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Abstract. This paper is devoted to introduce and investigate the notion of monotone sets in Hadamard
spaces. First, flat Hadamard spaces are introduced and investigated. It is shown that an Hadamard space
X is flat if and only if X × X♢ has Fl-property, where X♢ is the linear dual of X. Moreover, monotone and
maximal monotone sets are introduced and also monotonicity from polarity point of view is considered.
Some characterizations of (maximal) monotone sets, specially based on polarity, are given. Finally, it is
proved that any maximal monotone set is sequentially bw×∥ · ∥♢-closed in X × X♢.

1. Introduction

In this section, we collect some fundamental definitions and general notations of Hadamard spaces that
will be used throughout of this paper. For background materials on Hadamard spaces, we refer to the
standard texts and literatures such as [2, 3, 5, 6].

Given a metric space (X, d), a geodesic path from x ∈ X to y ∈ X is a map c : [0, 1]→ X such that c(0) = x,
c(1) = y and d(c(t), c(s)) = |t − s|d(x, y), for each t, s ∈ [0, 1]. The image of c is called a geodesic segment joining
x and y. A metric space (X, d) is a geodesic space if for each x, y ∈ X, there exists a geodesic path from x to
y. Also, a geodesic space (X, d) is called uniquely geodesic space if for every x, y ∈ X there exists a unique
geodesic from x to y.

A geodesic space (X, d) is called a CAT(0) space if we have:

d(z, c(t))2
≤ (1 − t)d(z, x)2 + td(z, y)2

− t(1 − t)d(x, y)2, (1)

for each geodesic path c : [0, 1] → X from x to y, each z ∈ X and each t ∈ [0, 1]. Inequality (1) is called the
CN-inequality. It is known [3, Theorem 1.3.3] that CAT(0) spaces are uniquely geodesic spaces. Furthermore,
the image of unique geodesic path c : [0, 1]→ X from initial point x to terminal point y is denoted by [x, y],
i.e., c([0, 1]) = [x, y]. In this case, for each z ∈ [x, y], we write z = (1 − t)x ⊕ ty and say that z is a convex
combination of x and y. A complete CAT(0) space is called Hadamard space. Basic examples of Hadamard
spaces are: Hilbert spaces, Hadamard manifolds, Euclidean Buildings and R-trees, (see [6, Chapter II.1,
1.15] for many other examples).

In 2008, Berg and Nikolaev [5] introduced the concept of quasilinearization in abstract metric spaces.
Ahmadi Kakavandi and Amini [2] defined the dual space for an Hadamard space (X, d) by using the concept
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of quasilinearization of it. More precisely, let X be an Hadamard space. For each x, y ∈ X, the ordered pair
(x, y) ∈ X2 is denoted by −→xy and will be called a bound vector. For each x ∈ X, the zero bound vector at x ∈ X
will be written as 0x := −→xx. We identify two bound vectors −−→xy and −→yx. The bound vectors −→xy and −→uz are
called admissible if y = u. The operation of addition of two admissible bound vectors −→xy and −→yz is defined
by −→xy + −→yz := −→xz. The quasilinearization map is defined by

⟨·, ·⟩ : X2
× X2

→ R, (2)

⟨
−→
ab,
−→
cd⟩ :=

1
2

(
d(a, d)2 + d(b, c)2

− d(a, c)2
− d(b, d)2

)
, a, b, c, d,∈ X.

Remark 1.1. For each x, y, z,u, v ∈ X we have:

(i) ⟨−→xy,−→uv⟩ = ⟨−→uv,−→xy⟩,

(ii) ⟨−→xy,−→uv⟩ = −⟨−→yx,−→uv⟩,

(iii) ⟨−→xy,−→uv⟩ = ⟨−→xz,−→uv⟩ + ⟨−→zy,−→uv⟩.

In [5, Corollary 3] based on the Cauchy-Schwarz inequality (see (3)), CAT(0) spaces have been charac-
terized. More precisely, a geodesic space (X, d) is a CAT(0) space if and only if for each a, b, c, d ∈ X we
have:

⟨
−→
ab,
−→
cd⟩ ≤ d(a, b)d(c, d). (3)

Consider the map

Θ : R × X2
→ C(X,R)

(t, a, b) 7→ Θ(t, a, b)x = t⟨
−→
ab,−→ax⟩, a, b, x ∈ X, t ∈ R,

where C(X,R) is the space of all continuous real-valued functions on R × X2. It follows from the Cauchy-
Schwarz inequality (3) that Θ(t, a, b) is a Lipschitz function with Lipschitz semi-norm

L(Θ(t, a, b)) = |t|d(a, b), a, b ∈ X, t ∈ R. (4)

Recall that the Lipschitz semi-norm on C(X,R) is defined by

L : C(X,R)→ R

φ 7→ sup
{φ(x) − φ(y)

d(x, y)
: x, y ∈ X, x , y

}
.

The Lipschitz semi-norm (4) induces a pseudometric D on R × X2, which is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b) −Θ(s, c, d)), a, b, c, d ∈ X, t, s ∈ R.

The pseudometric space (R × X2,D) can be considered as a subspace of the pseudometric space of all
real-valued Lipschitz functions (Lip(X,R),L). Accordance to [2, Lemma 2.1]), we have:

D((t, a, b), (s, c, d)) = 0 if and only if t⟨
−→
ab,−→xy⟩ = s⟨

−→
cd,−→xy⟩ for all x, y ∈ X.

