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Abstract. In this paper, we study additive properties of the generalized Drazin inverse in a Banach algebra.
We first show that a + b ∈ Ad under the condition that a, b ∈ Ad, abaπ = λaπbabπaπ, and then give some
explicit expressions for the generalized Drazin inverse of the sum a+ b under some weaker conditions than
those used in the previous papers. Some known results are extended.

1. Introduction

Generalized inverses of block matrices have important applications in automatics, probability, statistics,
mathematical programming, numerical analysis, game theory, econometrics, control and so on [3, 4]. The
Drazin inverse has applications in a number of areas such as control theory, Markov chains, singular
differential and difference equations, iterative methods in numerical linear algebra. In 1979, Campbell and
Meyer proposed the problem of finding a formula for the Drazin inverse of a 2×2 block matrix in terms of its
various blocks, where the blocks on the diagonal are required to be square matrices [4]. At the present time,
there is no known complete solution to this problem. In [13], Koliha extended the Drazin invertibility in the
setting of Banach algebras with applications to bounded linear operators on a Banach space and deduced a
formula for the generalized Drazin inverse of a+b when ab = ba = 0. Later, Djordjević and Wei [12] gave the
expression of (a+ b)d under the assumption ab = 0 in the context of the Banach algebra of all bounded linear
operators on an arbitrary complex Banach space. In [5], Castro-González and Koliha obtained a formula for
(a + b)d under the conditions aπb = b, abπ = a, bπabaπ = 0, which are weaker than ab = 0 in Banach algebras.
In [9], Deng and Wei derived necessary and sufficient conditions for the existence of (P + Q)d under the
assumption PQ = QP, where P, Q are bounded linear operators, and gave the expression of (P + Q)d. In
[8], Cvetković-Ilić et al. extended the result of [9] to Banach algebras. In [2], Benı́tez et al. investigated the
explicit expressions for (a + b)d under the conditions bπaπba = 0, bπaadbaad = 0 and abπ = a, where a and b
are generalized Drazin invertible in a unital Banach algebra. Using the assumption abaπ = aπbπbabπaπ, a
representation for (a + b)d was presented in [20]. More results on generalized Drazin inverse can be found
in [11, 14, 16–19, 21].
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In [15], Liu and Qin deduced the explicit expression for the generalized Drazin inverse of the sum a + b
under the condition ab = aπbabπ, where a and b are generalized Drazin invertible in a complex Banach
algebra. In [6], the corresponding results of [15] were further studied. In this paper, we extend these
results and establish an explicit representation of the generalized Drazin inverse (a+b)d under the condition
abaπ = λaπbabπaπ. And we also give several representations for the generalized Drazin inverse of a + b
under some new conditions.

The paper is organized as follows. In section 2, we give some definitions and lemmas that are needed
for our results. In section 3, we generalize some results of [15] and [6]. In section 4, we generalize some
results of [7].

2. Preliminaries

Throughout this paper, A denotes a complex Banach algebra with the unit 1. λ stands for a nonzero
complex number. For any b ∈ A, the spectral radius of b is defined as r(b) = limn→∞ ∥bn

∥
1/n (see e.g. [1,

Ch. 1]), or r(b) = max{|µ| : µ ∈ σ(b)}, where σ(b) is the spectrum of b, i.e., the set composed of complex
numbersµ such that b−µ1 is not invertible. In a Banach algebraA, an element a ∈ A is called quasinilpotent
if r(a) = 0. In the following, A−1 and Aqnil denote the sets of all invertible and quasinilpotent elements in
A, respectively.

Let us recall that a generalized Drazin inverse of a ∈ A (introduced by Koliha in [13]) is an element
x ∈ Awhich satisfies

xax = x, ax = xa, a − a2x ∈ Aqnil. (2.1)

It has been proved in [13] that for any a ∈ A, the set of x ∈ A satisfying (2.1) is empty or a singleton. If
this set is a singleton, then we say that a is generalized Drazin invertible and x satisfying (2.1) is denoted
by ad. The setAd consits of all a ∈ A such that ad exists. For a complete treatment of the generalized Drazin
inverse, see [10, Ch. 2].

