(GoM MM (2),
= —VR(GoM MM ™) (2), )

- fD (G o MM (I F@DIAR)

e fD (G o MYMs)(M™YY (Ms) FOME)IM (5)PdA)

= -Vn f]D GE(M™) o M)E)(f o M)E)IM ()PA(s)

I fD GEN(M1Y o MYG)(f o MEIM (5)PAA(s)

= — VG, (M) o M)(s)(f o M)(s)IM (s)1)
= — V(G (M) o M)(S)M (s)(f © M)(S)M (s))
= — VG, (f o M)(5)M (5)), 3)

as (M™! o M)(s) = s, and therefore (M™') o M)(s)M (s) = 1. Hence it follows from (3) that, (W™ !)'f =
—V7(f o M)(s)M (s), this implies (W1)*1 = — \/rt(1 o M)(s)M (s) = — VtM (s).

From the proof of Lemma 3.4, we obtain

h Py R thw_lf

2 e ()
= rWae )W 'f
= rW(WIf, )1
= f,(W)y1Hywl
= r(WIe (WY D)f
= f, Wy 1ywi

- im0
= M eM)f,
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where (Wl)(S) = ﬁ = —%

Thus from (2) it follows that
]

M (s). It is not difficult to verify that a(fg) (Z\I;)),(%) =1 forall s € U,.

o = e
= _h—MTT,,
= Vz _mva
= V:(WhiW )V,
= Va(W1® (W) )V,f
= HV.f, W VW1
= f,V.(W ) 1)VzW1
= r(f/dwﬁiw
= r(d, ®dy),

where 6, = M o 7,. Hence he—a = —c(dy ® d), wherec = —r. O

To get the relationship between these two classes of operators, we consider the multiplication operator M,
on Lﬁ(UJr) for ¢ € h*(U,), defined by Myh = ¢h, for h € Lﬁ([U+). If M,, is expressed as an operator matrix
with respect to the decomposition Li = [2(U,) @ (L2(U,))o, the result is of the form

T, U

M, = ( un, UT),U ), where Uh(w) = w[h(w).

If f and g are in h*(U,), then My, = MM, and therefore (multiply matrices and compare upper or lower
left corners)

Trg = TfTy + Tyl 4)
and

figpg = Telig + 1ysTy. ®)
Now from (5) it follows that if | f € H*(U,), then for g € h*(U,),

Tfhg = hgT]f, as h]f =0. (6)

4. Algebraic properties of Toeplitz and little Hankel operators

In this section we prove the main results of the paper. We establish certain algebraic properties of
Toeplitz operators and little Hankel operators defined on L2(U.). We show that Tyonliaypomy Tpom Ty =
Ho,omyTpomTio e — F(TagporyTpomdsl © dz) +  c([fa,womydz] ® [Te,Topdw])  and Ty, Tpom
has(lJ)OM) TQT = (pOMhas(lPOM)T\GaP — CZ([T(pthas(IPOM)dE] ®dg) — C([h]((poM)dw] ® [T@Hh;5(¢OM)dZU]) hold. Using these
results we then show that if K is a compact operator on L2(U,) then ||K — T](gn)KT*QHII — 0asla — 1.
As an application of these results, we show that if T € £(L2(U.)) and assume T is a finite sum of finite

noom;
products of Toeplitz operators with symbols ¢;; € L*(U,). Thatis, T = Z H Ty, - pijoM™ € C(D) for
i=1 j=1
alli=1,---,n,j=1,--- ,mithenT = T, + Kwhere oM™ € C(D)and K € L(L2(U,)) is a compact operator.
If in addition ¢ € V(U,) then ‘l‘irrll IT = Thtor. TTrtor, Il = 0.
a|—1- a
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Theorem 4.1. Suppose that @, € h*®(ID). For eacha = Ms € D, let @,(w) = %,w eDanda; = (yso M) =
2

(a (M1@) (k=) oM). Then

Tio0laspory TpomTg = Tagpor TportTig,p = & (aypor Tporddzs] ® dag)