It is easily seen that D induces an equivalence relation on R × X2. Indeed, the equivalence class of
(t, a, b) ∈ R × X2 is given by

[t
−→
ab] =

{
s
−→
cd : D((t, a, b), (s, c, d)) = 0

}
.
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The set of all equivalence classes equipped with the metric D, defined by

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)),

is called the dual space of the Hadamard space X, and is denoted by X∗. By using the definition of equivalence
classes, we get [−→aa] = [

−→
bb] for each a, b ∈ X. In general, X∗ acts on X2 by

⟨x∗,−→xy⟩ = t⟨
−→
ab,−→xy⟩, where x∗ = [t

−→
ab] ∈ X∗, a, b ∈ X, t ∈ R and −→xy ∈ X2. (5)

Throughout this paper, we use the following notation:〈 n∑
i=1

αix∗i ,
−→xy
〉

:=
n∑

i=1

αi

〈
x∗i ,
−→xy
〉
, αi ∈ R, x∗i ∈ X∗, x, y ∈ X,n ∈N.

In [8], Chaipunya and Kumam introduced the concept of linear dual space of an Hadamard space (X, d), as
follows:

X♢ =
{ n∑

i=1

αix∗i : αi ∈ R, x∗i ∈ X∗,n ∈N
}
.

Indeed, X♢ = span X∗. The zero element of X♢ is denoted by 0X♢ := [t−→aa], where a ∈ X and t ∈ R. One can see
that the evaluation ⟨0X♢ , ·⟩ vanishes on X2. It is worth mentioned that X♢ is a normed space with the norm
∥x♢∥♢ = L(x♢), for all x♢ ∈ X♢. Indeed:

Proposition 1.2. [13, Proposition 3.5] Let X be an Hadamard space with the linear dual space X♢ and let x♢ ∈ X♢

be arbitrary. Then

∥x♢∥♢ := sup
{∣∣∣⟨x♢,−→ab⟩−⟨x♢,−→cd⟩

∣∣∣
d(a, b) + d(c, d)

: a, b, c, d ∈ X, (a, c) , (b, d)
}
,

is a norm on X♢. In particular, ∥[t
−→
ab]∥♢ = |t|d(a, b).

Remark 1.3. In view of (5) and Remark 1.1(iii), for each a, b,w ∈ X and each x∗ = [t−→uv] with t ∈ R, u, v ∈ X, we
get:

⟨x∗,
−→
ab⟩ = t⟨−→uv,

−→
ab⟩ = t⟨−→uv,−→aw +

−→
wb⟩ = t

(
⟨
−→uv,−→aw⟩ + ⟨−→uv,

−→
wb⟩
)
= ⟨x∗,−→aw⟩ + ⟨x∗,

−→
wb⟩.

Also, let x♢ ∈ X♢ be fixed and arbitrary. Then there are n ∈ N, α1, α2, . . . , αn ∈ R and x∗1, x
∗

2, . . . , x
∗
n ∈ X∗ such that

x♢ =
∑n

i=1 αix∗i . Then

⟨x♢,
−→
ab⟩ =

〈 n∑
i=1

αix∗i ,
−→
ab
〉
=

n∑
i=1

αi⟨x∗i ,
−→
ab⟩

=

n∑
i=1

αi

(
⟨x∗i ,
−→aw⟩ + ⟨x∗i ,

−→
wb⟩
)

=

n∑
i=1

αi⟨x∗i ,
−→aw⟩ +

n∑
i=1

αi⟨x∗i ,
−→
wb⟩

=
〈 n∑

i=1

αix∗i ,
−→aw
〉
+
〈 n∑

i=1

αix∗i ,
−→
wb
〉

= ⟨x♢,−→aw⟩ + ⟨x♢,
−→
wb⟩.

Therefore, ⟨x♢,
−→
ab⟩ = ⟨x♢,−→aw⟩ + ⟨x♢,

−→
wb⟩.
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Definition 1.4. [2, Definition 2.4] Let {xn} be a sequence in an Hadamard space X. The sequence {xn} is said
to be weakly convergent to x ∈ X, denoted by xn

w
−→ x, if limn→∞⟨

−−→xxn,
−→xy⟩ = 0, for all y ∈ X.

One can easily see that convergence in the metric implies weak convergence.

Proposition 1.5. [13, Proposition 3.6] Let {xn} be a bounded sequence in an Hadamard space (X, d) with the

linear dual space X♢ and let {x♢n} be a sequence in X♢. If {xn} is weakly convergent to x ∈ X and x♢n
∥·∥♢
−−→ x♢, then

⟨x♢n,
−−→xnz⟩ → ⟨x♢,−→xz⟩, for all z ∈ X.

Definition 1.6. Let X be an Hadamard space with the linear dual space X♢.

(i) A sequence {xn} ⊆ X is bw-convergent to x ∈ X, if {xn} is bounded and xn
w
−→ x. In this case, we write

xn
bw
−→ x.

(ii) A sequence {(xn, x♢n)} ⊆ X × X♢ is bw × ∥ · ∥♢-convergent to (x, x♢) ∈ X × X♢, if xn
bw
−→ x and x♢n

∥·∥♢
−−→ x♢. In

this case, we write (xn, x♢n)
bw×∥·∥♢
−−−−−→ (x, x♢).

(iii) A subset M of X × X♢ is called sequentially bw × ∥ · ∥♢-closed if the limit of every bw × ∥ · ∥♢-convergent
sequence {(xn, x♢n)} ⊆M is in M.