Let a ∈ A and let p ∈ A be an idempotent. We denote p = 1 − p. Then we can write

a = pap + pap + pap + pap.

Every idempotent p ∈ A induces a representation of an arbitrary element a ∈ A given by the following
matrix:

a =
[

pap pap
pap pap

]
p
.

Let a ∈ Ad and aπ = 1 − aad be the spectral idempotent of a corresponding to 0. It is well known that
a ∈ A can be represented in the following matrix form [10, Ch. 2]

a =
[

a1 0
0 a2

]
p
, (2.2)

where p = aad, a1 is invertible in the algebra pAp, ad is its inverse in pAp, and a2 is quasinilpotent in the
algebra pAp. Thus, the generalized Drazin inverse of a can be expressed as

ad =

[
ad 0
0 0

]
p
=

[
a−1

1 0
0 0

]
p
.

Obviously, if a ∈ Aqnil, then a is generalized Drazin invertible and ad = 0.
The motivation for this article comes from [5, 6, 15]. In these papers, the authors considered some

conditions on a, b ∈ A that allowed them to express (a + b)d in terms of a, ad, b, bd. Our aim in this paper is
to consider the additive properties for the generalized Drazin inverse of the sum a + b and give an explicit
expression for (a + b)d under some new conditions.

The following several lemmas are needed for deriving our results. The first one was proved in [17] for
matrices, has been extended to bounded linear operators in [11] and Banach algebra elements in [5].
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Lemma 2.1. [5, Theorem 2.3] Let x, y ∈ A, and p ∈ A be an idempotent. Assume that x and y are represented as

x =
[

a 0
c b

]
p
, y =

[
b c
0 a

]
p
.

(i) If a ∈ (pAp)d and b ∈ (pAp)d, then x and y are generalized Drazin invertible, and

xd =

[
ad 0
u bd

]
p
, yd =

[
bd u
0 ad

]
p
, (2.3)

where

u =
∞∑

n=0

(bd)n+2canaπ +
∞∑

n=0

bπbnc(ad)n+2
− bdcad. (2.4)

(ii) If x ∈ Ad and a ∈ (pAp)d, then b ∈ (pAp)d, and xd and yd are given by (2.3) and (2.4).

Lemma 2.2. ([9, Theorem 1], [8, Theorem 2.1]) Let a, b ∈ Ad. If ab = ba, then a + b ∈ Ad if and only if
1 + adb ∈ Ad. In this case, we have

(a + b)d = ad(1 + adb)dbbd + bπ
∞∑

n=0

(−b)n(ad)n+1 +

∞∑
n=0

(bd)n+1(−a)naπ.

Lemma 2.3. [6, Lemma 2.3] Let a ∈ Aqnil, b ∈ Ad. If ab = λbabπ and λ , 0, then a + b ∈ Ad and

(a + b)d = bd +

∞∑
n=0

(bd)n+2a(a + b)n.

3. Main result 1

Now we start the first of our main results, which is a generalization of [15, Theorem 4] and [6, Theorem
2.4].

Theorem 3.1. Let a, b ∈ Ad, abaπ = λaπbabπaπ and λ , 0. If aπbaπ (or aπb or baπ or aadbaad or aadb or baad) is
generalized Drazin invertible, then the following conditions are equivalent:

(i) a + b ∈ Ad;
(ii) w = aad(a + b) ∈ Ad;
(iii) (a + b)aad

∈ A
d;

(iv) aad(a + b)aad
∈ A

d.
In this case,

(a + b)d = wd +

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 aπ −

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 aπbwd

+

∞∑
n=0

(bd)n+2 +

∞∑
k=0

(bd)n+k+3a(a + b)k

 aπbaadwnwπ

+

∞∑
n=0

bπ(a + b)naπb(wd)n+2
−

∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kaπb(wd)n+2.

