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Abstract. Given Hilbert space operators Ai,Bi, i = 1, 2, and X such that A1 commutes with A2 and
B1 commutes with B2, and integers m,n ≥ 1, we say that the pairs of operators (B1,A1) and (B2,A2) are
left-(X, (m,n))-symmetric, denoted ((B1,A1), (B2,A2)) ∈ left − (X, (m,n)) − symmetric, if

m∑
j=0

n∑
k=0

(−1) j+k

(
m
j

) (
n
k

)
Bm− j

1 Bn−k
2 XAn−k

2 A j
1 = 0.

An important class of left-(X, (m,n))−symmetric operators is obtained upon choosing B1 = B2 = A∗1 = A∗2 =
A∗ and X = I: such operators have been called (m,n)−isosymmetric, and a study of the spectral picture and
maximal invariant subspaces of (m,n)−isosymmetric operators has been carried out by Stankus [23]. Using
what are essentially algebraic arguments involving elementary operators, we prove results on stability
under perturbations by commuting nilpotents and products of commuting left-(X, (m,n))−symmetric oper-
ators. It is seen that (X, (m,n))−isosymmetric Drazin invertible operators A have a particularly interesting
structure.

1. Introduction

Let B(H) denote the algebra of operators, i.e. bounded linear transformations, on an infinite dimensional
complex Hilbert space H into itself. Let C denote the complex plane, Cd the product of d copies of C for
some integer d ≥ 1, z the conjugate of z ∈ C and z = (z1, z2, ..., zd) ∈ Cd. For a given polynomial P in Cd

and a d-tuple A of commuting operators in B(H)d, A is a hereditary root of P if P(A) = 0. Hereditary roots
have attracted the attention of a number of researchers in the recent past. Two particular operator classes
of hereditary roots which have been studied extensively are those of m-symmetric (also called m-selfadjoint
in the literature) and m-isometric operators, where A ∈ B(H) is m-symmetric (for some integer m ≥ 1) if

m∑
j=0

(−1) j
(

m
j

)
A∗(m− j)A j = 0
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and A ∈ B(H) is m-isometric if
m∑

j=0

(−1) j
(

m
j

)
A∗(m− j)Am− j = 0.

It is clear that A is m-symmetric if and only if it arises as a solution of P(z) = (z−z)m = 0, and A is m-isometric
if and only if it arises as a solution of P(z) = (zz−1)m = 0. The class of m-symmetric operators was introduced
by Helton [20] (albeit not as operator solutions of the polynomial equation (z − z)m = 0), who showed that
an operator A is 2-Jordan (i.e., A = T +N for some self-adjoint T and a 2-nilpotent N commuting with T) if
and only if A and A∗ are 3-symmetric. McCullough and Rodman [21] in their consideration of algebraic and
spectral properties of m-symmetric operators proved that if an A ∈ B(H) is self-adjoint and an N ∈ B(H) is
an n-nilpotent which commutes with A, then A+N is (2n− 1)-symmetric. These operators have since been
considered by many other authors, amongst them Stankus [23] and Trieu Le [22]

The class of m-isometric operators was introduced by Agler and studied in a series of papers by Agler and
Stankus [1–3]; properties of m-isometric operators, amongst them the spectral picture, strict m-isometries,
perturbation by commuting nilpotents and the product of m-isometries, have since been studied by a large
number of authors, amongst them Sid Ahmed [4], Bayart [5], Bermudez et al [7–9], Botelho and Jamison [6],
Duggal [11–13], Gu [17, 18] and Gu and Stankus [19].

A ∈ B(H) is an (m,n)-isosymmetry for some integers m,n ≥ 1 if

m∑
j=0

(−1) j
(

m
j

)
A∗(m− j)

 n∑
k=0

(−1)k
(

n
k

)
A∗(n−k)Ak

 Am− j

=

n∑
k=0

(−1)k
(

n
k

)
A∗(n−k)

 m∑
j=0

(−1) j
(

m
j

)
A∗(m− j)Am− j

 Ak

= 0;

(m,n)-isosymmetric operators arise as the hereditary roots of the polynomial (zz − 1)m(z − z)n = 0, and a
study, amongst other properties, of the spectrum, resolvent inequalities and maximal invariant subspaces
of these operators has been carried out by Stankus [23]. In this paper we study a generalisation of
(m,n)-isosymmetric operators, but from the point of view of elementary operators. The problem that we
consider is that of the permanence of this generalised isosymmetric property under commuting products
and perturbation by commuting nilpotents.