(iv) A mapping φ : X × X♢ → ] − ∞,∞] is sequentially bw × ∥ · ∥♢-continuous at (x, x♢) ∈X×X♢ if for every

{(xn, x♢n)} ⊆ X×X♢, with (xn, x♢n)
bw×∥·∥♢
−−−−−→ (x, x♢) we have φ(xn, x♢n) → φ(x, x♢). Also, φ is sequentially

bw × ∥ · ∥♢-continuous if it is sequentially bw × ∥ · ∥♢-continuous at each point of X × X♢.

Definition 1.7. Let X be an Hadamard space with linear dual space X♢. For an arbitrary point p ∈ X, we
define the p-coupling function of the dual pair (X,X♢) by

πp : X × X♢ → R; (x, x♢) 7→ ⟨x♢,−→px⟩.

This function is useful in the formulation of some basic results of the monotone sets in Hadamard spaces
(see Proposition 3.19).

Proposition 1.8. Let X be an Hadamard space with linear dual space X♢ and p ∈ X. Then the following hold:

(i) πp is sequentially bw × ∥ · ∥♢-continuous and hence it is continuous.
(ii) πp is linear with respect to it’s second variable.

Proof. (i) Let {(xn, x♢n)} ⊆ X × X♢ be such that (xn, x♢n)
bw×∥·∥♢
−−−−−→ (x, x♢), where (x, x♢) ∈ X × X♢. It follows from

Proposition 1.5 that ⟨x♢n,
−−→pxn⟩ → ⟨x♢,

−→px⟩, which implies that πp is sequentially bw × ∥ · ∥♢-continuous.
Now, since convergence in the metric implies weak convergence, we conclude that πp is continuous.

(ii) Let x♢, y♢ ∈ X♢, x ∈ X and α, β ∈ R. Then

πp(x, αx♢ + βy♢) = ⟨αx♢ + βy♢,−→px⟩ = α⟨x♢,−→px⟩ + β⟨y♢,−→px⟩ = απp(x, x♢) + βπp(x, y♢).

The proof is completed.

Definition 1.9. [3, Section 2.2] Suppose that (X, d) is an Hadamard space and f : X→]−∞,∞] be a function.

(i) The domain of f is defined by dom( f ) := {x ∈ X : f (x) < ∞}.Moreover, f is called proper if dom( f ) , ∅.
(ii) f is lower semi-continuous (briefly l.s.c.) if the set {x ∈ X : f (x) ≤ α} is closed, for each α ∈ R.

(iii) f is convex if

f ((1 − λ)x ⊕ λy) ≤ (1 − λ) f (x) + λ f (y), for each x, y ∈ X and λ ∈ [0, 1].
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(iv) f is strongly convex with parameter κ > 0 if,

f ((1 − λ)x ⊕ λy) ≤ (1 − λ) f (x) + λ f (y) − κλ(1 − λ)d(x, y)2,

whenever x, y ∈ X and λ ∈ [0, 1].
(v) When f is proper, an element x ∈ X is said to be a minimizer of f , if f (x) = infz∈X f (z).

The set of all proper, l.s.c. and convex extended real-valued functions on X is denoted by Γ(X).

Definition 1.10. Let (X, d) be an Hadamard space with linear dual space X♢ and f : X →] − ∞,∞] is a
function. Define the mapping I f : X × X♢ × X♢ → [−∞,∞] by I f (x, x♢, y♢) = infy∈X

{
f (y) + πy(x, x♢ + y♢)

}
.

Remark 1.11. For each x ∈ X and each x♢, y♢,u♢, v♢ ∈ X♢, we have:

(i) I f (x, x♢, y♢) = I f (x, y♢, x♢).
(ii) I f (x, x♢, y♢) = I f (x,u♢, v♢), provided that x♢ + y♢ = u♢ + v♢.

(iii) I f (x, x♢, y♢) = I f (x, 0X♢ , x♢ + y♢).

Definition 1.12. Let f : X →] − ∞,∞] be a function where X is an Hadamard space with the linear dual
space X♢. For any y♢ ∈ X♢, set

M f
y♢ :=

{
(x, x♢) ∈ X × X♢ : I f (x, x♢, y♢) ≥ f (x)

}
.

We use the notation M f
0 :=M f

0X♢
.

Lemma 1.13. Let X be an Hadamard space with linear dual space X♢, p ∈ X and y♢ ∈ X♢. Then

M f
y♢ =
{
(x, x♢ − y♢) ∈ X × X♢ : (x, x♢) ∈M f

0

}
=M f̃

0 ,

where, f̃ (·) := f (·) − πp(·, y♢).

Proof. By using Remark 1.11(i)&(iii), we get:

(x, x♢ − y♢) ∈M f
y♢ ⇐⇒ I f (x, x♢ − y♢, y♢) ≥ f (x)⇐⇒ I f (x, x♢, 0X♢ ) ≥ f (x)⇐⇒ (x, x♢) ∈M f

0 .

On the other hand, for each z ∈ X and (x, x♢) ∈ X × X♢,

f̃ (z) + πz(x, x♢) − f̃ (x) = f (z) − ⟨y♢,−→pz⟩ + πz(x, x♢) − f (x) + ⟨y♢,−→px⟩

= f (z) + ⟨y♢,−→zx⟩ + πz(x, x♢) − f (x)
= f (z) + πz(x, x♢ + y♢) − f (x).