(3.1)
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Proof. First, suppose that a ∈ Aqnil. Therefore, aπ = 1 and from abaπ = λaπbabπaπ, we obtain ab = λbabπ.
Using Lemma 2.3, a + b ∈ Ad . If a is quasinilpotent, then ad = 0. Notice that ad = 0 clearly implies
w = aad(a + b) = 0, then wd = 0. By the equalities ad = 0 , aπ = 1 and wd = 0, (3.1) is equal to expression of
Lemma 2.3. So Theorem 3.1 holds. Now, we assume that a is not quasinilpotent and we consider the matrix
representations of a, ad and b relative to the idempotent p = aad. We have

a =
[

a1 0
0 a2

]
p
, ad =

[
ad 0
0 0

]
p
, b =

[
b1 b2
b3 b4

]
p
,

where a1 ∈ (pAp)−1, a2 = a − a2ad
∈ (pAp)qnil.

Since abaπ = λaπbabπaπ, we have aadbaπ = λadaπbabπaπ = 0; hence, b2 = 0. Thus, b can be represented as

b =
[

b1 0
b3 b4

]
p
.

Using Lemma 2.1, if one of the elements aπbaπ or aπb or baπ is generalized Drazin invertible, we conclude
that b4 ∈ (pAp)d. Similarly, if one of the elements aadbaad or aadb or baad is generalized Drazin invertible,
then b1 ∈ (pAp)d. Applying again Lemma 2.1, because b ∈ Ad and one of the above mentioned elements is
generalized Drazin invertible, b1 ∈ (pAp)d, b4 ∈ (pAp)d,

bd =

[
bd

1 0
s bd

4

]
p
, and bπ =

[
bπ1 0

−(b3bd
1 + b4s) bπ4

]
p
,

where

s =
∞∑

n=0

(bd
4)n+2b3bn

1bπ1 +
∞∑

n=0

bπ4 bn
4b3(bd

1)n+2
− bd

4b3bd
1.

Since abaπ = λaπbabπaπ, we have[
0 0
0 a2b4

]
p
= abaπ = λaπbabπaπ = λ

[
0 0
0 b4a2bπ4

]
p
,

we obtained a2b4 = λb4a2bπ4 . By Lemma 2.3, we observe that a2 + b4 ∈ (pAp)d and

(a2 + b4)d = bd
4 +

∞∑
n=0

(bd
4)n+2a2(a2 + b4)n.

Since a2 + b4 ∈ (pAp)d, using Lemma 2.1, the following conditions are equivalent:

(i) a + b =
[

a1 + b1 0
b3 a2 + b4

]
is generalized Drazin invertible;

(ii) w(= aad(a + b) = aad(a + b)aad) = a1 + b1 is generalized Drazin invertible;
(iii) (a + b)aad is generalized Drazin invertible.
In this case,

(a + b)d =

[
a1 + b1 0

b3 a2 + b4

]d
=

[
wd 0
u (a2 + b4)d

]
, (3.2)

where

u =
∞∑

n=0

((a2 + b4)d)n+2b3wnwπ +
∞∑

n=0

(a2 + b4)π(a2 + b4)nb3(wd)n+2
− (a2 + b4)db3wd. (3.3)
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The equality a2b4 = λb4a2bπ4 implies a2bd
4 = 0 and

(a2 + b4)π = p − (a2 + b4)(a2 + b4)d

= p − b4bd
4 − b4

∞∑
k=0

(bd
4)k+2a2(a2 + b4)k = bπ4 −

∞∑
k=0

(bd
4)k+1a2(a2 + b4)k.

Hence,

∞∑
n=0

(a2 + b4)π(a2 + b4)nb3(wd)n+2 =

∞∑
k=0

bπ4 (a2 + b4)nb3(wd)n+2
−

∞∑
n=0

∞∑
k=0

(bd
4)k+1a2(a2 + b4)n+kb3(wd)n+2.

Observe that, by (3.2),

(a + b)d = wd + (a2 + b4)d + u.