For A,B ∈ B(H), let LA and RB ∈ B(B(H)) denote respectively the operators

LA(X) = AX and RB(X) = XB

of left multiplication by A and right multiplication by B. We say that the operator A is left (X,m)-invertible
by B, denoted (B,A) ∈ left-(X,m)-invertible, for some operator X ∈ B(H) if

△
m
B,A(X) = (LBRA − I)m (X) =

m∑
j=0

(−1) j
(

m
j

)
Bm− jXAm− j = 0,

and that the operator B is an (X,n)-symmetry of A, denoted (B,A) ∈ (X,n)-symmetry, for some X ∈ B(H) if

δn
B,A(X) = (LB − RA)n(X) =

n∑
j=0

(−1) j
(

n
j

)
B(n− j)XA j = 0.
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It is clear from these definitions that △m
B,A(I) defines the class of left-m-invertible operators A of [16],

△
m
A∗,A(I) defines the class of m-isometric operators A, δn

A∗,A(I) defines the class of n-symmetric (equivalently,
n-selfadjoint) operators, and an operator A ∈ B(H) is (m,n)-isosymmetric if and only if

△
m
A∗,A

(
δn

A∗,A(I)
)
= δn

A∗,A

(
△

m
A∗,A(I)

)
= 0.

Let [A,B] = AB − BA denote the commutator of A,B ∈ B(H). Given operators Ai,Bi,X ∈ B(H), i = 1, 2 and
positive integers m and n, such that

[A1,A2] = [B1,B2] = 0,

we say in the following that the pairs of operators (B1,A1) and (B2,A2) are left-(X, (m,n))-symmetric, denoted

((B1,A1), (B2,A2)) ∈ left − (X, (m,n)) − symmetric

if

△
m
B1,A1

(
δn

B2,A2

)
(X) = (LB1 RA1 − I)m (

(LB2 − RA2 )n(X)
)

=

m∑
j=0

n∑
k=0

(−1) j+k
(

m
j

) (
n
k

)
Lm− j

B1
Ln−k

B2
Rk

A2
Rm− j

A1
(X)

= (LB2 − RA2 )n (
(LB1 RA1 − I)m(X)

)
= δn

B2,A2

(
△

m
B1,A1

(X)
)

=

n∑
k=0

m∑
j=0

(−1) j+k
(

m
j

) (
n
k

)
Ln−k

B2
Lm− j

B1
Rm− j

A1
Rk

A2
(X)

= 0.

Products, and perturbation by commuting nilpotents, of left-(X, (m,n))-symmetric pairs of operators behave
in a manner very similar to that of m-isometric and n-symmetric operators. We prove:

Theorem 1.1. If Ai,Bi,Si,Ti,X ∈ B(H), i = 1, 2, are such that

(i) [A1,A2] = [B1,B2] = [Ai,Ti] = [Bi,Si] = 0,

(ii) ((B1,A1), (B2,A2)) ∈ left-(X, (m1,n1))-symmetric,

(iii) ((S1,T1), (B2,A2)) ∈ left-(X, (r1,n2))-symmetric,

(iv) ((B1,A1), (S2,T2)) ∈ left-(X, (m2, s1))-symmetric, and

(v) ((S1,T1), (S2,T2)) ∈ left-(X, (r2, s2))-symmetric,

then
((S1B1,T1A1), (S2B2,T2A2)) ∈ left − (X, (m + r − 1,n + s − 1)) − symmetric,

where m = max(m1,m2), n = max(n1,n2), r = max(r1, r2) and s = max(s1, s2).

Theorem 1.2. If Ai,Bi,Mi,Ni,X ∈ B(H), i = 1, 2, are such that

(i) Mmi
i = Nni

i = 0, mi and ni some positive integers (i = 1, 2),

(ii) [A1,A2] = [B1,B2] = [M1,M2] = [N1,N2] = [Ai,Mi] = [Bi,Ni] = 0 (i = 1, 2) and

(iii) ((B1,A1), (B2,A2)) ∈ left − (X, (m,n)) − symmetric,

then

((B1 +N1,A1 +M1), (B2 +N2,A2 +M2)) ∈ left − (X, (m +m1 + n1 − 2,n +m2 + n2 − 2)) − symmetric.

An operator A ∈ B(H) is Drazin invertible, with Drazin inverse Ad, if

[Ad,A] = 0, A2
dA = Ad, Ap+1Ad = Ap

for some integer p ≥ 1. (The least integer p for which this holds is then called the Drazin index of A.) No
Drazin invertible operator A ∈ B(H) can be m-isometric (equivalently, left-m-invertible by its adjoint) [15]:
there may however exist operators X ∈ B(H) such that A is left-(X,m)-invertible by A∗. We prove:
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Theorem 1.3. Let A ∈ B(H) be a Drazin invertible operator, with Drazin index p and Drazin inverse Ad. Let
X ∈ B(H), and let m,n be some positive integers.