+C([ha5(¢0M)dw] [Tea poM w])

Proof. Since J(0,) € H*(U.)fora € D, hence (6) implies Ty, fia,(yom) = Ha,yom To,- Hence Ty, ia pory Tpom Ty =
faownTo, Tpom Ty, = Haom TpomTo, T, = Maomiyeo,ipomTg,, since To, Tpom = Tigomne, = Hyonlipom =
TypomTe, — h](gﬂ)h(poM and 6, € H*(U,). From (4), we obtain

TQR TQTI = T|Qﬂ|2 - hl(ea)h?n
But from Lemma 3.5, it follows that

I’/—la = —c(dy ® dg)

and
Mo, = g = —c(dz ® du).
Therefore
T](Qu)hag(l/JOM)T(poMTa
= N, omy Tpom Tio, 12 = Taycpor TpomTtj0) i, = Tay om0 ipom Ty,
- haS(lPOM)T(POMTIG N Cz(h“~ IPOM)TQUOMdE ® dw) + Cr’—lm llfoM)(dE ® dw)r’—l@oMTQT
- ha5(¢zoM)T OMTle = ¢ (has lyl’OM)T(POde ® d ) + C([ a( #'OM)dw] ® [TGH oM w])~
O

Theorem 4.2. Suppose that ¢ and { arein h**(U..). Foreacha = Ms € D, a; = (ysoM) = (oc (M‘l(Z)) (%)2 o M),
Then

Tyo) TpomhawomTg = TpomaporyTio,p = ([ Tpomha,womda] ® dg)
_C([h](@OM)dE] ® [Teahzs(de)dW])’

Proof. From (4) and (5) it follows that

Ty0) Tpomha o Ty, = ToomTyonla.wom Ty, + Aygomlisonlia.om Ty,

Tpomlia,omyTo, Tg- + Ny@omiyo,) e, womn Tg-
Thus we obtain (as in Theorem-4.1)
Ty6) TpomMa,pomy Ty,
= Topomlia,pomy Tio,2 = TpomMa,porfijonTig; + Mj@omyo)facwom Ty,
= Typomha oy T, = (Tporhapomydz ® dz) = cyporn (dz ® du)lia, @voM) Ty
= Tpomliaomn Tio,p = (TpomMawomnds ® dz) — c([yporndz] © [To, 1, yopyu])-
O

Theorem 4.3. Suppose that ¢ and 1p € h*(ID). Let a = Ms € D, a5 = (ys 0 M) = ( ( 1(2))(1+Z) OM). Let
K = Tiayporty Tport = TpomTa,(porsy- Then for each a € D,
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(i) KTg, = Tyo)K = c([ta,omnda] @ 15,0 dw]) = c(Mypomda]l © 17, (oppd])-
(ii) Let A # 0 be a constant. For each a € ID,AKTy, = Tyo)AK + c([Fijpon-aasporydm] ® [, dw]) =

c(ypomnda] @ 15,1, a (goray Feo))-

Proof. Since 0, € H*(U,) and J(0,) € m for each a € ID, we obtain the following identities:
TyomTo, = To,Tpormt + fiyo,)fipom,
TpomTy0,) = Tio) Tpom = Hypomliycen)

and
Ty lipom = lipomTo,-

Thus we have

KTo, = HaomTpomTo, = TpomMa,wormTo,

Ha porn To, Tpom + Ra,omylijo)fipom — TpomT(0,) s (wom)

Tyo)laomy Tpom + Haypomlijo)ipem = Tyi0,) TpomMa,yom)
om0, o)
Ty(0)K = el tgornida] @ [yopgdla]) = c(lypornids] ® [, (yong )