Also we have (we have written with an asterisk any entry whose exactly expression is not necessary)

∞∑
n=0

(bd)n+2a(a + b)naπ =
∞∑

n=0

[
(bd

1)n+2a1 0
∗ (bd

4)n+2a2

]
p

[
wn 0
∗ (a2 + b4)n

]
p

[
0 0
0 p

]
p

=

[
0 0
0
∑
∞

n=0(bd
4)n+2a2(a2 + b4)n

]
p
,

bdaπ =
[

bd
1 0
s bd

4

]
p

[
0 0
0 p

]
p
=

[
0 0
0 bd

4

]
p
,

X1 = wd +

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 aπ

=

[
wd 0
0 0

]
p
+

[
0 0
0 bd

4 +
∑
∞

n=0(bd
4)n+2a2(a2 + b4)n

]
p
=

[
wd 0
0 (a2 + b4)d

]
p
,

X2 =

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 aπbwd =

[
0 0
0 (a2 + b4)d

]
p

[
b1wd 0
b3wd 0

]
p
=

[
0 0

(a2 + b4)db3wd 0

]
p
,

X3 =

∞∑
n=0

(bd)n+2 +

∞∑
k=0

(bd)n+k+3a(a + b)k

 aπbaadwnwπ

=

∞∑
n=0

(bd)n+2 +

∞∑
k=0

(bd)n+k+3a(a + b)k

 aπ
(
aπbaad

)
wnwπ

=

∞∑
n=0

[
0 0
0 (bd

4)n+2 +
∑
∞

k=0(bd
4)n+k+3a2(a2 + b4)k

]
p

[
0 0
b3 0

]
p

[
wnwπ 0

0 0

]
p

=

∞∑
n=0

 0 0

0
(
(a2 + b4)d

)n+2


p

[
0 0

b3wnwπ 0

]
p

=

 0 0∑
∞

n=0

(
(a2 + b4)d

)n+2
b3wnwπ 0


p

,
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X4 =

∞∑
n=0

bπ(a + b)naπb(wd)n+2 =

∞∑
n=0

[
bπ1 0

−(b3bd
1 + b4s) bπ4

]
p

[
0 0

(a2 + b4)nb3(wd)n+2 0

]
p

=

[
0 0∑

∞

n=0 bπ4 (a2 + b4)nb3(wd)n+2 0

]
p
,

X5 =

∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kaπb(wd)n+2

=

[
0 0∑

∞

n=0
∑
∞

k=0(bd
4)k+1a2(a2 + b4)n+kb3(wd)n+2 0

]
p
.

It then follows that

X1 + X2 + X3 + X4 + X5 =

[
wd 0
u (a2 + b4)d

]
= (a + b)d.

In Theorem 3.1, the condition abaπ = λaπbabπaπ is weaker than ab = aπbabπ of [15, Theorem 4] and
ab = λaπbabπ of [6, Theorem 2.4]. Indeed, it clear that ab = λaπbabπ can imply abaπ = λaπbabπaπ. However,
in general, the converse is false. To show that our condition is strictly weaker than ab = λaπbabπ, we
construct matrices a, b satisfying the condition abaπ = λaπbabπaπ, but not ab = λaπbabπ (or ab = aπbabπ).

Example 3.2. LetA be the Banach algebra of all complex 3 × 3 matrices, and take

a =

 1 0 0
0 0 1
0 0 0

 and b =

 0 0 0
0 0 1
1 0 0

 .
Clearly

ad =

 1 0 0
0 0 0
0 0 0

 and aπ =

 0 0 0
0 1 0
0 0 1

 .
Since b3 = 0, we have bd = 0 and bπ = I3. Hence

ab =

 0 0 0
1 0 0
0 0 0

 and abaπ =

 0 0 0
0 0 0
0 0 0

 .
Notice that

λaπbabπ = λ

 0 0 0
0 0 0
1 0 0

 and λaπbabπaπ =

 0 0 0
0 0 0
0 0 0

 .
Then we have abaπ = λaπbabπaπ, but aπbabπ , ab , λaπbabπ.

In 2004, Castro and Koliha [5] assumed the following three conditions symmetric in a, b ∈ Ad,

aπb = b, abπ = a, bπabaπ = 0. (3.4)

We observe that the conditions (3.4) and abaπ = λaπbabπaπ are independent. The following examples can
illustrate this fact. The first example show that the conditions (3.4) hold, but the condition abaπ = λaπbabπaπ

is not satisfied.
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Example 3.3. LetA be defined as in Example 3.2, and take

a =

 0 0 0
0 0 1
0 0 0

 and b =

 0 1 0
0 0 0
0 0 0

 .
Since a2 = b2 = 0, we have ad = bd = 0 and aπ = bπ = I3. It is now easy to see that the matrices a, b satisfy

conditions aπb = b, abπ = a, and

ab =

 0 0 0
0 0 0
0 0 0

 and ba =

 0 0 1
0 0 0
0 0 0

 ,
we observe that bπabaπ = 0. While

λaπbabπaπ = λ

 0 0 1
0 0 0
0 0 0

 , abaπ.

