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Abstract. We consider a Sturm-Liouville problem defined on two disjoint intervals together with additional
jump conditions across the common endpoint of these intervals. Based on Finite Difference Method (FDM)
we have developed a new tecnique for solving such type nonstandard boundary value problems (BVP).
To show applicability and effectiveness of the proposed generalization of FDM, we solved a simple but
illustrative example. The obtained numerical solutions are graphically compared with the corresponding
exact solutions.

1. Introduction

The advent of finite difference techniques in numerical applications began in the early 1950s and their
development was stimulated by the emergence of computers that offered a convenient framework for
dealing with complex problems of science and technology.

Many important theoretical and numerical results have been obtained during the last seven decades
regarding the stability, accuracy and convergence of the FDM for different type initial and/or BVPs (see,
[7, 15] ).

The standard FDM is intended for solving one-interval initial and/or boundary value problems without
jump conditions (see, for example, [1, 3, 6] and references cited therein).

Based on FDM, we have developed a new technique for solving two-interval Sturm-Liouville problems
(SLPs), that included additional jump conditions across the common endpoint of these intervals (see,
[4, 5, 9–12]).

Two-interval SLPs arise in solving many important problems of physics and engineering, such as heat
and mass transfer problems, Earth’s free oscillation problems, thermal conduction problems for a thin
laminated plate when the plate composed by materials with different physical and chemical characteristics,
vibrating string problems when the string loaded with additional point masses etc (see, for example,
[2, 8, 13, 14]).
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2. Analysis of the Method

A finite difference method proceeds by replacing the derivatives in the differential equations by fi-
nite difference approximations. This gives an algebraic system of equations to be solved in place of the
differential equation, something that is easily solved on a computer.

Let us consider a linear boundary-value problem for Sturm-Liouville equation

y
′′

+ p(x)y
′

+ q(x)y = f (x), x ∈ [a, c) ∪ (c, b] (1)

subject to the boundary conditions at the endpoints x = a and x = b, given by

y(a) = α, y(b) = β (2)

and with additional jump conditions at the interior point of singularity x = c, given by

y(0 − c) = my(0 + c), y′(0 − c) = ny′(0 + c) (3)

where p(x), q(x) and f (x) are continuous functions on [a, c) ∪ (c, b] having finite limit values p(c ± 0), q(c ± 0)
and f (c ± 0)respectively α, βm,n are real constants. To discretize the problem (1), (3) the definition range
[a, b] is divided into N equal ranges [x0, x1], [x1, x2], ..., [xN−1, xN], where

a = x0 < x1 < ... < xN = b, xi = a + ih, h =
b − a

N
. (4)

By using the Taylor expansion

y(xi + h) = y(xi) ∓ y
′

(xi) ∓
h2

2
y”(xi) ∓ . . . .

We can express first and second derivative expressions in the boundary value problem as

y′(x) ≈
1
2
(
D+y(x) +D−y(x)

)
(5)

and

y′′(x) ≈
1
h
(
D+y(x) −D−y(x)

)
, (6)

where D+y(x) and D−y(x) denotes the forward finite difference and backward finite difference of the
unknown solution y(x).

Let us define the finite difference solution for y(x) at all grid points x0, x1, · · · , xN by yi = y(xi) and
substituting (4) and (5) in the boundary value problem (1)-(2) we have the following linear system of
algebraic equations(

1 − 1
2 hpi

)
yi−1 +

(
−2 + h2qi

)
yi +

(
1 + 1

2 hpi

)
yi+1 = h2 f (xi)

1 ≤ i ≤ N − 1, i = 1, 2, 3, ...,N − 1...

where

y0 = α, yN = β

Note that each equation of this system involves solution values at three nodal points xi−1 , xi and xi+1. The
linear system of algebraic equations can be written in the matrix and vector form

My = B, (7)
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where M is a tridioganal matrix given by

M =



−2 + h2q1 1 + 1
2 hp1 0 · · · 0 0 0

1 − 1
2 hp2 −2 + h2q2 1 + 1

2 hp2 · · · 0 0 0

...
...

...
. . . · · · · · · · · ·

0 0 1 · · · −2 + h2qN−2 1 + 1
2 hpN−2 0

0 0 0 · 0 1 − 1
2 hpN−1 −2 + h2qN−1



y =



y1

y2

...
yN−2

yN−1


and B =



b1

b2

...
bN−2

bN−1


.,

where

bi =


h2 f1 −

(
1 − 1

2 hp1

)
, i = 1

h2 fi, i = 2, 3, ...,N − 2

h2 fN−1 −
(
1 + 1

2 hpN−1

)
β, i = N − 1

The linear system of algebraic equations (7) is tridiagonal and can be solved efficiently by the Crout or
Cholesky algoritm [3].

