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Inequalities Involving Casorati Curvatures for Submanifolds of Real
Space Forms with a Quarter-Symmetric Connection
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Abstract. In this paper, we obtain some inequalities based on Casorati curvature for submanifolds in a
real space form with a special kind of quarter-symmetric connection.

1. Introduction

Hayden [10] introduced the notion of a semi-symmetric metric connection on a Riemannian manifold.
Nakao [21] studied submanifolds of a Riemannian manifold with semi-symmetric metric connections.
Agashe and Chafle [1, 2] introduced the notion of a semi-symmetric non-metric connection and studied
some of its properties and submanifolds of a Riemannian manifold with a semi-symmetric non-metric
connection.

Chen[4] obtained a necessary condition for the existence of minimal isometric immersion from a given
Riemannian manifold into Euclidean space and established a sharp inequality for a submanifold in a real
space form using intrinsic invariants(scalar curvature, sectional curvature) and extrinsic invariant(squared
mean curvature). The inequalities in this direction are known as Chen inequalities [5]. Mihia and Özgür
derived the Chen inequalities for submanifolds of real space from with semi-symmetric metric connection
and semi-symmetric non-metric connection[18, 20]. The same authors extended the inequalities for complex
space forms and sasakian space forms with semi-symmetric metric connections[19].

Casorati [3] introduced the notion of Casorati curvature(extrinsic invariant) defined as the normalized
square length of the second fundamental form. The notion of Casorati curvature gives a better intuition
of the curvature compared to Gaussian curvature. The geometrical meaning and the importance of the
Casorati curvature discussed by some distinguished geometers [7, 8, 11]. During the last decade, it becomes
attractive area of research for geometers to obtain the optimal inequalities based on Casorati curvatures for
various submanifolds of different ambient spaces [6, 12–16, 24, 25, 27].

The concept of “quarter-symmetric” connection was originally introduced by S. Golab [9]. Recently,
in [23], authors introduced the special quater-symmetric connection and investigated Einstein warped
products and multiply warped products. In 2019, Wang [26] obtained Chen inequalities for submanifolds
of complex space forms and Sasakian space forms with special quarter-symmetric connections. The author
[17] proved some basic inequalities in quatenionic settings with special quarter-symmetric connections.
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In this paper, we obtain optimal inequalities for submanifolds in real space forms with special quarter-
symmetric connection. The chronology of the paper is as follows. In Section 2, we give a brief introduction
about the special quarter-symmetric connection. In the last section, we obtain some inequalities for general-
ized normalized δ-Casorati curvatures for submanifolds in real space forms with special quarter-symmetric
connection.

2. Preliminaries

Let M̃ be an m-dimensional Riemannian manifold with Riemannian metric 1 and ∇̃ be the Levi-Civita
connection on M̃. Let ∇ be a linear connection defined by

∇XY = ∇̃XY + Λ1π(Y)X −Λ21(X,Y)P, (1)

for X,Y vector fields on M̃, Λ1, Λ2 are real constants and P the vector field on M̃ such that π(X) = 1(X,P),
where π is 1-form. If ∇1 = 0, then ∇ is known as quarter -symmetric metric connection and if ∇1 , 0, then
∇ is known as quarter -symmetric non-metric connection. The special cases of (1) can be obtained as
(i) when Λ1 = Λ2 = 1, then the above connection reduces to semi-symmetric metric connection.
(ii) when Λ1 = 1 and Λ2 = 0, then the above connection reduces to semi-symmetric non metric connection.

The curvature tensor with respect to ∇ is defined as

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z. (2)

Similarly, we can define the curvature tensor with respect to ∇̃.
Now, using (1), the curvature tensor takes the following form [26]

R(X,Y,Z,W) = R̃(X,Y,Z,W) + Λ1α(X,Z)1(Y,W) −Λ1α(Y,Z)1(X,W)
+ Λ21(X,Z)α(Y,W) −Λ21(Y,Z)α(X,W) + Λ2(Λ1 −Λ2)1(X,Z)β(Y,W) (3)
−Λ2(Λ1 −Λ2)1(Y,Z)β(X,W),

where

α(X,Y) = (∇̃Xπ)(Y) −Λ1π(X)π(Y) +
Λ2

2
1(X,Y)π(P),

and

β(X,Y) =
π(P)

2
1(X,Y) + π(X)π(Y)

are (0, 2)-tensors. For simplicity, we denote by tr(α) = a and tr(β) = b.
Let M be an n-dimensional submanifold of an m-dimensional real space form M̃(c) . On the submanifold