In the next example, we construct matrices a, b in the algebraA of all complex 3 × 3 matrices such that
abaπ = λaπbabπaπ is satisfied, but (3.4) is not satisfied.

Example 3.4. LetA be defined as in Example 3.2, and take

a =

 0 0 1
1 0 0
0 0 0

 and b =

 0 0 3
1 0 0
0 0 0

 .
Since a3 = b3 = 0, we have ad = bd = 0 and aπ = bπ = I3. Then we get

bπabaπ = abaπ =

 0 0 0
0 0 3
0 0 0

 and 3aπbabπaπ = 3

 0 0 0
0 0 1
0 0 0

 = abaπ.

While bπabaπ , 0, so (3.4) is not satisfied.

If we assume that aπb = b in Theorem 3.1, the expression for (a + b)d will be exactly the same as in [5,
Theorem 3.5]. In fact, if aπb = b in Theorem 3.1, then we can verify that abaπ = λaπbabπaπ is equivalent to
abaπ = λbabπaπ, and so we have the following corollary.

Corollary 3.5. Let a, b ∈ Ad. If aπb = b, abaπ = λbabπaπ and λ , 0, then

(a + b)d = ad +

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 aπ −

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 bad

+

∞∑
n=0

bπ(a + b)nb(ad)n+2
−

∞∑
n=0

∞∑
k=0

(bd)k+1a(a + b)n+kb(ad)n+2.

(3.5)

Proof. The assumptions abaπ = λbabπaπ and aπb = b imply abaπ = λaπbabπaπ. Hence Theorem 3.1 is
applicable. Notice that the condition aπb = b is equivalent to aadb = 0. From this, we have w = a2ad. By [15,
Lemma 7 ], it follows that wd = ad and wπ = aπ. Now, let us observe that the expression

∞∑
n=0

(bd)n+2 +

∞∑
k=0

(bd)n+k+3a(a + b)k

 aπbaadwnwπ
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given in (3.1) can be simplified. In view of the above relations and the equation adaπ = 0, we have

∞∑
n=0

(bd)n+2 +

∞∑
k=0

(bd)n+k+3a(a + b)k

 aπbaadwnwπ =

∞∑
n=0

(bd)n+2 +

∞∑
k=0

(bd)n+k+3a(a + b)k

 aπbaad(a2ad)naπ = 0.

Then the result follows by Theorem 3.1.

Remark 3.1. We observe that the expression for (a + b)d in (3.5) and in (3.8), [5, Theorem 3.5] are exactly the same.

If A is a Banach algebra, then we can define another multiplication in A by a ⊙ b = ba. It is trivial to
verify that (A,⊙) is a Banach algebra. If we apply Theorem 3.1 to this new algebra, we can immediately
establish the following result.

Corollary 3.6. Let a, b ∈ Ad, aπbπabaπ = λaπba and λ , 0. If aπbaπ (or aπb or baπ or aadbaad or aadb or baad) is
generalized Drazin invertible, then the following conditions are equivalent:

(i) a + b ∈ Ad;
(ii) c = (a + b)aad

∈ A
d;

(iii) aad(a + b) ∈ Ad;
(iv) aad(a + b)aad

∈ A
d.

In this case,

(a + b)d = cd + aπ
bd +

∞∑
n=0

(a + b)na(bd)n+2

 − ∞∑
n=0

cdbaπ
(
bd + (a + b)na(bd)n+2

)
+

∞∑
n=0

cπcnaadbaπ
(bd)n+2 +

∞∑
k=0

(a + b)ka(bd)n+k+3


+

∞∑
n=0

(cd)n+2baπ(a + b)nbπ −
∞∑

n=0

∞∑
k=0

(cd)n+2baπ(a + b)n+ka(bd)k+1.

If aba commutes with ad in Theorem 3.1, then an explicit expressions can be given for wd and (a + b)d in
terms of a, ad, b, bd.