Now, by taking the infimum over z ∈ X, we obtain I f̃ (x, x
♢
− y♢, y♢) − f̃ (x) = I f (x, x♢, y♢) − f (x). This implies

that M f
y♢ =M f̃

0 .

2. Flat Hadamard spaces

Let X be an Hadamard space with linear dual space X♢ and M ⊆ X ×X♢. The domain and range of M are
defined, respectively, by

Dom(M) := {x ∈ X : ∃ x♢ ∈ X♢ s.t. (x, x♢) ∈M},

and

Range(M) := {x♢ ∈ X♢ : ∃ x ∈ X s.t. (x, x♢) ∈M}.
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Definition 2.1. Let X be an Hadamard space with linear dual space X♢ and p ∈ X be fixed. We say that
M ⊆ X × X♢ satisfies Fl-property if for each λ ∈ [0, 1], x♢ ∈ Range(M) and each x, y ∈ Dom(M),〈

x♢,
−−−−−−−−−−−−−−→
p((1 − λ)x ⊕ λy)

〉
≤ (1 − λ)⟨x♢,−→px⟩ + λ⟨x♢,−→py⟩. (6)

Remark 2.2. Note that

(i) Fl-property is introduced and investigated in [12] asW-property.
(ii) Fl-property is independent of the choice of the point p (see [12, Proposition 2.2]).

Theorem 2.3. [12, Proposition 2.5] The following statements for an Hadamard space X are equivalent.

(i) X is flat.

(ii) ⟨
−−−−−−−−−−−−−−→
x((1 − λ)x ⊕ λy),

−→
ab⟩ = λ⟨−→xy,

−→
ab⟩, for all a, b, x, y ∈ X and all λ ∈ [0, 1].

(iii) X × X♢ has Fl-property.
(iv) Any subset of X × X♢ has Fl-property.

The following example shows that there exists a relation M ⊆ X × X♢, in a non-flat Hadamard space X,
which doesn’t have the Fl-property. Moreover, it is easy to check that in any Hadamard space (X, d) with
linear dual space X♢, for each (x, x♢) ∈ X × X♢, the singleton set {(x, x♢)} has Fl-property.

Example 2.4. (Compare with [12, Example 2.6]) Consider the following equivalence relation onN × [0, 1]:

(n, t) ∼ (m, s) :⇔ t = s = 0 or (n, t) = (m, s).

Set X := N×[0,1]
∼

; i.e., X is the set of all equivalence classes of ∼. Let d : X × X→ R be defined by

d([(n, t)], [(m, s)]) =

|t − s| n = m,
t + s n , m.

The geodesic joining x = [(n, t)] to y = [(m, s)] is defined as follows:

(1 − λ)x ⊕ λy :=

[(n, (1 − λ)t − λs)] 0 ≤ λ ≤ t
t+s ,

[(m, (λ − 1)t + λs)] t
t+s ≤ λ ≤ 1,

whenever, x , y and vacuously (1 − λ)x ⊕ λx := x. It is known that (see [1, Example 4.7]) (X, d) is an
R-tree space. It follows from [3, Example 1.2.10] that R-tree spaces are Hadamard space. Let x = [(2, 1

2 )],
y = [(1, 1

2 )], a = [(3, 1
3 )] and b = [(2, 1

2 )]. Then

(1 − λ)[(2, 1
2

)] ⊕ λ[(1, 1
2

)] =

[(2, 1
2 − λ)] 0 ≤ λ ≤ 1

2 ,

[(1, λ − 1
2 )] 1

2 ≤ λ ≤ 1.

For each λ ∈ (0, 1
2 ] we obtain

〈−−−−−−−−−−−−−−→
x((1 − λ)x ⊕ λy),

−→
ab
〉
=
〈−−−−−−−−−−−−−−−→
[(2, 1

2 )][(2, 1
2 − λ)],

−−−−−−−−−−−→
[(3, 1

3 )][(2, 1
2 )]
〉
= − 5

6λ, while

λ⟨−→xy,
−→
ab⟩ = − 1

2λ. It follows from Theorem 2.3 that (X, d) is not a flat Hadamard space. For each n ∈ N,
set xn := [(n, 1

2 )] and yn := [(n, 1
n )]. Now, define M :=

{
(xn, [

−−−−−→yn+1yn]) : n ∈ N
}
⊆ X × X♢. Take λ = 1/3,

p = [(1, 1)] ∈ X and [−−−→y5y4] ∈ Range(M). Clearly, (1−λ)x1⊕λx3 = [(1, 1
6 )] and

〈
[−−−→y5y4],

−−−−−−−−−−−−−−−→
p((1 − λ)x1 ⊕ λx3)

〉
= 1

24 ,

while 2
3 ⟨[
−−−→y5y4],−−→px1⟩ +

1
3 ⟨[
−−−→y5y4],−−→px3⟩ =

1
40 . Therefore, M doesn’t have the Fl-property.

Lemma 2.5. [3, Proposition 2.2.17] Suppose (X, d) is an Hadamard space and f : X →] − ∞,∞] be l.s.c. and
strongly convex with κ > 0. Then there exists a unique minimizer x ∈ X of f and each minimizing sequence converges
to x. Moreover, f (x) + κd(x, y)2

≤ f (y), for each y ∈ X.
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Lemma 2.6. Let X be an Hadamard space with linear dual space X♢, p ∈ X and y♢ ∈ X♢. Then X × {y♢} has
Fl-property if and only if πp(·, y♢) is convex.