M, we consider the induced quarter-symmetric connection denoted by ∇ and the induced Levi-Civita
connection denoted by ∇̃. Let R and R̃ be the curvature tensors of ∇ and ∇̃. Decomposing the vector field P
on M uniquely into its tangent and normal components P⊤ and P⊥, respectively, then we have P = P⊤ +P⊥.
The Gauss formulas with respect to ∇ and ∇̃ can be written as:

∇XY = ∇XY + h(X,Y), X,Y ∈ Γ(TM),

∇̃XY = ∇̃XY + h̃(X,Y), X,Y ∈ Γ(TM),

where h̃ is the second fundamental form of M in N and

h(X,Y) = h̃(X,Y) −Λ21(X,Y)P⊥.
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In M̃(c) we can choose a local orthonormal frame {e1, · · · , en, en+1, · · · , em}, such that, restricting to M,
{e1, · · · , en} are tangent to Mn. We write hr

i j = 1(h(ei, e j), er). The squared length of h is ||h||2 =
∑n

i, j=1 1(h(ei, e j), h(ei, e j))

and the mean curvature vector of M associated to ∇ is H = 1
n
∑n

i=1 h(ei, ei). Similarly, the mean curvature
vector of M associated to ∇̃ is H̃ = 1

n
∑n

i=1 h̃(ei, ei). Let M̃(c) be an m-dimensional real space form of constant

sectional curvature c endowed with a quarter-symmetric connection satisfying (1). The curvature tensor R̂

with respect to the Levi-Civita connection ∇̃ on M̃(c) is expressed by

R̃(X,Y,Z,W) = c{1(X,W)1(Y,Z) − 1(X,Z)1(Y,W)}. (4)

By (3) and (4), we get

R(X,Y,Z,W) = c{1(X,W)1(Y,Z) − 1(X,Z)1(Y,W)} + Λ1α(X,Z)1(Y,W)
−Λ1α(Y,Z)1(X,W) + Λ21(X,Z)α(Y,W) −Λ21(Y,Z)α(X,W) (5)
+ Λ2(Λ1 −Λ2)1(X,Z)β(Y,W) −Λ2(Λ1 −Λ2)1(Y,Z)β(X,W).

The Gauss equation takes the following form

R(X,Y,Z,W) = R(X,Y,Z,W) − 1(h(X,W), h(Y,Z)) + 1(h(Y,W), h(X,Z))
+ (Λ1 −Λ2)1(h(Y,Z),P)1(X,W) + (Λ2 −Λ1)1(h(X,Z),P)1(Y,W). (6)

For a Riemannian manifold Mn, we denote by K(π) the sectional curvature of Mn associated with a plane
section π ⊂ TpMn, p ∈ Mn. For an orthonormal basis {e1, e2, ..., en} of the tangent space TpMn, the scalar
curvature τ is defined by

τ =
∑
i< j

Ki j,

where Ki j denotes the sectional curvature of the 2-plane section spanned by ei and e j. The normalized scalar
curvature ρ is defined as

ρ =
2τ

n(n − 1)
.

The norm of the squared mean curvature of the submanifold is defined by

∥H∥2 =
1
n2

n+p∑
γ=n+1

( n∑
i=1

hγii

)2
,

and the squared norm of second fundamental form h is denoted by C defined as

C =
1
n

n+p∑
γ=n+1

n∑
i, j=1

(
hγi j

)2
,

known as Casorati curvature of the submanifold.
If we suppose that L be an s-dimensional subspace of TM, s ≥ 2, and {e1, e2, . . . , es} is an orthonormal

basis of L. then the scalar curvature of the s-plane section L is given as

τ(L) =
∑

1≤γ<β≤s

K(eγ ∧ eβ)
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and the Casorati curvature C of the subspace L is as follows

C(L) =
1
s

n+p∑
γ=n+1

s∑
i, j=1

(
hγi j

)2
.

A point p ∈M is said to be an invariantly quasi-umbilical point if there exist p mutually orthogonal unit normal
vectors ξn+1, . . . , ξn+p such that the shape operators with respect to all directions ξγ have an eigenvalue of
multiplicity n−1 and that for each ξγ the distinguished Eigen direction is the same. The submanifold is said
to be an invariantly quasi-umbilical submanifold if each of its points is an invariantly quasi-umbilical point.