This completes the proof of (i). Now since

ljomygory = Tpomligom + Hjgorn Tpom

Al porty Tpom = TpomPayworn] + TpomMgomea(as(yom)
Hij(pom)-Aas(por) Tpom,

hence we obtain

AK = Tigomypom) = TpomTporsA(aspom) = Rjpom)—Aaswor) Tpom-

Thus
AKTo, = [Hjgpomypomy — TpomAgpom+a(aywor)) = Rjpom)-acasomy) TpomlTo,
= [Typomligom + Ijpory Tpom — TpomMpor+A(awor))
~Tjpomy-A(aswory) Tpom] T,
= TyomhipemTe, + HyporyTpomTe, — TpomMpomsa(aswory T,
Ty pomy-A(asomy) TpomTo,
= TpomhpemTo, + IygoryTpomTo, = TpomhipomTo,
=T porfiraorn) Te, = Myporn TpomTo, + Macau o) TpomTe,
= =TpomhrawomyTo, + R pory) TpomTe,-
Further for f € L2(U.,),

(s pom-atawornydz] ® ool f = {fo Hipopsa)jipor-rcan(pom) e
= (pomf, duwMijpor)-raspor) i
= Tjpom-rawom){Tgpom f, duw)dz
= Tijpom)-Aa.(pom)) [z ® dw) Aigom f

1
=< iem-rapemyliye) ipontf-
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Again

%

~(ypomydm ® Mopri r@ory@)f =~ lpomirpomydeiipomda
= ~TypomyTpomi(as(por) fr dw)dm
- _h](qu) (dz ® dw)hWOM+A(as(¢’oM))f

1
“TigemMiyo)ipomacaworn) fo
for f € L2(U,). Thus

Ty AK + c([Tjpom-acaswomy ] @ [Tpopdu]) = c([fjpom ] © [Mipoprsnapontyde])

= Ty, (Tiypomypory — TpomTiportsas(pom) = jpom-Acas(yor) Tpom)
~Tj(pom-Atas o) TT(0,) ipom + Tjipory (6, ipom A(as(por))

= Tyo.) (TpomMgponm + Hjgom Tpomt = TpomTpoms(astpo)) = Fjpom)-atas(or) Tpom)
~Tij(poM)-Aas (o)) ipom + Tijiporny (0, ipoM A(as(por))

= Ty TpomTiponm + Tjo)ljemy Tpom = Tjon) TpomPipont (o)
~Tro)li@om-Aaswom) Tpom + Taa,or)Tj @) ipont + yiponn i, ira womn)

= —Ty0) TpomPir(a. oy + Tio) irce o) Tpom + Taca oo, fipom
Hj(por (0, A (as (wor)

= —(Ty0) Tpom ~ Mypomliyo,))Miraweom) + Tio) @ wom) Tpom
+i o (om0, Fipom

= —TpomT o) ircapory) + Tron ircawory Tpom + Maca o) ijo)ipom

= =Tyomha(a.wom) To, + Firawomy) To, Tpom + Fiaaworty)(TpomTo, = To, Tpormr)

= =Typomha(a, (o) To, + Fiaa,or) TpomTe,

= AKT,,.

Hence

AKTo, = TyonAK + c([ypom-acaswomydal @ [Mopsd])
—c([Ttypornda] ® [Mipoptr e wornydel)-
O

Theorem 4.4. Let K : L2(U,) — L2(U,) is a compact operator. Then for a € D, ‘l‘in} IK = Ty, KT |l = 0.
a|—1- a

Proof. Let WKW = K;j. Then K; € LC(L2(ID)). Since LF (L3(ID)) is dense in LC(L2(ID)), hence given € > 0,

there exists vectors fi,---, f, and g1, , g, in L3(D) such that ||K; — Z( fi ® g)ll < €. Thus we shall prove
i=1

the theorem only for operators of rank one. If f € L*(ID,dA) and |a] — 17, we have a — ©a(z) = (laP)z 0