(i) If A ∈ (X, (m,n))-isosymmetric, then

△
n
A∗d,A

(
△

m
A∗,Ad

(X)
)
= 0 = δm

A∗d,A

(
δn

A∗d,Ad
(X)

)
;

(ii) if ((A∗d,A), (A∗,A)) ∈ left-(X, (m,n))-symmetric, then △n
A∗d,A

(
△

m
A∗,Ad

(X)
)
= 0;

(iii) if ((A∗,A), (A∗d,A)) ∈ left-(X, (m,n))-symmetric, then

δn
A∗,Ad

(
δm

A∗d,A
(X)

)
= 0.

We prove Theorem 1.1, and most of our complementary results, in Section 2, tensor products are
considered in Section 3, Section 4 is devoted to the proof of Theorem 1.2, and we prove Theorem 1.3 in
Section 5..

2. Complementary results, Proof of Theorem 1.1.

We start this section by proving some complementary results. Throughout the following Ai,Bi, i = 1, 2,
and X will denote operators in B(H), and m,n, t will denote positive integers.

Lemma 2.1. [15, Proposition 2.1] If (B,A)) ∈ {(X,n) − symmetric} ∨ {le f t − (X,m) − invertible},

(i) then (B,A) ∈ {(X, t) − symmetric} ∨ (resp.){le f t − (X, t) − invertible} for all integers t ≥ n, (resp.)m;

(ii) and A,B are invertible, then (B−1,A−1) ∈ {(X,n) − symmetric} ∨ (resp.){le f t − (X,m) − invertible}.

The following lemma is an easy consequence of Lemma 2.1 (ii).

Lemma 2.2. If Ai,Bi are invertible and ((B1,A1), (B2,A2)) ∈ left-(X, (m,n))-symmetric, then ((B−1
1 ,A

−1
1 ), (B−1

2 ,A
−1
2 )) ∈

left-(X, (m,n))-symmetric.

Trivially, [LB,RA] = 0 for all operators A,B ∈ B(H). Hence, for every integer k ≥ 1,

(Lk
B − Rk

A)m = (LBk − RAk )m = (LB − RA)mPm(k−1)(LB,RA)
= Pm(k−1)(LB,RA)(LB − RA)m

and

(Lk
BRk

A − I)m = (LBk RAk − I)m = (LBRA − I)mQm(k−1)(LB,RA)
= Qm(k−1)(LB,RA)(LBRA − I)m

for some polynomials P and Q of degree m(k − 1). We have:

Lemma 2.3. [15] If (B,A) ∈ {(X,n)−symmetric}∨{le f t−(X,m)− invertible}, then (Bk,Ak) ∈ {(X,n)−symmetric}∨
(resp.){le f t − (X,m) − invertible} for every positive integer k.

Considering operators Ai and Bi, i = 1, 2, such that [A1,A2] = [B1,B2] = 0, one has

[LBi ,RA j ] = [LB1 ,LB2 ] = [RA1 ,RA2 ] = 0; i, j = 1, 2.

Hence
△

m
B1,A1

(
δn

B2,A2
(X)

)
= δn

B2,A2

(
△

m
B1,A1

(X)
)
.

We have:
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Lemma 2.4. If [A1,A2] = [B1,B2] = 0, and either (B1,A1) ∈ left-(X,m)-invertible or (B2,A2) ∈ (X,n)- symmetric,
then △m

B1,A1

(
δn

B2,A2
(X)

)
= δn

B2,A2

(
△

m
B1,A1

(X)
)
= 0.

Lemma 2.5. If [A1,A2] = [B1,B2] = 0 and ((B1,A1), (B2,A2)) ∈ left-(X, (m,n))-symmetric, then ((B1,A1), (B2,A2)) ∈
{ left-(X, (m1,n))-symmetric} ∧ { left-(X, (m,n1))-symmetric} ∧ {left-(X, (m1,n1))-symmetric} for all integers
m1 ≥ m and n1 ≥ n.

Proof. The proof follows since
△

m1
B1,A1

(δn
B2,A2

) = △m1−m
B1,A1

(
△

m
A1,B1

(δn
B2,A2

)
)
,

△
m
B1,A1

(
δn1

B2,A2

)
= △m

B1,A1

(
δn1−n

B2,A2
δn

B2,A2

)
= δn1−n

B2,A2

(
△

m
B1,A1
δn

B2,A2

)
and

△
m1
B1,A1

(
δn1

B2,A2

)
= △m1−m

B1,A1
δn1−n

B2,A2

(
△

m
B1,A1
δn

B2,A2

)
.