The normalized δ-Casorati curvature δc(n − 1) and δ̃c(n − 1) are defined as

[δc(n − 1)]p =
1
2
Cp +

n + 1
2n

inf{C(L)|L : a hyperplane of TpM} (7)

and

[δ̃c(n − 1)]p = 2Cp +
2n − 1

2n
sup{C(L)|L : a hyperplane of TpM}. (8)

For a positive real number t , n(n − 1), the generalized normalized δ-Casorati curvatures δc(t; n − 1) and
δ̃c(t; n − 1) are given as

[δc(t; n − 1)]p = tCp +
(n − 1)(n + t)(n2

− n − t)
nt

inf{C(L)|L : a hyperplane of TpM}

if 0 < t < n2
− n, and

[δ̃c(t; n − 1)]p = tCp +
(n − 1)(n + t)(n2

− n − t)
nt

sup{C(L)|L : a hyperplane of TpM}.

if t > n2
− n.

Now, we recall the following lemmas, which plays an important role for the proof of the main results.
Oprea[22] gives new direction to prove the Chen inequalities using optimization techniques. For a

submanifold (M, 1) of a Riemannian manifold (M̃, 1̃) and F : M̃ → R be a differential function. If we have
a constrained problem

min
x∈M
F (x) (9)

then the following result holds

Lemma 2.1. [22] Let x◦ ∈M is the solution of the problem (9), then
(i) (1rad(F ))(x◦) ∈ T⊥x◦M
(ii) the bilinear form
B : Tx◦M × Tx◦M→ R
B(X,Y) = HessF (X,Y) + 1̃(h(X,Y), (1rad(F )(x◦))
is positive semi-definite, where h is the second fundamental form of M in M̃ and 1rad(F ) if the gradient of F .

3. Inequalities for generalized normalized δ-Casorati curvatures

Theorem 3.1. Let M be an n-dimensional submanifold of an m-dimension real space form M̃(c) endowed with a
connection ∇, then

(i) The generalized normalized δ-Casorati curvature δc(t; n − 1) satisfies

ρ ≤
δc(t; n − 1)

n(n − 1)
+ c −

(Λ1 + Λ2)
n

a −
Λ2(Λ1 −Λ2)

n
b − (Λ1 −Λ2)π(H) (10)
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for any real number t such that 0 < t < n(n − 1).
(ii) The generalized normalized δ-Casorati curvature δ̃c(t; n − 1) satisfies

ρ ≤
δ̃c(t; n − 1)

n(n − 1)
+ c −

(Λ1 + Λ2)
n

a −
Λ2(Λ1 −Λ2)

n
b − (Λ1 −Λ2)π(H) (11)

for any real number t > n(n−1). Moreover , the equality holds in (10) and (11) iffM is an invariantly quasi-umbilical
submanifold with trivial normal connection in M̃, such that with respect to suitable tangent orthonormal frame
{e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operator Aγ ≡ Aeγ , γ ∈ {n + 1, . . . ,m}, take the
following form

An+1 =



hγ11 0 0 . . . 0 0
0 hγ22 0 . . . 0 0
0 0 hγ33 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . hγn−1n−1 0
0 0 0 . . . 0 n(n−1)

t hγnn


, (12)

An+2 = · · · = Am = 0.

Proof. Let {e1, e2, . . . , en} and {en+1, en+2, . . . , em} be the orthonormal bases of TpM and T⊥p M respectively at a
point p ∈M. Using (5), we have

2τ(p) = n(n − 1)c − (Λ1 + Λ2)(n − 1)a −Λ2(Λ1 −Λ2)(n − 1)b (13)
−(Λ1 −Λ2)(n − 1)nπ(H) + n2

∥H∥2 − nC.

Consider a polynomial Q in the components of second fundamental form h defined as

Q = tC +
(n − 1)(n + t)(n2

− n − t)
nt

C(L) − 2τ(p) + n(n − 1)c

−(Λ1 + Λ2)(n − 1)a −Λ2(Λ1 −Λ2)(n − 1)b − (Λ1 −Λ2)(n − 1)nπ(H),

where L is hyperplane of tangent space at a point p. We assume that L is spanned by e1, e2, . . . , en−1 and Q
has an expression of the form

Q =
t
n

m∑
γ=n+1

n∑
i, j=1

(hγi j)
2 +

(n + t)(n2
− n − t)

nt

m∑
γ=n+1

n−1∑
i, j=1

(hγi j)
2 (14)

−2τ(p) + n(n − 1)c − (Λ1 + Λ2)(n − 1)a
−Λ2(Λ1 −Λ2)(n − 1)b − (Λ1 −Λ2)(n − 1)nπ(H).