_ 1-az

and a — J(p4(2)) = % Hence by the Lebesgue dominated convergence theorem, we get |laf — @, fll. — 0
and |laf — J(@a)fllo = 0,as |a| = 1. Hence [IEf — @afll, = 0and [|Ef — T (@) fll. = 0ifa € D tends to &. If
f e Li(D), then [IEf = T, flla = IIEf = P(@af)ll2 = 0 and llEf = Ty, fllo = Ef = P(T (@a)f)llo > O asa € D

tends to &. Here P is the Bergman projection from L%(ID, dA) onto L2(ID). Now for f, g € L2(D), we have
If ®9 = Tgenlf © DT,
=€ ®(Eg) = (Tpn ) @ (T39I
SHES = Tan ) @ EPIN+ T 700 f) ® (E9 = To, 9l
<NEf = T g fll2llgll + 11 f1l211Eg = T4, 9ll2-
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Hence lim If ® 9 = Tge)(f ® g)T* | = 0. Therefore lim [|K; — TJ(%)Kl Toll = 0 and

la|—1-

lim ||w1<1w ~WT (oW " WKy W' W7 W™'|| = 0. Thus 11rn IK=Tj0, KTy, || = 0,where K € LC(LA(U,)). O

laj—>1-

Let z € D and consider the Toeplitz operator 7, on the Bergman space L2(ID) with symbol z. The operator
7 is called the Bergman shift operator. Notice that

v 1 n+1y . 1
I_TZTZ_dlag(l n+2)_dlag(n+2)
and

n 1
-7 = dlag(l—T) dag( +1)

Thus I - 7,7, =1 - T,p is a compact operator. Further, I — 7,7 is also a compact operator. Let A = 7.
Since |2y — Tppll = ||diag(n +2) | <1, hence 7, is invertible. For details see [4]. Thus U, T .pUs = Ty, )2
is invertible where U, f = (f o ¢,)ks,a € ID. This is so, since U, is an involution, self-adjoint and umtary on
L%(ID). Hence WT b2 w1 = TMor,p is also invertible as W is invertible and Tiytor,2 = I £2u,) — D where D
is a compact diagonal operator and I 2y, ) is the identity operator from LZ(U, ) into itself.

Theorem 4.5. Suppose ¢,y € h* (D). If T (pory Tpomt = TporMa,pom) is compact, then

Jim e oyl © pepshaD) + c(Uygorai] © 1, g can Dl =
y—)O

Proof. Suppose that K = T omyTpom — TpomBa,wom) is compact. Then by Theorem 4.4, we obtain
|lllm [IK — T](HH)KT || = 0. From Theorem 4.1, and Theorem 4.2, we obtain
| —
Tro)KTy, = TrepllaugomToom = TpomMa,yorn]Ty,
= Ty taupomy Tpom Ty, = Tro) Tpomla, o Ty,
= Taory TpomTio,p — € (Mo Tpomdz] ® de)
+C([ha5(xp0M)dE] ® [Teah;onw]) - TquMhas(lkoM)TIG [2
+C2([T(p0Mha5(¢0M)dﬁ] ®dy ) + C([h]((pOM w] ® [TGH as(poM) zu])
= KTj,p — *([Kdg] ® dz) + c([Fa,omydz] ® [T, N omd])
+C([h](<{’°M)dw] ® [Tea a,(1poM) w])

Now since dg converges to zero weakly as |a] — 17, we obtain Kdz — 0. Hence
Ialli—llrllf ||C([has(¢oM)d 1® [T@H oM w]) + C([h]@oM)dw] [Teahls(woM)dw])” =0.

Now

lim_{lc([fayorndi] @ [Mpopddn]) + c([Tjpomdzm] ® 17, (yopnyd])ll

w=x+iy
y—>0
= wl:iygliy sup (C([hab(LPOM)dw] ® [h<poM w]) + C([hl((POM)dw] ® [ha (woM) w])) g”
y—0 ?EuLﬁ(EUJr)
g1l=1

= lim  sup ||(c(lia,omydz] ® 2, pydi]) + c([iygomndas] @ [, o)) (Tio,e + D) gl
QELZ(UQ
llgll=1