Proposition 2.6. Let Ai,Bi,S,T,X ∈ B(H), i = 1, 2, be such that

[A1,A2] = [B1,B2] = [Ai,T] = [Bi,S] = 0,

and let (a), (b), (c), (d) and (e) be the hypotheses:
(a) ((B1,A1), (B2,A2)) ∈ left-(X, (m,n))-symmetric;
(b) (B1,A1) ∈ left-(X,m))-invertible;
(c) (B2,A2) ∈ left-(X,n))-symmetric;
(d) (S,T) ∈ left-(X, t))-invertible;
(e) (S,T) ∈ left-(X, t))-symmetric.

(i) If either of the hypotheses (b) or (a)∧(e) or (c)∧(e) is satisfied, then

((B1,A1), (SB2,TA2)) ∈ le f t − (X, (m,n + t − 1)) − symmetric.

(ii) If either of the hypotheses (c) or (a)∧(d) or (b)∧(d) is satisfied, then

((SB1,TA1), (B2,A2)) ∈ le f t − (X, (m + t − 1,n)) − symmetric.

Proof. The hypotheses [S,B2] = [T,A2] = 0 imply

δn+t−1
SB2,TA2

=
(
LSLB2 − RTRA2

)n+t−1

=
{
LS

(
LB2 − RA2

)
+ (LS − RT) RA2

}n+t−1

=

n+t−1∑
j=0

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
δn+t−1− j

B2,A2
δ j

S,T

=

n+t−1∑
j=0

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
δ j

S,Tδ
n+t−1− j
B2,A2

and the hypotheses [S,B1] = [T,A1] = 0 imply

△
m+t−1
SB1,TA1

=
(
LSLB1 RTRA1 − I

)m+t−1

=
{
LSRT

(
LB1 RA1 − I

)
+ (LSRT − I)

}m+t−1

=

m+t−1∑
k=0

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
m+t−1−k
B1,A1

△
k
S,T

=

m+t−1∑
k=0

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
k
S,T△

m+t−1−k
B1,A1

.
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This, in view of the commutativity hypotheses on Ai,Bi,S and T (i = 1, 2), implies

△
m
B1,A1

(
δn+t−1

SB2,TA2
(X)

)
=

n+t−1∑
j=0

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
δ j

S,Tδ
n+t−1− j
B2,A2

(
△

m
B1,A1

(X)
)

=

t−1∑
j=0

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
δ j

S,T

(
△

m
B1,A1
δn+t−1− j

B2,A2
(X)

)
+

n+t−1∑
j=t

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
△

m
B1,A1
δn+t−1− j

B2,A2

(
δ j

S,T(X)
)

=

t−1∑
j=0

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
δ j

S,T△
m
B1,A1

(
δn+t−1− j

B2,A2
(X)

)
+

n+t−1∑
j=t

(
n + t − 1

j

)
Ln+t−1− j

S R j
A2
△

m
B1,A1
δn+t−1− j

B2,A2

(
δ j

S,T(X)
)

and

△
m+t−1
SB1,TA1

(
δn

B2,A2
(X)

)
=

m+t−1∑
k=0

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
k
S,T△

m+t−1−k
B1,A1

(
δn

B2,A2
(X)

)
=

t−1∑
k=0

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
k
S,T

(
△

m+t−1−k
B1,A1

δn
B2,A2

(X)
)

+

m+t−1∑
k=t

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
m+t−1−k
B1,A1

(
△

k
B1,A1
δn

B2,A2
(X)

)
=

t−1∑
k=0

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
k
S,T

(
δn

B2,A2
△

m+t−1−k
B1,A1

(X)
)

+

m+t−1∑
k=t

(
m + t − 1

k

)
(LSRT)m+t−1−k

△
m+t−1−k
B1,A1

δn
B2,A2

(
△

k
S,T(X)

)
.

Recall now that
△

m
B1,A1
δn

B2,A2
(X) = 0 =⇒ △m

B1,A1
δn1

B2,A2
(X) = 0 for all n1 ≥ n

and
δt

S,T(X) = 0 =⇒ δt1
S,T(X) = 0 for all t1 ≥ t

(see Lemmas 2.5 and 2.1). Hence, if either of the hypotheses (b), or, (a) ∧ (e), or, (c) ∧ (e) is satisfied, then

((B1,A1), (SB2,TA2)) ∈ le f t − (X, (m,n + t − 1)) − symmetric.