3. Convergence and Error Estimates of Finite Difference Method

When the FDM is applied to solve a boundary value problem, it is very important to know how accurate
the numerical solution is compared to the exact solution.

Let Ỹ = (y1, y2, . . . , yn) denote the finite difference solution and ỹ = (y(x1), y(x2), . . . , y(xn)) is the exact
solution at the grid points x1, x2, . . . , xn. Then the vector

ẽ = (y1 − y(x1), y2 − y(x2), . . . , yn − y(xn)) = Ỹ − ỹ (8)

is said to be the global error vector. You usually want to find an admissible upper bound for this error
with respect to the infinite norm (so-called maximum norm ), defined by ∥ ẽ ∥= max

1⩽i⩽n
| yi − y(xi) | or p-norm

(p ≥ 1), defined by

∥ ẽ ∥p=

 n∑
i=1

| yi − y(xi) |p (xi+1 − xi)


1/2

Denote hi := max
1⩽i⩽n

(xi+1 − xi).
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If ∥ ẽ ∥p converges to zero as h → ∞, then a finite difference method is called convergent. Moreover, if
there is c ≥ 0 such that ∥ ẽ ∥p≤ Chq, q > 0, the finite difference method is called q-th order accurate.

We shall show that the FDM solution converges to the exact solution of the BVP (1)- (2) when h converges
to zero. Using formulas (5) and (6), one can show that the exact solution ỹ = (y(x1), y(x2), . . . , y(xn)) satisfies
the following linear system of equation

y(xi+1) − 2y(xi) + y(xi−1)
h2 −

h2

12
y(4)(ξi) + pi

y(xi+1) − y(xi−1)
2h

−
h2

6
y(3)(ηi) + qiy(xi) = f (xi), 1 ⩽ i ⩽ n. (9)

On the other hand, the FDM solution Ỹ = (y1, y2, . . . , yn) satisfies the linear system of equation

yi+1 − 2yi + yi−1

h2 + pi
yi+1 − yi−1

2h
+ qiyi = fi, 1 ⩽ i ⩽ n. (10)

Substracting these equation one from the other, we get

ei+1 − 2ei + ei−1

h2 + pi
ei+1 − ei−1

2h
+ qiei = h2 fi, 1 ⩽ i ⩽ n (11)

where ei is the global error ei := y(xi) − yi. h2 fi is the local truncation error at the grid point x = xi and

fi =
1
12

y(4)(ξi) −
1
6

y(3)(ηi)

After multiplying both sides of (11) by h2 and then collecting the corresponding terms, we have(
1 −

h
2

pi

)
ei−1 +

(
−2 + h2qi

)
ei +

(
1 +

h
2

pi

)
ei+1 = h4 fi (12)

To estimate the magnitude of the error vector ẽ, it is necessary to use an infinite norm ∥ ẽ ∥p, p ≥ 1 for some
spesific value p.

We will apply the infinite norm ∥ ẽ ∥∞, because it is used to measure grid functions and is easily
estimated.

The equation (12) can be written as

(2 + h2qi)ei = (1 −
h
2

pi)ei+1 − (1 +
h
2

pi)ei + h4 fi.

Consequently,

| 2 + h2qi || ei | ≤| 1 −
h
2

pi || ei+1 | + mid1 +
h
2

pi || ei | +h4
| fi |

≤| 1 −
h
2

pi |∥ ẽ ∥∞ + | 1 +
h
2

pi |∥ ẽ ∥∞ +h4
∥ f̃ ∥∞,

where ∥ f̃ ∥∞= max
1⩽i⩽n

| fi |.

From this inequality it follows immediately that

| 2 + h2qi |∥ ẽ ∥∞≤
(
| 1 −

h
2

pi | + | 1 +
h
2

pi |

)
∥ ẽ ∥∞ +h4

∥ f̃ ∥∞ . (13)

Since q(x) < 0, one can choose h > 0 small enough to satisfy

| 1 −
h
2

pi | + | 1 +
h
2

pi |= 2
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and

| 2 + h2qi |= 2 + h2
| qi |

for all i = 1, 2, . . . ,n.
Consequently, for sufficiently small h > 0 we have from (13) that

| qi |∥ ẽ ∥∞≤ h2
∥ f̃ ∥∞ . (14)

Denoting C = ∥ f̃ ∥∞
min
1⩽i⩽n
|qi |

, we obtain

∥ ẽ ∥∞≤ Ch2. (15)

Hence, the FDM is convergent and 2-order accurate [7, 15].