From (13) and (14), we arrive at

Q =

m∑
γ=n+1

n−1∑
i=1

[( (n2 + nt − n − 2t)
t

)
(hγii)

2 +
2(n + t)

n
(hγin)2

]
+

m∑
γ=n+1

[
2
(2(n + t)(n − 1)

t

) n∑
(i< j)=1

(hγi j)
2
− 2

n∑
(i< j)=1

hγiih
γ
j j +

t
n

(hγnn)2
]

≥

m∑
γ=n+1

n−1∑
i=1

[( (n2 + n(t − 1) − 2t)
t

)
(hγii)

2
− 2

n∑
(i< j)=1

hγiih
γ
j j +

t
n

(hγnn)2
]
. (15)
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For t = n + 1, . . . ,m, lets us have a quadratic form Fγ : Rn
→ R defined as

Fγ(h
γ
11, . . . , h

γ
nn) =

n−1∑
i=1

n2 + n(t − 1) − 2t
t

(hγii)
2
− 2

n∑
(i< j)=1

hγiih
γ
j j +

t
n

(hγnn)2

and the optimization problem

min Fγ

subject to G : hγ11 + · · · + hγnn = cγ

where cγ is a real constant. The partial derivatives of Fγ are
∂Fγ

∂hγii
=

2(n + t)(n − 1)
t

hγii − 2
∑n

l=1 hγll

∂Fγ
∂hγnn
=

2t
n

hγnn − 2
∑n−1

l=1 hγll

(16)

where i = {1, 2, . . . ,n − 1}, i , j, and γ ∈ {n + 1, . . . ,m}.
The vector 1radFγ is normal at G for the optimal (hγ11, . . . , h

γ
nn) of the problem. that is, it is collinear with

the vector (1, 1, . . . , 1). Using (16), the critical point of the corresponding problem has the formhγii =
t

n(n − 1)
vγ, i ∈ {1, . . . ,n − 1},

hγnn = vγ
(17)

By use of (17) and
∑γ

i=1 hγii = cγ, we arrive at
hγii =

t
(n + t)(n − 1)

cγ, i ∈ {1, . . . ,n − 1}

hγnn =
n

(n + t)
cγ.

(18)

For an arbitrary fixed point p ∈ G, the 2-form B : TpG × TpG→ R has the following form

B(X,Y) = Hess(Fγ(X,Y)) + ⟨h(X,Y), (1rad(F ))(x◦)⟩ (19)

where h and ⟨, ⟩ are the second fundamental form of G in Rn and standard inner product on Rn respectively.
The Hessian matrix of Fγ is of the form

Hess(Fγ) =



2 (n+t)(n−1)
t − 2 −2 . . . −2 −2
−2 2 (n+t)(n−1)

t − 2 . . . −2 −2
...

...
. . .

...
...

−2 −2 . . . 2 (n+t)(n−1)
t − 2 −2

−2 −2 . . . −2 2t
n .

.


Though G is totally geodesic in Rn, take a tangent vector X = (X1, . . . ,Xn) at any arbitrary point p on G,
verifying the relation

∑n
i=1 Xi = 0, we have the following

B(X,X) =
2(n2

− n + tn − 2t)
t

n−1∑
i=1

X2
i +

2t
n

X2
n − 2

( n∑
i=1

Xi

)2
(20)

=
2(n2

− n + tn − 2t)
t

n−1∑
i=1

X2
i +

2t
n

X2
n

≥ 0.
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Hence the point (hγ11, . . . , h
γ
nn) is the global minimum point by Lemma 2.1 and Fγ(h

γ
11, . . . , h

γ
nn) = 0. Thus, we

have Q ≥ 0 and hence

2τ ≤ tC +
(n − 1)(n + t)(n2

− n − t)
nt

C(L) + n(n − 1)c

−(Λ1 + Λ2)(n − 1)a −Λ2(Λ1 −Λ2)(n − 1)b − (Λ1 −Λ2)(n − 1)nπ(H),

whereby, we obtain

ρ ≤
t

n(n − 1)
C +

(n + t)(n2
− n − t)

n2t
C(L) + c

−
(Λ1 + Λ2)

n
a −
Λ2(Λ1 −Λ2)

n
b − (Λ1 −Λ2)π(H),

for every tangent hyperplane L of M. If we take the infimum over all tangent hyperplanes L, the result
trivially follows. Moreover the equality sign holds iff

hγi j = 0, ∀ i, j ∈ {1, . . . ,n}, i , j and γ ∈ {n + 1, . . . ,m} (21)

and

hγnn =
n(n − 1)

t
hγ11 = · · · =

n(n − 1)
t

hγn−1n−1,

∀γ ∈ {n + 1, . . . ,m}. (22)

From (21) and (22), we obtain that the equality holds if and only if the submanifold is invariantly quasi-
umbilical with normal connections in M̃, such that the shape operator takes the form (12) with respect to
the orthonormal tangent and orthonormal normal frames.