Again, since
△

m
B1,A1

(
δn

B2,A2
(X)

)
= 0 =⇒ △m1

B1,A1

(
δn

B2,A2
(X)

)
= 0 for all m1 ≥ m,

if either of the hypotheses (c), or, (a) ∧ (d), or, (b) ∧ (d) is satisfied, then

((SB1,TA1), (B2,A2)) ∈ le f t − (X, (m + t − 1,n)) − symmetric.
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A particularly interesting case of Proposition 2.6 is obtained upon choosing

A1 = A2 = A,B1 = B2 = A∗,S1 = S2 = B∗ and T1 = T2 = B.

We have:

Corollary 2.7. If [A,B] = [A,B∗] = 0, A ∈ (m,n)-isosymmetric and B is both left-r-invertible and s-symmetric,
then

AB ∈ le f t − (m + r − 1,n + s − 1) − symmetric.

A generalization of Proposition 2.6 is obtained upon replacing the pair of operators (S,T) by the pairs
(Si,Ti), i = 1, 2. Observe that the hypothesis

(S1,T1) ∈ le f t − (X, t) − invertible =⇒ δ j
E,F

(
△

t
S1,T1

(X)
)
= △k

E,F

(
△

t
S1,T1

(X)
)
= 0

for all 1 ≤ j, k and (E,F) = (S2,T2) ∨ (Bi,Ai), i = 1, 2, and the hypothesis

(S2,T2) ∈ le f t − (X, s) − symmetric =⇒ δ j
E,F

(
δs

S2,T2
(X)

)
= △k

E,F

(
δs

S2,T2
(X)

)
= 0

for all 1 ≤ j, k and (E,F) = (S1,T1) ∨ (Bi,Ai), i = 1, 2.

Corollary 2.8. If [Ai,T j] = [Bi,S j] = [S1,S2] = [B1,B2] = [A1,A2] = 0, 1 ≤ i, j ≤ 2,

(i) ((B1,A1), (B2,A2)) ∈ left-(X, (m,n))-symmetric;

(ii) (S1,T1) ∈ left-(X, r))-invertible; and

(iii) (S2,T2) ∈ (X, s)-symmetric,
then

((B1S1,A1T1), (B2S2,A2T2)) ∈ le f t − (X, (m + r − 1,n + s − 1)) − symmetric.

Proof. In view of the commutativity hypotheses, Proposition 2.6 implies that if (i) and (ii) are satisfied, then

(iv) ((B1S1,A1T1), (B2,A2)) ∈ left-(X, (m + r − 1,n))-symmetric;
another application of Proposition 2.6, this time since (iv) and (iii) are satisfied, now implies the result.

Theorem 1.1, which we now prove, is a generalization of Corollary 2.8.

Proof of Theorem 1.1. Defining the positive integers m,n, r and s as in the statement of the theorem, the
commutativity hypotheses imply

δn+s−1
S2B2,T2A2

=
{
LS2

(
LB2 − RA2

)
+

(
LS2 − RT2

)
RA2

}n+s−1

=

n+s−1∑
k=0

(
n + s − 1

k

)
Ln+s−1−k

S2
Rk

A2
δn+s−1−k

B2,A2
δk

S2,T2
;

△
m+r−1
S1B1,T1A1

=
{
LS1

(
LB1 LA1 − I

)
RT1 +

(
LS1 RT1 − I

)}m+r−1

=

m+r−1∑
j=0

(
m + r − 1

j

) (
LS1 RT1

)m+r−1− j
△

m+r−1− j
B1,A1

△
j
S1,T1

;

and

△
m+r−1
S1B1,T1A1

(
δn+s−1

S2B2,T2A2
(X)

)
=


m+r−1∑

j=0

n+s−1∑
k=0

(
m + r − 1

j

) (
n + s − 1

k

)
×

×
(
LS1 RT1

)m+r−1− j Ln+s−1−k
S2

Rk
A2
△

m+r−1− j
B1,A1

△
j
S1,T1
δn+s−1−k

B2,A2
δk

S2,T2

}
(X)
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where the commutativity hypotheses guarantee the commutativity of all the operator entries within the
curly brackets. To complete the proof we observe now that:

if j ≥ r and k ≥ s, then △ j
S1,T1

(
δk

S2,T2
(X)

)
= 0;

if j ≤ r − 1 and k ≥ s, then △m+r−1− j
B1,A1

(
δk

S2,T2
(X)

)
= 0;

if j ≥ r and k ≤ s − 1, then △ j
S1,T1

(
δn+s−1−k

B2,A2
(X)

)
= 0

and (finally)
if j ≤ r − 1 and k ≤ s − 1, then △m+r−1− j

B1,A1

(
δn+s−1−k

B2,A2
(X)

)
= 0.