Proof. Let a, b ∈ X and λ ∈ [0, 1]. Then

πp((1 − λ)a ⊕ λb, y♢) = ⟨y♢,
−−−−−−−−−−−−−→
p((1 − λ)a ⊕ λb)⟩, (7)

and

(1 − λ)πp(a, y♢) + λπp(b, y♢) = (1 − λ)⟨y♢,−→pa⟩ + λ⟨y♢,
−→
pb⟩. (8)

Now, inequalities (7), (8) and (6) imply that X × {y♢} has Fl-property if and only if πp(·, y♢) is convex.

Proposition 2.7. Let (X, d) be an Hadamard space with linear dual space X♢ and f ∈ Γ(X). Let p, y ∈ X be fixed and
arbitrary and let y♢ ∈ X♢ be such that X × {y♢} has Fl-property. Then

(i) the mapping 1 : X→] −∞,∞] defined by 1(x) = f (x) + πp(x, y♢) is proper, l.s.c. and convex.
(ii) define the mapping h : X →] −∞,∞] by h(x) = 1(x) + 1

2 d(x, y)2. Then h is proper, l.s.c. and strongly convex
with the parameter κ = 1

2 . Moreover, h has a unique minimizer x ∈ X such that h(z) ≥ h(x) + 1
2 d(x, z)2, for

each z ∈ X.

Proof. (i) It is clear that 1 is proper. Lower semi-continuity of 1 follows from lower semi-continuity of f
and Proposition 1.8(i). It follows from Lemma 2.6 and convexity of f that 1 is convex.

(ii) Similar to the proof of (i), h is proper and l.s.c. Let a, b ∈ X and λ ∈ [0, 1]. By using the convexity of 1
and CN-inequality (1), we get:

h((1 − λ)a ⊕ λb) = 1((1 − λ)a ⊕ λb) + 1
2

d((1 − λ)a ⊕ λb, y)2

≤ (1 − λ)1(a) + λ1(b) + 1
2

(
(1 − λ)d(a, y)2 + λd(b, y)2

− λ(1 − λ)d(a, b)2
)

= (1 − λ)(1(a) + 1
2

d(a, y)2) + λ(1(b) + 1
2

d(b, y)2) − 1
2
λ(1 − λ)d(a, b)2

= (1 − λ)h(a) + λh(b) − 1
2
λ(1 − λ)d(a, b)2.

Thus h is strongly convex with the parameter κ = 1
2 . In view of Lemma 2.5, there exists a unique

minimizer x ∈ X such that h(z) ≥ h(x) + 1
2 d(x, z)2, for each z ∈ X. This completes the proof.

Corollary 2.8. Let (X, d) be a flat Hadamard space and f : X→] −∞,∞] be proper, l.s.c. and convex. Let p, y ∈ X
be fixed and arbitrary and y♢ ∈ X♢. Then

(i) the mapping 1, defined in Proposition 2.7(i), is proper, l.s.c. and convex.
(ii) h (defined in Proposition 2.7(ii)) is proper, l.s.c. and strongly convex with the parameter κ = 1

2 . Moreover, h
has a unique minimizer x ∈ X such that h(z) ≥ h(x) + 1

2 d(x, z)2, for each z ∈ X.

Proof. Since X is flat, Theorem 2.3 implies that X × X♢ has Fl-property and hence for each y♢ ∈ X♢, X × {y♢}
as a subset of X × X♢ has this property too. Now, Proposition 2.7 completes the proof.

3. Monotonicity from polarity point of view

The concept of monotone operators in Hadamard spaces is introduced in [2]. Some properties of
monotone operators, their resolvents and proximal point algorithm are discussed in [8, 9, 13]. The notions
of monotone sets and maximal monotone sets in Hadamard spaces are introduced in [12]. In this section,
fundamental properties of (maximal) monotone sets in Hadamard spaces from polarity point of view are
considered. Also, some important results of [11] are proved in Hadamard spaces.



A. Moslemipour, M. Roohi / Filomat 36:13 (2022), 4459–4470 4466

Definition 3.1. Suppose that X is an Hadamard space with linear dual space X♢. We say that (x, x♢) ∈ X×X♢

and (y, y♢) ∈ X × X♢ are monotonically related, if ⟨x♢ − y♢,−→yx⟩ ≥ 0 and it is denoted by (x, x♢)µ(y, y♢). It is easy
to see that µ is a reflexive and symmetric relation on X×X♢. This motivates that monotonically relatedness
can be defined for a subset M ⊆ X×X♢. An element (x, x♢) is monotonically related to M if (x, x♢)µ(y, y♢), for
each (y, y♢) ∈ M and this will be denoted by (x, x♢)µM. Moreover, M ⊆ X × X♢ is said to be a monotone set if
every (x, x♢), (y, y♢) ∈M are monotonically related. The monotone polar of M is

Mµ := {(x, x♢) ∈ X × X♢ : (x, x♢)µM}.

In addition, we often use the notations Mµµ := (Mµ)µ and Mµµµ := (Mµµ)µ.