Theorem 3.7. Let a, b ∈ Ad, abaπ = λaπbabπaπ, λ , 0 and abaad = aadba. If aπbaπ (or aπb or baπ or aadbaad or aadb
or baad) is generalized Drazin invertible, then the following conditions are equivalent:

(i) a + b ∈ Ad;
(ii) 1 + adb ∈ Ad;
(iii) aad(1 + adb) ∈ Ad;
(iv) (1 + adb)aad

∈ A
d;

(v) aad(1 + adb)aad
∈ A

d.
In this case,

(a + b)d = wd
− bdaπbwd +

bd +

∞∑
n=0

(bd)n+2a(a + b)n

 aπ +
∞∑

n=0

(bd)n+2aπbaadwnwπ +
∞∑

n=0

bπbnaπb(wd)n+2,

where w = aad(a + b) and

wd = ad(1 + adb)dbbd + aadbπ
∞∑

n=0

(−b)n(ad)n+1.

Proof. Using the same notation as in the proof of Theorem 3.1, observe that a + b is generalized Drazin
invertible if and only if w = aad(a+ b) = a1 + b1 is generalized Drazin invertible. The condition abaad = aadba
implies a2b3 = 0 and a1b1 = b1a1. By Lemma 2.2, the following conditions are equivalent:
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(i) w = a1 + b1 is generalized Drazin invertible;
(ii) p + a−1

1 b1 = aad(1 + adb)(= (1 + adb)aad = aad(1 + adb)aad) is generalized Drazin invertible;
(iii) 1 + adb is generalized Drazin invertible.
Hence, we can apply Lemma 2.2 to get the expression of wd as

wd = (a1 + b1)d = a−1
1 (1 + a−1

1 b1)db1bd
1 + bπ1

∞∑
n=0

(−b1)na−(n+1)
1

= ad(1 + adb)dbbd + aadbπ
∞∑

n=0

(−b)n(ad)n+1.

Since a2b4 = λb4a2bπ4 , a2bd
4 = 0 and a2b3 = 0, we have a2bn

4b3 = 0 for any nonnegative integer n. Now we
will simplify the expression of u given in (3.3). In effect, for every integer n ≥ 0,

(a2 + b4)nb3 = bn
4b3 and a2(a2 + b4)nb3 = 0,

then we have

u =
∞∑

n=0

(bd
4)n+2b3wnwπ +

∞∑
n=0

bπ4 bn
4b3(wd)n+2

− bd
4b3wd.

Now we can prove that

bdaπbwd =

[
0 0
0 bd

4

]
p

[
b1wd 0
b3wd 0

]
p
=

[
0 0

bd
4b3wd 0

]
p
,

∞∑
n=0

(bd)n+2aπbaadwnwπ =
∞∑

n=0

(bd)n+2aπ
(
aπbaad

)
wnwπ

=

∞∑
n=0

[
0 0
0 (bd

4)n+2

]
p

[
0 0
b3 0

]
p

[
wnwπ 0

0 0

]
p

=

[
0 0∑

∞

n=0(bd
4)n+2b3wnwπ 0

]
p
,

and
∞∑

n=0

bπbnaπb(wd)n+2 =

∞∑
n=0

[
bπ1 0

−(b3bd
1 + b4s) bπ4

]
p

[
0 0

bn
4b3(wd)n+2 0

]
p

=

[
0 0∑

∞

n=0 bπ4 bn
4b3(wd)n+2 0

]
p
.

The rest of the proof follows in much the same way as the proof of Theorem 3.1.

4. Main result 2

This section presents other of our main results, which extend some results of [7]. We start with an
important special case.

Theorem 4.1. Let b ∈ Aqnil, a ∈ Ad. If abaπ = λba and λ , 0, then a + b ∈ Ad and

(a + b)d = ad +

∞∑
n=0

(ad)n+2b(a + b)n. (4.1)
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Proof. Using the same method of proof as in [6, Lemma 2.3], we can prove this result.

Now, we give another main result which generalizes [7, Theorem 2.3].