In the same way, we can prove (ii).

Now, if we put Λ1 = Λ2 = 1, we get the obtained Theorem2.1 by in [13]

Corollary 3.2. Let M be an n-dimensional submanifold of an m-dimension real space form M̃(c) endowed with a
semi-symmetric metric connection ∇, then

(i) The generalized normalized δ-Casorati curvature δc(t; n − 1) satisfies

ρ ≤
δc(t; n − 1)

n(n − 1)
+ c −

2
n
Λ, (23)

for any real number t such that 0 < t < n(n − 1).
(ii) The generalized normalized δ-Casorati curvature δ̃c(t; n − 1) satisfies

ρ ≤
δ̃c(t; n − 1)

n(n − 1)
+ c −

2
n
Λ, (24)

for any real number t > n(n−1). Moreover , the equality holds in (23) and (24) iffM is an invariantly quasi-umbilical
submanifold with trivial normal connection in M̃, such that with respect to suitable tangent orthonormal frame
{e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operator Aγ ≡ Aeγ , γ ∈ {n + 1, . . . ,m}, take the
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following form

An+1 =



hγ11 0 0 . . . 0 0
0 hγ22 0 . . . 0 0
0 0 hγ33 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . hγn−1n−1 0
0 0 0 . . . 0 n(n−1)

t hγnn


, (25)

An+2 = · · · = Am = 0.

In the similar way , if we put Λ1 = 1 and Λ2 = 0, we get the following result.

Corollary 3.3. Let M be an n-dimensional submanifold of a real space form M̃(c) of dimension (m) endowed with
semi-symmetric non-metric connection ∇, then

(i) The generalized normalized δ-Casorati curvature δc(t; n − 1) satisfies

ρ ≤
δc(t; n − 1)

n(n − 1)
+ c −

Λ

n
− π(H), (26)

for any real number t such that 0 < t < n(n − 1).
(ii) The generalized normalized δ-Casorati curvature δ̃c(t; n − 1) satisfies

ρ ≤
δ̃c(t; n − 1)

n(n − 1)
+ c −

Λ

n
− π(H), (27)

for any real number t > n(n−1). Moreover , the equality holds in (26) and (27) iffM is an invariantly quasi-umbilical
submanifold with trivial normal connection in M̃, such that with respect to suitable tangent orthonormal frame
{e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operator Aγ ≡ Aeγ , γ ∈ {n + 1, . . . ,m}, take the
following form

An+1 =



hγ11 0 0 . . . 0 0
0 hγ22 0 . . . 0 0
0 0 hγ33 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . hγn−1n−1 0
0 0 0 . . . 0 n(n−1)

t hγnn


, (28)

An+2 = · · · = Am = 0.

Now, if we put Λ1 = Λ2 = 0, we have the following result for real space forms.

Corollary 3.4. Let M be an n-dimensional submanifold of an m-dimension real space form M̃(c), then
(i) The generalized normalized δ-Casorati curvature δc(t; n − 1) satisfies

ρ ≤
δc(t; n − 1)

n(n − 1)
+ c, (29)

for any real number t such that 0 < t < n(n − 1).
(ii) The generalized normalized δ-Casorati curvature δ̃c(t; n − 1) satisfies

ρ ≤
δ̃c(t; n − 1)

n(n − 1)
+ c, (30)
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for any real number t > n(n−1). Moreover , the equality holds in (29) and (30) iffM is an invariantly quasi-umbilical
submanifold with trivial normal connection in M̃, such that with respect to suitable tangent orthonormal frame
{e1, . . . , en} and normal orthonormal frame {en+1, . . . , em}, the shape operator Aγ ≡ Aeγ , γ ∈ {n + 1, . . . ,m}, take the
following form

An+1 =



hγ11 0 0 . . . 0 0
0 hγ22 0 . . . 0 0
0 0 hγ33 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . hγn−1n−1 0
0 0 0 . . . 0 n(n−1)

t hγnn


, (31)

An+2 = · · · = Am = 0.
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