4. The Generalized Finite Difference Method for Solving Two-Interval SLP with Jump Problems

Consider the following two-interval SLP, consisting of the differential equation

y
′′

+ 2y
′

+ 4e4xy = 0, x ∈ [−1, 0) ∪ (0, 1] (16)

subject to the boundary conditions at the endpoints x = −1 and x = 1, given by

y (−1) = 2, y (1) = 0 (17)

together with jump conditions across the common endpoint x = 0, given by

y(0−) = 2y(0+), y′(0−) = 3y′(0+) (18)

At first we consider the problem (16)-(18) without jump conditions (18). It is easy to verify that the function

y =
2sin

(
e2x
− e2

)
csc

(
1−e4

e2

)
e2x+2

(19)

satisfies the equation (16) on whole [−1, 0)∪ (0, 1] and both boundary conditions (17). For simplicity we will
use the uniform cartesian grid xi = −1+ ih, i = 0, 1, . . . , 50 for h = 0, 04. In particular we have x0 = −1, x50 = 1.

The central finite difference (CFD) approximation of the derivatives y′ and y′′ are defined by

y′(x) ≈
1
2
(
D+y(x) +D−y(x)

)
(20)

and

y′′(x) ≈
1
h
(
D+y(x) −D−y(x)

)
, (21)

where D+y(x) and D−y(x) denotes the forward finite difference and backward finite difference of y(x).
By applying the CFD to the differential equation (16) at a typical grid point x = xi and denoting yi = y(xi),

we have the following finite difference equations

(1 − h)yi−1 + (−2 + 4h2e4xi)yi + (1 + h)yi+1 = 0, i = 1, 2, . . . , 49. (22)

That is we have the linear algebraic system of equations with respect to the variables y1, y2, . . . , y49. The
system of linear algebraic equations (22) can be written in a tridiagonal matrix-vector form

Ay = b (23)

where
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A =



−2 + 4h2e4x1 1 + h 0 · · · 0 0 0

1 − h −2 + 4h2e4x2 1 + h · · · 0 0 0

0 1 − h −2 + 4h2e4x3 0 · · · 0 0

...
...

...
. . .

. . .
...

...
0 0 0 · · · 1 − h −2 + 4h2e4x48 1 + h

0 0 0 · · · 0 1 − h −2 + 4h2e4x49



,

y =



y1

y2

y3
...

y48

y49


, b =



−2 − h

0

0
...
0

0


The solution of this system can be found by using MATLAB-Octave. The obtained numerical FDM solutions
are graphically compared with the exact solution (19) (see, Figures 1,2,3 and 4).

Figure 1: Graph of the FDM-solution and exact solution for
the problem (16)-(17) for N=10

Figure 2: Graph of the FDM-solution and exact solution for
the problem (16)-(17) for N=50
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Figure 3: Graph of the FDM-solution and exact solution for
the problem (16)-(17) for N=100

Figure 4: Graph of the FDM-solution and exact solution for
the problem (16)-(17) for N=500

4.1. Remark
In figures 1,2,3 and 4 the exact solution (19) is compared with the numerical FDM solutions for N =

10, 50, 100, 500 respectively. It can be seen from these graphical illustrations that, the error between the FDM
solutions and the exact solution decreases as the number of grid points N increases.

Now we will investigate the problem (16)-(18). If we select N = 49 and apply the jump conditions (18),
then we have two additional algebraic equations

y24 − 2y25 = 0 (24)

and

y22 − y24 − 3y25 + 3y27 = 0. (25)

The solution of the algebraic system of linear equations (22), (24), (25) can be found by using MAT-
LAB/Octave. The graphical illustration of the obtained results are given in the following figure.

5. Error Analysis

From equation (20) we have

h2
∥ f ∥∞≥∥ e ∥∞ min | q(xi) | (26)

It is well-known that maximum absolute error of truncation error is related to ∥ e ∥∞ min | q(xi) |. Table-1
shows that

∥ e ∥∞= 0.0027852

and

min | q(xi) |= 4e4min(xi) = 0.00023945

Consequently

∥ e ∥∞ min | q(xi) |= 0.00023946

Naturally, the error decreases as the step length decreases.
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Figure 5: Graph of the FDM-solution for the problem (1)-(3)

Table 1: Maximum absolute error (MAE)

N h ∥ e ∥∞
10 0.2 0.10745

50 0.04 0.011064

100 0.02 0.0027852

500 0.004 0.00011167

1000 0.002 0.000027918
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