N. Das, S. K. Das / Filomat 36:13 (2022), 43974415 4413

< lim  sup ||(T Tg g,h (PoM Ao (pordm
W=x+iy 1o
0 gELu(U+>

llgll=1
+(T, T0,9, 1, (portydeo) M porndll
+ lim sup ||(Dyg, T poM Ao pomydz + (Dyg, I, as(poM) duMijporn il

W=x+iy 1o
y—0 9€”L ”(TI{U

lim sup ||C<T9ag,T9ah;oM o)y omydm

w=x+iy _1o
y—0 95“L H(lLlT+)

+C<T9a!7/ To, ha (WoM) w>h](({7°M)dw”

+ lim sup ”C<grDh<poM w>hab(1poM)d +C<g,DFla (YoM) w)h]((PoM)dZUH

w=x+iy .o
gel2(U,)
=0 T gii=1

tim - sup |c([Tia,pomdz] @ [To, oyl
o) 9eLaWU.)
v lgli=1

+[h] (pOM)dw] ® [TGa as(1poM) w])TGagH

+ lim  sup ([T, omda] @ [Dlig o] + Tijporndn] ® [DI (yopndu]gll
w=x+iy €[2(U.)

lgll=1

= wh;nl lle([Faporndz] © [T, h(pon ]
y=0

+[h] WOM)d ]®[T6a a(1poM) w])TG |
+ Lm |le([Fia, omdzm] ® [Dltyopdo]) + c[Bjpomdz] ® [DIE, (yopn @)l

w=. x+11
y—=0

Since D is compact, hence Dh;o i compact. Further {d;,} converges to 0 weakly as y — 0, hence the last
limit is equal to 0. Thus we get
wlzigli e pormndzs] ® [Figopida] + [Tyiporndz] ® [T, (popndu])ll
y—>0y
< wlzlg‘ll ”C([has(lPOM)dw] ® [Tﬂah:ponw] [h](({)OM)dw] ® [Ty, T, as(poM) dw])Te, |l
y—)Oy
< wlzlyg-lzy lle(Ba, o] ® [To,Tiopde] + [jporndi] @ [To,liy, (yornydw DI To,
y—0
= O/

since Ty, is bounded fora e ID. O

Proposition 4.6. Let fi, be a bounded Hankel operator on LX(U,) with ¢ € L™(U,) and let g € L2(U,). Then
,g* = (hpg)" where h*(z) = h(z).

Proof. Notice that for all g € L2(U,), we have (Ug)(w) = w]g(w) = wg(w),w € U,. Hence (Ug)"(w) =
(Ug)(w) = wg(w) = wg(w) and (Ug*)(w) = wg*(w) = ﬁm Thus (Ug)* = Ug* and P.g* = (P+g)* where
P, : [*(U,) - L%(U,) is the orthogonal projection. Thus

fig" =lpg" =P.U(p"g") = P+(Upg)" = (P.Upg)" = (i,g)".

Since ||g*|| = ||g]| for all g € L?, we obtain ||z} o =)l = lpgll. O
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Corollary 4.7. Suppose that ¢ € L*(U,.). For each w € Uy,

1zl = g dzll2

Proposition 4.8. Suppose that @, € h®(U,). Let K = fig (pom)Tpom — TporMa,(pom)- Then K'K is a finite sum of
finite products of Toeplitz operators.

Proof. Let K = Tig,(pomy Tpom — Tpomlia,pomyy- Then by (5),

K = —Tjgomya(pom) + Moy Tpom + oty Ta (pomy- @)

Taking adjoints of both sides of (7), we obtain
K = —Tgpompasyomy + Ty yorn /ey + Topoplasporni+s
since h} = liy+ where f*(w) = f(w), f € L*(U,). Thus

KK = lggoma(pomy: Tpomas oy = gipomaspom)r
(B, porny Tpomt + Ryiponn Ta(port)] = [T4 yonnyiiipomy+
T omliasorn) Viomnaswom + [Ty, poryHitporn)-
T oplasport* Paywomn Tponmt + jpons) Tayon]- (®)