3. Tensor Products.

Let H ⊗ H , endowed with a reasonable uniform cross norm, denote the completion of the algebraic
tensor product of H with itself, and let A ⊗ B denote the tensor product operator defined by A,B ∈ B(H).
Theorem 1.1 has applications to tensor products.

Consider operators Ai,Bi, i = 1, 2. Since

△
m
B1⊗I,A1⊗I

(
δn

B2⊗I,A2⊗I

)
=

m∑
j=0

n∑
k=0

(−1) j+k
(

m
j

) (
n
k

) (
LB1⊗IRA1⊗I

)m− j
(
Ln−k

B2⊗IR
k
A2⊗I

)
=

m∑
j=0

n∑
k=0

(−1) j+k
(

m
j

) (
n
k

) (
LB1

m− j
⊗IRA1

m− j
⊗I

) (
LB2

n−k
⊗IRA2

k
⊗I

)
,

△
m
B1⊗I,A1⊗I

(
δn

B2⊗I,A2⊗I(X ⊗ X)
)
= △m

B1,A1

(
δn

B2,A2
(X)

)
⊗ X.

Hence, if ((B1,A1), (B2,A2)) ∈ left-(X, (m,n))-symmetric, then

△
m
B1⊗I,A1⊗I

(
δn

B2⊗I,A2⊗I(X ⊗ X)
)
= 0

(and, arguing similarly,
△

m
I⊗B1,I⊗A1

(
δn

I⊗B2,I⊗A2
(X ⊗ X)

)
= 0

)
.

Again, if △r
P1,Q1

(X) = 0 (resp., δs
P2,Q2

(X) = 0), then △r
I⊗P1,I⊗Q1

(X ⊗ X) = 0 (resp., δs
I⊗P2,I⊗Q2

(X ⊗ X) = 0).

Corollary 3.1. Let Ei,Fi,Pi,Qi ∈ B(H), i = 1, 2, be such that [E1,E2] = [F1,F2] = [P1,Q1] = [P2,Q2] = 0 and

△
m
E1,F1

(
δn

E2,F2
(X)

)
= △r

P1,Q1
(X) = δs

P2,Q2
(X) = 0.

Then

((E1 ⊗ P1,F1 ⊗Q1), (E2 ⊗ P2,F2 ⊗Q2)) ∈ le f t − (X ⊗ X, (m + r − 1,n + s − 1)) − symmetric.

Proof. The hypothesis△r
P1,Q1

(X) = δs
P2,Q2

(X) = 0 implies△r
I⊗P1,I⊗Q1

(
δn

E2⊗I,F2⊗I(X ⊗ X)
)
= δs

I⊗P2,I⊗Q2

(
△

m
E1⊗I,F1⊗I(X ⊗ X)

)
=

△
r
I⊗P1,I⊗Q1

(
δs

I⊗P2,I⊗Q2
(X ⊗ X)

)
= 0. If we let

Bi = Ei ⊗ I,Ai = Fi ⊗ I,Si = I ⊗ Pi and Ti = I ⊗Qi, i = 1, 2,

then the hypotheses of Theorem 1.1 are satisfied (with X ⊗ X playing the role of X). Hence, since

SiBi = Ei ⊗ Pi and TiAi = Fi ⊗Qi, i = 1, 2,

the proof follows.
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For commuting n-isometries S,T ∈ B(H), Corollary 3.1 take the form:

Corollary 3.2. If [S,T] = 0 and
△

n
S∗,S(I) = δn

T∗,T(I) = 0,

then
△

2n−1
S∗⊗T∗,S⊗T

(
δ2n−1

S∗⊗T∗,S⊗T(I ⊗ I)
)
= 0.

4. Perturbation by commuting nilpotents.

It is well known, see for example [22], that if dB,A = δB,A ∨△B,A, dm
B,A(I) = 0 and N is an n-nilpotent which

commutes with A, then dm+n−1
B,A+N (I) = 0. This extends to A,B such that dm

B,A(X) = 0 for some X ∈ B(H), as the
following argument shows:

△
m+n−1
B,A+N (X) = {(LBRA − I) + LBRN}

m+n−1 (X)

=


m+n−1∑

j=0

(
m + n − 1

j

)
(LBRN) j

△
m+n−1− j
B,A

 (X)

= 0,

since R j
N = 0 for all j ≥ n and △m+n−1− j

B,A (X) = 0 for all j ≤ n − 1(=⇒ m + n − 1 − j ≥ m); again

δm+n−1
B,A+N (X) = {(LB − RA) − RN}

m+n−1 (X)

=


m+n−1∑

j=0

(−1) j
(

m + n − 1
j

)
R j

Nδ
m+n−1− j
B,A

 (X)

= 0.

for R j
N = 0 for all j ≥ n and δm+n−1− j

B,A (X) = 0 for all j ≤ n − 1.