Example 3.2. Suppose that (X, d) is an Hadamard space with linear dual space X♢ and f : X →] − ∞,∞] is an
arbitrary function. Let (u,u♢) ∈ M f

0 and (v, v♢) ∈ M f
0 . By the definition of M f

0 , we get I f (u,u♢, 0X♢ ) ≥ f (u) and
I f (v, v♢, 0X♢ ) ≥ f (v). Hence, for each y ∈ X,

f (y) + πy(u,u♢) ≥ f (u), (9)

and

f (y) + πy(v, v♢) ≥ f (v). (10)

Now, put y := v and y := u in (9) and (10), respectively, to obtain:

πv(u,u♢) ≥ f (u) − f (v), (11)

and

πu(v, v♢) ≥ f (v) − f (u). (12)

Adding inequalities (11) and (12) and since πu(v, v♢) = −πv(u, v♢), we get πv(u,u♢) − πv(u, v♢) ≥ 0, this means that
⟨u♢ − v♢,−→vu⟩ ≥ 0, i.e., M f

0 is monotone. Finally, Lemma 1.13 implies that for each y♢ ∈ X♢, M f
y♢ is a monotone set.

Example 3.3. Let X be the same as in Example 2.4. For each n ∈ N, set M :=
{(

xn,
[
−−−−−→xn+1yn

])
: n ∈ N

}
, where

xn = [(n, 1)] and yn = [(n, 0)]. Then M is monotone. Indeed, for each n,m ∈N,

〈[
−−−−−→xn+1yn

]
−

[
−−−−−→xm+1ym

]
,−−−→xmxn

〉
=

2, n ∈ {m − 1,m + 1},
0, o.w.

Definition 3.4. Let X be an Hadamard space. A monotone set M ⊆ X × X♢ is called maximal if there is no
monotone set L ⊆ X × X♢ that properly contains M.

Example 3.5. (i) Let X and M be the same as in Example 3.3. It is shown that M is monotone. We claim
that it is not maximal monotone. To see this, let x = [(n, 1)], x♢ =

−−−−−−−−−−−−−−−→
[(n + 1, 1)][(n, 0)], z = [(1, 0)] and

z♢ =
[−−−−−−−−−−−→
[(1, 1

2 )][(1, 1)]
]

be arbitrary. Then (x, x♢) ∈M, (z, z♢) <M and

⟨z♢ − x♢,−→xz⟩ =
〈−−−−−−−−−−−→
[(1, 1

2
)][(1, 1)]),

−−−−−−−−−−−→
[(n, 1)][(1, 0)]

〉
−

〈−−−−−−−−−−−−−−−→
[(n + 1, 1)][(n, 0)]),

−−−−−−−−−−−→
[(n, 1)][(1, 0)]

〉
=

 1
2 , n = 1,
3
2 , n , 1.

This implies that M is not maximal.
(ii) Suppose that (X, d) is a flat Hadamard space with linear dual space X♢, y♢ ∈ X♢ and f ∈ Γ(X). It follows from

Example 3.2 that M f
0 is a monotone set. Let (y, y♢) ∈ X × X♢ \M f

0 . By using Lemma 1.13, we conclude that:

(y, 0X♢ ) <M1

0, (13)
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where 1(z) = f (z) + πp(z,−y♢), z ∈ X.
Now, consider the extended real-valued mapping h(z) = 1(z) + πz(x, [−→xy]), z ∈ X. It follows from Corollary
2.8(ii) that h has unique minimizer x ∈ X. Hence, for each z ∈ X we obtain h(z) + πz(x, 0X♢ ) = h(z) ≥ h(x).
Therefore, Ih(x, [−→xy], [−→yx]) ≥ h(x). Consequently, by using Lemma 1.13, we get (x, [−→xy]) ∈ Mh

[−→yx]
= Mh̃

0 = M1

0,

where h̃(·) = h(·) + πx(·, [−→xy]). Thus

(x, [−→xy]) ∈M1

0. (14)

It follows from (13) that x , y. On the other hand, we derive from Lemma 1.13 and (14) that (x, [−→xy]+y♢) ∈M f
0 .

Moreover, ⟨[−→xy] + y♢ − y♢,−→yx⟩ = ⟨−→xy,−→yx⟩ = −d(x, y)2 < 0, which implies that (y, y♢) is not monotonically
related to M f

0 . Hence, M f
0 is a maximal monotone set. Finally, it follows from Lemma 1.13 and Corollary 2.8(i)

that M f
y♢ is a maximal monotone set.

The following well-known fact states that every monotone set in Hadamard spaces can be extended
to a maximal monotone set. The proof is similar to that proof of [4, Theorem 20.21]. For the sake of
completeness, we add a proof.

Proposition 3.6. Suppose that M ⊆ X × X♢ is a monotone set. Then there exists a maximal monotone extension
(which is not necessarily unique) of M; i.e., a maximal monotone set M̃ ⊆ X × X♢ such that M ⊆ M̃.

Proof. There are two cases:

Case I: M , ∅; In this case, consider the setM := {L ⊆ X × X♢ : L is a monotone set and M ⊆ L}. It is clear that
(M,⪯) is a partially ordered set, where for every L1,L2 ∈ M, L1 ⪯ L2 :⇔ L1 ⊆ L2. Let A be a chain in
M. One can see that ∪A∈AA is an upper bound of A. Now, by using the Zorn’s lemma, there exists a
maximal element M̃ ∈M.

Case II: M = ∅; In this case, let p ∈ X be fixed. By Case I, {(p, 0X♢ )} has a maximal monotone extension, say
M̃. Obviously, M̃ is a maximal monotone extension of M.

Then in any cases M ⊆ X × X♢ has a maximal monotone extension.