Theorem 4.2. Let a, b ∈ Ad. If a = abπ, bπabaπ = λbπba and λ , 0, then a + b ∈ Ad and

(a + b)d = (bd +

∞∑
n=0

(bd)n+2a(a + b)n)aπ + bπ
ad +

∞∑
n=0

(ad)n+2b(a + b)n


−

∞∑
n=0

∞∑
k=0

(bd)n+2an+1(ad)k+1b(a + b)k
−

∞∑
n=0

bda(ad)n+2b(a + b)n.

(4.2)

Proof. If b is quasinilpotent, then the result follows Theorem 4.1. Hence, we assume that b is neither
invertible nor quasinilpotent and we consider the following matrix representations of b and a relative to the
idempotent p = bbd. We have

b =
[

b1 0
0 b2

]
p
, a =

[
a1 a2
a3 a4

]
p
,

where b1 ∈ (pAp)−1, b2 = b − b2bd
∈ (pAp)qnil. So we get

bd =

[
b−1

1 0
0 0

]
p
, bπ =

[
0 0
0 p

]
p
.

We will use the condition a = abπ. Since

abπ =
[

a1 a2
a3 a4

]
p

[
0 0
0 p

]
p
=

[
0 a2
0 a4

]
p
=

[
a1 a2
a3 a4

]
p
,

we get a1 = a3 = 0.
Thus, a and a + b can be represented as

a =
[

0 a2
0 a4

]
p
, a + b =

[
b1 a2
0 b2 + a4

]
p
. (4.3)

Then we have

ad =

[
0 a2(ad

4)2

0 ad
4

]
p
, aπ =

[
p −a2ad

4
0 aπ4

]
p
.

From bπabaπ = λbπba and

bπabaπ =
[

0 0
0 a4b2aπ4

]
p
, λbπba = λ

[
0 0
0 b2a4

]
p
,

we obtained a4b2aπ4 = λb2a4. By using Theorem 4.1, we get a4 + b2 ∈ (pAp)d and

(a4 + b2)d = ad
4 +

∞∑
n=0

(ad
4)n+2b2(a4 + b2)n.

By employing Lemma 2.1(ii) for the representation of a + b given in (4.3) we get

(a + b)d =

[
b−1

1 u
0 (a4 + b2)d

]
, (4.4)
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where

u =
∞∑

n=0

b−(n+2)
1 a2(a4 + b2)n(a4 + b2)π +

∞∑
n=0

bπ1 bn
1a2((a4 + b2)d)n+2

− b−1
1 a2(a4 + b2)d.

Observe that since b1 ∈ (pAp)−1, then bπ1 = 0.
Hence, the expression of u reduces to

u =
∞∑

n=0

b−(n+2)
1 a2(a4 + b2)n(a4 + b2)π − b−1

1 a2(a4 + b2)d.

From a4b2aπ4 = λb2a4, we get b2ad
4 = 0. Hence

(a4 + b2)π = p − (a4 + b2)(a4 + b2)d = p − (a4 + b2)

ad
4 +

∞∑
n=0

(ad
4)n+2b2(a4 + b2)n


= p − a4ad

4 − a4

∞∑
n=0

(ad
4)n+2b2(a4 + b2)n = aπ4 −

∞∑
n=0

(ad
4)n+1b2(a4 + b2)n,

and

b−(n+2)
1 a2(a4 + b2)n(ad

4)k+1b2(a4 + b2)k = b−(n+2)
1 a2an

4(ad
4)k+1b2(a4 + b2)k.

So we get

u =
∞∑

n=0

b−(n+2)
1 a2(a4 + b2)na4

π
−

∞∑
n=0

∞∑
k=0

b−(n+2)
1 a2an

4(ad
4)k+1b2(a4 + b2)k

− b−1
1 a2ad

4 − b−1
1 a2

∞∑
n=0

(ad
4)n+2b2(a4 + b2)n.