The first form in the right hand side of (8) is a semi commutator of two Toeplitz operators since for two
functions f and g in h*(U,), by (4) lig+liy = Ty, — T;¢T,; both the second and the third terms are products
of a Toeplitz operator and a semi commutator of two Toeplitz operators; the fourth term is the product of
two Toeplitz operators and a semi commutator of two Toeplitz operators. Therefore, it follows from (8) that
K*K is a finite sum of finite products of Toeplitz operators. [

Theorem 4.9. Let V(U,) = {p € L®(Uy) : ess lim ¢(s) = 0}. If ¢ € V(U,) then M‘P|L2(IU ),T and hy, S, are

s=x+i
yHOy
compact operators.

Proof. Let ¢ € L*(U,) and assume that the support supp ¢ is a compact subset of U,. Let G = supp ¢ is
a compact subset of U,. Let L = dist(G, C \ U,). Suppose {f,}* , is a sequence in L2(U,) which converges
weakly to zero. This implies the sequence {f,} must be bounded Let ||fsll < M for all n € IN. Then

[fu@)l < Ml full2llboll2 <
M@l
VrL2

- for all w € U, where b, is the reproducing kernel of [}(U,) atw € U,. Hence
i

lp(w) fu(w)| < for all w € U,. Further, {f,} converges to 0 weakly implies f,(w) = {f,, bn) — 0 for

all w € U,. Using Lebesgue dominated convergence theorem we obtain |lpf,? = f lp(w) fu(w)PdA(w) =
U,

f lp(w) fo(w)*dA(w) — 0 as n tends to infinity. Hence M(p| maps weakly convergent sequence into

12(U,)

norm convergent sequence and M is compact. Since Ty, = P+M and S, is unitarily equivalent

‘P)L,ZZ(I[L) (P|L§(IU+)
tohyf = P (¢f) = EM(P f hence T, S, are compact. Thus if ¢ € L*(U,) and supp ¢ is a compact subset
of U,, then M(ple IR
{pn} € V(US) such that supp ¢, are compact subsets of U, and {¢,} converges uniformly to ¢. Hence {M,,}
converges to M, in norm. From the first part of the proof it follows that M,,, are all compact. Hence M,, is
compact. Hence T, S, are also compact. Since i, f = Sy, f hence, 7i,, is also a compact operator. []

T, and S, are compact operators. Now let ¢ € V(UU,). Then there exist a sequence
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Corollary 4.10. Let T € L(L2(U,)) and assume T is a finite sum of finite products of Toeplitz operators with
symbols ¢;; € L*(Uy). That is, T = ZHTP IfpoM™ € CD) foralli=1,---,n,j=1,---,m; then

=1 j=1
T = T, + K where ¢ o M™' € C(D) and K € L(LX(U,)) is a compact operator. If in addition ¢ € V(U,) then
lim ||T - T;-VIOTH TTMO’[HH =0.

la|l—1-

Proof. Let T € L(L2(U,)) and T = Z H T,, where @;; € L°(U,) and @;j o M™" € CD),i=1,---,nj=
i1 j=1

1,---,m;. Then W-'TW e L(L2(D))and W-ITW = Z [Twr,,w= Z [T 7, Now since gijoM!
i=1 j=1 i=1 j=1
C(E) for all i and j, hence W!TW belongs to the C*-algebra generated by {7 : ¢ € C(E)}. From [6], [10] it
follows that W-'TW = 7z + K; where E € C(D), K; € L(L2(ID)) is compact. Thus
T=WT=W'1+K = Tz +K whereK € LC(L2(U,))
T, + K,where ZoM = ¢ € L”(U,) and ¢ o M e (D).

If ¢ € V(UU,), then by Theorem 4.9, T, is compact. Hence T, + K = T is a compact operator in L(L2(U.,).
Thus from Theorem 4.4, it follows that

lim ||T = T}y TTtor, || = 0.

lal—1-

O
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