Remark 3.7. Let X be an Hadamard space and M ⊆ X × X♢ be a monotone set. In view of Proposition 3.6, there
exists M̃ ⊆ X × X♢ as a maximal monotone extension of M. Set

M̃(M) :=
{
M̃ ⊆ X × X♢ : M̃ is a maximal monotone extension of M

}
.

The set of all maximal monotone sets in X × X♢ is denoted byMS(X); on the other words,MS(X) = M̃(X × X♢).

Proposition 3.8. Let M ⊆ X × X♢ be a monotone set. Then (x, x♢) ∈Mµ if and only if M ∪ {(x, x♢)} is monotone.

Proof. It is straightforward.

Definition 3.9. [10, Definition 2.1] Let µ be a relation from A to B. Define two functions σ : P(A) → P(B)
and τ : P(B)→ P(A) as follows:

σ(U) = {b ∈ B : uµb,∀u ∈ U}, τ(V) = {a ∈ A : aµv,∀v ∈ V}.

Then (σ,P(A), µ,P(B), τ) or simply (σ, µ, τ) is called a polarity.

Lemma 3.10. [10, Proposition 2.4] Let (σ,P(A), µ,P(B), τ) be a polarity. Then

(i) P(A) and P(B) are partially ordered sets, ordered by set inclusion, and σ and τ are order reversing functions.
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(ii) στ and τσ are order increasing; i.e.,

U ⊆ τσ(U) and V ⊆ στ(V), ∀U ⊆ A,∀V ⊆ B.

(iii) τ is a quasi-inverse for σ and σ is a quasi-inverse for τ; i.e., στσ = σ and τστ = τ.

Definition 3.11. [7, Definition 5.1] A function σ : P(A) → P(A) is a closure operator on a set A, if σ has the
following properties:

(i) σ(U) ⊆ σ(V), ∀U,V ⊆ A with U ⊆ V.
(ii) σ(σ(U)) = σ(U), ∀U ⊆ A.

(iii) U ⊆ σ(U), ∀U ⊆ A.

Proposition 3.12. Let X be an Hadamard space and M ⊆ X × X♢. Then

(i) M ⊆Mµµ.
(ii) Mµµµ =Mµ.

(iii) M1 ⊆M2 ⇒Mµ
2 ⊆Mµ

1 , ∀M1,M2 ⊆ X × X♢.

Proof. Consider the mapping ζ : P(X × X♢) → P(X × X♢), M 7→ Mµ. It follows from Definition 3.9 that
(ζ, µ, ζ), is a polarity. Consequently, the items (i), (ii) and (iii) follow from Lemma 3.10.

Proposition 3.13. Let (X, d) be an Hadamard space and {Mi}i∈I ⊆ P(X × X♢) be a family of monotone sets. Then

(i) (
⋃

i∈I Mi)µ =
⋂

i∈I Mµ
i .

(ii) ∅µ = X × X♢.
(iii) (X × X♢)µ = ∅, provided that card(X) > 1.

Proof. (i) By using Definition 3.1, for each (x, x♢),

(x, x♢) ∈
(⋃

i∈I

Mi

)µ
⇐⇒ (x, x♢)µ

(⋃
i∈I

Mi

)
⇐⇒ (x, x♢)µMi ,∀i ∈ I⇐⇒ (x, x♢) ∈Mµ

i ,∀i ∈ I

⇐⇒ (x, x♢) ∈
⋂
i∈I

Mµ
i .

(ii) Clearly ∅µ ⊆ X × X♢. Conversely, assume to the contrary that there exists (x, x♢) ∈ X × X♢ \ ∅µ. Hence,
there is (y, y♢) ∈ ∅ such that (x, x♢) and (y, y♢) are not monotonically related, yields a contradiction.

(iii) It is enough to prove that (X × X♢)µ ⊆ ∅. Let (x, x♢) ∈ (X × X♢)µ and let a ∈ X with a , x. Clearly
(a, x♢ − [−→xa]) ∈ X × X♢ and so (x, x♢)µ(a, x♢ − [−→xa]). Then

0 ≤ ⟨x♢ − (x♢ − [−→xa]),−→ax⟩ = ⟨[−→xa],−→ax⟩ = ⟨−→xa,−→ax⟩ = −d(x, a)2,

a contradiction.

Definition 3.14. For each M ⊆ X × X♢, the closure operator induced by the polarity µ is defined by the
mapping M 7→Mµµ. Moreover, we say that Mµµ is the µ-closure of M and M is µ-closed if Mµµ =M.

Remark 3.15. It follows from Proposition 3.12(ii) that the family of all µ-closed sets is the family of polars
{Aµ : A ⊆ X × X♢}. One can see that Mµµ is the smallest µ-closed set containing M.

Proposition 3.16. Let X be an Hadamard space and M ⊆ X × X♢. Then the following statements are equivalent:

(i) M is monotone.
(ii) M ⊆Mµ.

(iii) Mµµ
⊆Mµ.
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(iv) Mµµ is monotone.

In addition, M ∈MS(X) if and only if M =Mµ. Moreover, every element ofMS(X) is µ-closed.

Proof. (i)⇔(ii) Clearly, M is monotone if and only if every two members of M are monotonically related, or
equivalently M ⊆Mµ. Hence (i) and (ii) are equivalent.

(ii)⇒(iii) An immediate consequence of Proposition 3.12(iii).

(iii)⇒(iv) By assumption and Proposition 3.12(iii), we obtain Mµµ = (Mµ)µ ⊆ (Mµµ)µ. Now, equivalence of
(i) and (ii), implies that Mµµ is monotone.