(4.5)

Observe that (4.4) and b−1
1 = bd yield

(a + b)d = bd + (a4 + b2)d + u. (4.6)

Also we have (we have written with an asterisk any entry whose exactly expression is not necessary)

bπ(ad)n+2b(a + b)n =

[
0 0
0 p

]
p

[
0 ∗

0 (ad
4)n+2

]
p

[
b1 0
0 b2

]
p

[
bn

1 ∗

0 (a4 + b2)n

]
p

=

[
0 0
0 (ad

4)n+2b2(a4 + b2)n

]
p
,

bπad =

[
0 0
0 p

]
p

[
0 a2(ad

4)2

0 ad
4

]
p
=

[
0 0
0 ad

4

]
p
,

bda(ad)n+2b(a + b)n =

[
0 b−1

1 a2
0 0

]
p

[
0 ∗

0 (ad
4)n+2b2(a4 + b2)n

]
p

=

[
0 b−1

1 a2(ad
4)n+2b2(a4 + b2)n

0 0

]
p
,
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bdaπ =
[

b−1
1 0
0 0

]
p

[
p −a2ad

4
0 aπ4

]
p
=

[
b−1

1 −b−1
1 a2ad

4
0 0

]
p
,

(bd)n+2a(a + b)naπ =
[

b−(n+2)
1 0

0 0

]
p

[
0 a2
0 a4

]
p

[
bn

1 ∗

0 (a4 + b2)n

]
p

[
p −a2ad

4
0 aπ4

]
p

=

[
0 b−(n+2)

1 a2(a4 + b2)naπ4
0 0

]
p
,

(bd)n+2an+1(ad)k+1b(a + b)k

=

[
0 b−(n+2)

1 a2an
4

0 0

]
p

[
0 ∗

0 (ad
4)k+1

]
p

[
b1 0
0 b2

]
p

[
bk

1 ∗

0 (a4 + b2)k

]
p

=

[
0 b−(n+2)

1 a2an
4(ad

4)k+1b2(a4 + b2)k

0 0

]
p
.

From (4.5) and (4.6), it follows (4.2).

Corollary 4.3. Let a ∈ Aqnil, b ∈ Ad. If abπ = a, bπab = λbπba and λ , 0, then

(a + b)d = bd +

∞∑
n=0

(bd)n+2a(a + b)n.

Proof. If a is quasinilpotent, then ad = 0 and aπ = 1. Applying Theorem 4.2, we get the result.

In [7, Theorem 2.3], authors gave an explicit representation for (a + b)d under conditions abπ = a and
bπab = bπba. Theorem 4.2 extends it to more general setting. The following example can illustrate this fact.

Example 4.4. LetA be defined as in Example 3.2, and take

a =

 0 0 0
0 0 1
1 0 0

 and b =

 0 0 0
0 0 5
1 0 0

 .
Since a3 = b3 = 0, we have ad = bd = 0 and aπ = bπ = I3. Then we have

bπab =

 0 0 0
1 0 0
0 0 0

 and bπba =

 0 0 0
5 0 0
0 0 0

 .
Now, we can see that a = abπ, bπab = 1

5 bπba, the conditions of Theorem 4.2 hold. However, the conditions of [7,
Theorem 2.3] are not satisfied.

In the rest of the paper, we look for simplifying equation (4.2) for (a+b)d under some stronger hypotheses
than Theorem 4.2. The results of the preceding theorem, in particular the matrix representations, suggest
that we should retain the condition a = abπ, while replacing bπabaπ = λbπba by a stronger hypothesis.

First, we extend [7, Corollary 2.1].

Theorem 4.5. Let a, b ∈ Ad. If a = abπ, abaπ = λba and λ , 0, then a + b ∈ Ad and

(a + b)d = ad + bd +

∞∑
n=0

(ad)n+2b(a + b)n +

∞∑
n=0

(bd)n+2a(a + b)n. (4.7)
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Proof. Applying Theorem 4.1, similarly as in the proof of Theorem 4.2, we have that a + b ∈ Ad and (a + b)d

is represented as in (4.7).

The final theorem gives the simpler expression of (a + b)d under the conditions that a = abπ and
bπabaπ = λba.

Theorem 4.6. Let a, b ∈ Ad. If a = abπ, bπabaπ = λba and λ , 0, then a + b ∈ Ad and

(a + b)d = ad + bd +

∞∑
n=0

(ad)n+2b(a + b)n.

Proof. The assumption bπabaπ = λba implies bπabaπ = λbπba. According to Theorem 4.2, we complete the
proof.
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