This argument extends to perturbation by commuting nilpotents of operators ((B1,A1), (B2,A2)) ∈ left −
(X, (m,n)) − symmetric.

Proof of Theorem 1.2. The commutativity hypothesis [A1,A2] = [B1,B2] = 0 implies

δn
B2,A2

(
△

m
B1,A1

(X)
)
= △m

B1,A1

(
δn

B2,A2
(X)

)
= 0.

Set
δn

B2,A2
(X) = Y.

Then △m
B1,A1

(Y) = 0, and it follows from the argument above that if [A1,M1] = 0 and Mm1
1 = 0, then

△
m+m1−1
B1,A1+M1

(Y) = 0⇐⇒ △m+m1−1
A∗1+M∗1,B

∗

1
(Y∗) = 0,

and hence if [B1,N1] = 0,Nn1
1 = 0, then

△
m+m1+n1−2
A∗1+M∗1,B

∗

1+N∗1
(Y∗) = 0⇐⇒ △m+m1+n1−2

B1+N1,A1+M1
(Y) = 0.
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Let now △m+m1+n1−1
B1+N1,A1+M1

(X) = Z. Then, upon assuming the full force of the commutativity hypotheses, we have

δn
B2,A2

(Z) = 0 =⇒ δn+m2−1
B2,A2+M2

(Z) = 0⇐⇒ δn+m2−1
A∗2+M∗2,B

∗

2
(Z∗) = 0

=⇒ δn+m2+n2−2
A∗2+M∗2,B

∗

2+N∗2
(Z∗) = 0⇐⇒ δn+m2+n2−2

B2+N2,A2+M2
(Z) = 0

⇐⇒ δn+m2+n2−2
B2+N2,A2+M2

(
△

n+m2+n2−2
B1+N1,A1+M1

(X)
)

= △n+m2+n2−2
B1+N1,A1+M1

(
δn+m2+n2−2

B2+N2,A2+M2
(X)

)
= 0.

We leave it to the reader to verify that if one drops the hypotheses [A1,A2] = [B1,B2] = [M1,M2] =
[N1,N2] = 0 in the statement of Theorem 1.2, then

δn
B2,A2

(
△

m
B1,A1

(X)
)
= 0 =⇒ δn+m2+n2−2

B2+N2,A2+M2

(
△

n+m2+n2−2
B1+N1,A1+M1

(X)
)
= 0

only. For (X, (m,n))-isosymmetric operators A, Theorem 1.2 implies

Corollary 4.1. If [A,N] = 0 = Nn1 and A ∈ (X, (m,n))-isosymmetric, then A+N ∈ (X, (m+ 2n1 − 2,n+ 2n1 − 2))-
isosymmetric.

5. Application to Drazin invertible operators.

Let T ∈ B(H) be a Drazin invertible operator. Then there exists a decomposition

H = H1 ⊕H2

ofH and a decomposition
T = T1 ⊕ T2 (= T |H1 ⊕T |H2 )

of T such that T1 is invertible and Tp
2 = 0 for some integer p ≥ 1. The Drazin inverse Td of T has a

representation
Td = T−1

1 ⊕ 0 ∈ B(H1 ⊕H2)

[10, Theorem 2.23]. In the following we use this representation of Drazin invertible operators to prove
Theorem 1.3.

Proof of Theorem 1.3 Let X ∈ B(H1 ⊕H2) have the matrix representation
[
Xi, j

]2

i, j=1
. Then

0 = △
m
T∗,T

(
δn

T∗,T(X)
)
= δn

T∗,T

(
△

m
T∗,T(X)

)
(1) =

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) {
T∗(n−l+m−k)XTm−k+l

}
=

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) [
T∗i

(n−l+m−k)Xi jTm−k+l
j

]2

i, j=1
;

0 = △
m
T∗d,T

(
δn

T∗,T(X)
)
= δn

T∗,T

(
△

m
T∗d,T

(X)
)

(2) =

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) (
T∗1

(n−l−m+k)X11Tm−k+l
1 T∗1

(n−l−m+k)X12Tm−k+l
2

0 0

)
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and

0 = △
m
T∗,T

(
δn

T∗d,T
(X)

)
= δn

T∗d,T

(
△

m
T∗,T(X)

)
(3) =

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) (
T∗1

(m−k−n+l)X11Tm−k+l
1 T∗1

(m−k−n+l)X12Tm−k+l
2

0 0

)
.