(iv)⇒(ii) Let Mµµ be a monotone set. By using Proposition 3.12(i), applying (i)⇒(ii) to Mµµ and Proposition
3.12(ii), we get M ⊆Mµµ

⊆Mµµµ =Mµ. Therefore, M is monotone by (ii)⇒(i).

We know that M is monotone if and only if M ⊆ Mµ. Moreover, maximality of M is equivalent to
Mµ
⊆M. Therefore, M ∈MS(X) if and only if M =Mµ. Finally, by using this fact, for each M ∈MS(X)

we have M =Mµ = (Mµ)µ =Mµµ. Now, it follows from Definition 3.14 that M is a µ-closed set.

Proposition 3.17. Let X be an Hadamard space and M ⊆ X × X♢ be a monotone set. Then the following hold:

(i) Mµ =
⋃

M̃∈M(M) M̃.

(ii) Mµµ =
⋂

M̃∈M(M) M̃.

Proof. (i) Let (x, x♢) ∈ Mµ be given. It follows from Proposition 3.8 that M ∪ {(x, x♢)} is a monotone set.
By Proposition 3.6, there exists maximal monotone extension M̃ for M ∪ {(x, x♢)}. Hence, M̃ ∈ M(M)
and (x, x♢) ∈ M̃. Therefore, Mµ

⊆
⋃

M̃∈M(M) M̃. Conversely, let (x, x♢) ∈
⋃

M̃∈M(M) M̃. Then there

exists M̃ ∈ M(M) such that (x, x♢) ∈ M̃. By using Proposition 3.16 and Proposition 3.12(iii), we get
(x, x♢) ∈ M̃ =

(
M̃
)µ
⊆Mµ. Consequently,

⋃
M̃∈M(M) M̃ ⊆Mµ.

(ii) By using (i), Proposition 3.13(i) and Proposition 3.6, we obtain:

Mµµ = (Mµ)µ =
( ⋃

M̃∈M(M)

M̃
)µ
=
⋂

M̃∈M(M)

(
M̃
)µ
=
⋂

M̃∈M(M)

M̃.

We are done.

Lemma 3.18. Let X be an Hadamard space and M ⊆ X × X♢. Then M is monotone if and only if there exists
M̃ ∈MS(X) such that M̃ ⊆Mµ.

Proof. Let M be a monotone set. It follows from Proposition 3.17(i) that Mµ contains a maximal monotone
set. Conversely, let there exists M̃ ∈ MS(X) such that M̃ ⊆ Mµ. Now, by using Proposition 3.12(i)&(iii)
and Proposition 3.16, we conclude that M ⊆ (Mµ)µ ⊆

(
M̃
)µ
= M̃ ⊆ Mµ. The claim therefore follows from

Proposition 3.16((i)⇔(ii)).

Proposition 3.19. Let X be an Hadamard space and M ⊆ X × X♢ be a maximal monotone set. Then

(i) for each u ∈ X, M♢
u := {u♢ ∈ X♢ : (u,u♢) ∈M} is a closed and convex subset of X♢.

(ii) M is sequentially bw×∥ · ∥♢-closed in X × X♢, (and hence d × ∥ · ∥♢-closed).
(iii) If Dom(M) ⊆ X is bounded, then M is sequentially weakly×∥ · ∥♢-closed in X × X♢.
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Proof. (i) Let u♢ ∈M♢
u. Then there exists {u♢n} ⊆M♢

u such that u♢n
∥·∥♢
−−→ u♢. For each (x, x♢) ∈M, by monotonicity

of M, we have ⟨u♢n − x♢,−→xu⟩≥0. By applying Proposition 1.5, as n→∞, we get ⟨u♢−x♢,−→xu⟩ ≥ 0. Therefore
(u,u♢) ∈ Mµ. Now, maximality of M implies (u,u♢) ∈ M or equivalently u♢ ∈ M♢

u. Consequently, M♢
u

is closed. For proving convexity of M♢
u, let u♢, v♢ ∈ M♢

u and λ ∈ [0, 1] be arbitrary and fixed. Then for
each (x, x♢) ∈M, by monotonicity of M, we have:

⟨(1 − λ)u♢ + λv♢ − x♢,−→xu⟩ = (1 − λ)⟨u♢ − x♢,−→xu⟩ + λ⟨v♢ − x♢,−→xu⟩ ≥ 0.

Consequently, (u, λu♢ + (1 − λ)v♢) ∈Mµ. Again, maximality of M implies that (u, λu♢ + (1 − λ)v♢) ∈M;
i.e., λu♢ + (1 − λ)v♢ ∈M♢

u and so M♢
u is convex.

(ii) Let {(xn, x♢n)} ⊆ M be a sequence such that (xn, x♢n)
bw×∥·∥♢
−−−−−→ (x, x♢). For each (y, y♢) ∈ M, ⟨x♢n − y♢,−−→yxn⟩ ≥ 0.

It follows from Proposition 1.5 that ⟨x♢ − y♢,−→yx⟩ = limn→+∞⟨x♢n − y♢,−−→yxn⟩ ≥ 0. Hence (x, x♢) ∈ Mµ = M.
Thus M is sequentially bw×∥ · ∥♢-closed in X × X♢. Finally, since any convergent sequence in a metric
space is bounded and weakly convergent, it follows that M is d × ∥ · ∥♢-closed.

(iii) It is an immediate consequence of (ii).
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