We prove that X12 = 0. Letting s denote either of n − l and −n + l, we have

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

)
T∗i
−m+k+sX12Tm−k+l

2 = 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1

s

m−1∑
k=0

(−1)k
(

m
k

)
T∗1
−m+kX12Tm−k

2 + X12

 Tl
2 = 0

=⇒


 n∑

l=1

(−1)l
(

n
l

) m−1∑
k=0

(−1)k
(

m
k

)
T∗1

s−m+kX12Tm−k+l
2 + T∗1

sX12Tl
2


+

m−1∑
k=0

(−1)k
(

m
k

)
T∗1

s−m+kX12Tm−k
2 + T∗1

sX12

 Tp−1
2 = 0

⇐⇒ T∗1
sX12Tp−1

2 = 0⇐⇒ X12Tp−1
2 = 0.

Repeating this argument next by multiplying the expression within the curly brackets by Tp−2
2 on the right,

and then so on, it is seen that

X12Tr
2 = 0 for all r = 1, 2, · · · .

Consequently, it follows (from the expression within the curly brackets) that X12 = 0. A similar argument
shows that X21 = 0 (in (1)).

(i) Equality (1) implies T1 ∈ (X11, (m,n))-isosymmetric, and this (since T1 is invertible) implies by Lemma
2.1 that T−1

1 ∈ (m,n)-isosymmetric, i.e.,

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) {
T∗1
−(n−l+m−k)X11T−m+k−l

1

}
= 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1
−(n−l)

 m∑
k=0

(−1)k
(

m
k

)
T∗1
−(m−k)X11T−(m−k)

1

 T−l
1 = 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1
−(n−l)

 m∑
k=0

(−1)k
(

m
k

)
T∗1
−(m−k)X11T−(m−k)

1

 Tn−l
1 = 0

⇐⇒ △
n
T∗1
−1,T1

(
△

m
T∗1
−1,T−1

1
(X11)

)
= 0

⇐⇒ △
n
T∗d,T

(
△

m
T∗d,Td

(X)
)
= 0.
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Again, T−1
1 ∈ (X11, (m,n))-isosymmetric if and only if

m∑
k=0

(−1)k
(

m
k

)
T∗(−m+k)

1

 n∑
l=0

(−1)l
(

n
l

)
T∗1
−(n−l)X11T−l

1

 T−(m−k)
1 = 0

⇐⇒

m∑
k=0

(−1)k
(

m
k

)
T∗(−m+k)

1

 n∑
l=0

(−1)l
(

n
l

)
T∗1
−(n−l)X11T−l

1

 Tk
1 = 0

⇐⇒ δm
T∗1
−1,T1

(
δn

T∗1
−1,T−1

1
(X11)

)
= 0

⇐⇒ δm
T∗d,T

(
δn

T∗d,Td
(X)

)
= 0.

(ii) Since X12 = 0, and
n∑

l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) {
T∗1

(−m+k+n−l)X11Tm−k+l
1

}
= 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1
−(n−l)

 m∑
k=0

(−1)k
(

m
k

)
T∗1

m−kX11T−(m−k)
1

 T−l
1 = 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1
−(n−l)

 m∑
k=0

(−1)k
(

m
k

)
T∗1

m−kX11T−(m−k)
1

 Tn−l
1 = 0

⇐⇒ △
n
T∗1
−1,T1

(
△

m
T∗1,T

−1
1

(X)
)
= 0, we have that

△
n
T∗d,T

(
△

m
T∗,Td

(X)
)
= 0.

(iii) In this case
n∑

l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) {
T∗1

(m−k−n+l)X11Tm−k+l
1

}
= 0

⇐⇒

n∑
l=0

m∑
k=0

(−1)l+k
(

n
l

) (
m
k

) {
T∗1
−(m−k−n+l)X11T−(m−k+l)

1

}
= 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1

(n−l)

 m∑
k=0

(−1)k
(

m
k

)
T∗1
−(m−k)X11T−(m−k)

1

 T−l
1 = 0

⇐⇒

n∑
l=0

(−1)l
(

n
l

)
T∗1

(n−l)

 m∑
k=0

(−1)k
(

m
k

)
T∗1
−(m−k)X11Tk

1

 T−l
1 = 0

⇐⇒ δn
T∗1,T

−1
1

(
δm

T∗1
−1,T1

(X11)
)
= 0

⇐⇒ δn
T∗,Td

(
δm

T∗d,T
(X)

)
= 0.
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