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Abstract. The purpose of this paper is to continue the study initiated in [7] concerning the notion of
pseudo-generalized inverse. In this work, we are interested in investigating the relationship between
compactness, finite rank and pseudo-generalized invertibility for bounded operators. The preserving
properties of products of pseudo-generalized invertible operators are also treated and related results are
given. At the end of this paper, we discuss in some special cases the relationship between the sets of n-left
pseudo-generalized inverses of a left pseudo-generalized invertible operator T.

1. Introduction

The present paper is a continuation of [7], where we have introduced the class of pseudo-generalized
invertible operators needed in our study. Let B(X) be the algebra of all bounded linear operators acting
on an infinite-dimensional complex Banach space X and K (X) the space of compact operators in B(X). As
we introduced in [7], for n ∈ N, an operator T ∈ B(X) is called n-left (resp. n-right) pseudo-generalized
invertible if T ∈ Ωℓn (resp. Ωr

n), where

Ωℓn =
{
T ∈ B(X) : ∃S ∈ B(X) : TnST = Tn

}
,

and
Ωr

n =
{
T ∈ B(X) : ∃S ∈ B(X) : TSTn = Tn

}
.

More generally, if T ∈ Ωℓ (resp. T ∈ Ωr), then T is called left (resp. right) pseudo-generalized invertible,
where

Ωℓ =

∞⋃
n=0

Ωℓn and Ωr =

∞⋃
n=0

Ωr
n.

We simply call pseudo-generalized invertible operator any operator in Ωℓ ∪Ωr.
Recall also that a n-left (resp. n-right) pseudo-generalized inverse of T is an operator S ∈ B(X) satisfying

the equation TnST = Tn (resp. TSTn = Tn). We denote by TSℓn (resp. TSr
n) the subset of all n-left (resp.
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n-right) pseudo-generalized inverses of T and we simply call left (resp. right) pseudo-generalized inverse
any operator in TSℓn (resp. TSr

n), for any n ∈ N. A pseudo-generalized inverse refers to a left or right
pseudo-generalized inverse. Definitions and notations not explicitly given are taken from [7].

This paper is organized as follows. In Section 2 we discuss some properties of compact pseudo-
generalized invertible operators, in particular we extend to pseudo-generalized invertible operators some
classical findings obtained in [4]. Some decomposition results are also proved. Preserving properties of
products of operators is an interesting topic in operator theory, so in this work we devote our attention
to investigate some aspects of this topic. For example, in Section 3, we show that the product of two
pseudo-generalized invertible operators is not necessarily in general pseudo-generalized invertible, even
for commuting operators. In particular, this prompted us to give in certain cases some sufficient conditions
preserving products of two commuting pseudo-generalized invertible operators. Some other product
stability results are also obtained in Sections 4 and 5. Furthermore, as an application, we see that the notion
of pseudo-generalized invertibility is useful to prove the 1-invertibility in some particular cases. At the end
of the paper, we discuss in some special cases the relationship between the sets of n-left pseudo-generalized
inverses of a left pseudo-generalized invertible operator T ∈ B(X).

2. On Compact operators and pseudo-generalized invertibility

In this section, we prove some results related to both compact operators and pseudo-generalized in-
vertible operators. First, from [10], recall that T ∈ B(X) is called a Fredholm operator if α(T) < +∞ and
β(T) < +∞, where α(T) denotes the dimension of N(T) and β(T) is the codimension of R(T). Also, it is
well-known that if K ∈ K (X), then I + K is a Fredholm operator (see [8, Proposition 3.21]).

Now, we start with the following lemma.

Lemma 2.1. Let T ∈ K (X).

1) If there exists n ∈N\{0}, such that T ∈ Ωℓn, then T is not one-to-one.

2) If there exists n ∈N\{0}, such that T ∈ Ωr
n, then T is not onto.

Proof.
1) Suppose that T is one-to-one, then we know that T ∈ Ωℓ0, and hence there exists S ∈ B(X) such that
I = ST ∈ K (X), which is a contradiction because X is of infinite dimensional and therefore T is not
one-to-one.
2) Can be proved in the same way as 1). □

Recall that T ∈ K (X) is 1-invertible if and only if it is of finite rank [4]. In fact, this result can be extended
for pseudo-generalized invertible operators, as we can see in the following theorem.

Theorem 2.2. Let T ∈ K (X) and n ∈N\{0}. The following assertions are equivalent :

(1) T ∈ Ωℓn,

(2) T ∈ Ωr
n,

(3) rank(Tn) < +∞.

Proof.
”(1) =⇒ (3)” Let S ∈ TSℓn. As T is a compact operator, then I − ST is a Fredholm operator and therefore
β(I − ST) < +∞. Now, since R(I − ST) ⊆ N(Tn), so codim N(Tn) ≤ β(I − ST) < +∞, and consequently,

rank(Tn) = codim N(Tn) < +∞.

”(2) =⇒ (3)” Let S ∈ TSr
n. Since T is a compact operator, it follows that I − TS is a Fredholm operator and

therefore α(I − TS) < +∞. Now, as R(Tn) ⊆ N(I − TS), so

rank(Tn) ≤ α(I − TS) < +∞.
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”(3) =⇒ (1)” and ”(3) =⇒ (2)” If rank(Tn) < +∞,we know that Tn
∈ Ωℓ1 (= Ωr

1) and hence T ∈ Ωℓn ∩Ωr
n. This

completes the proof. □

Clearly, if T ∈ K (X) and n is the smallest non-negative integer such that Tn is of finite rank, then
T ∈
(
Ωℓ∩Ωr

)
\(Ωℓn−1∩Ω

r
n−1

)
.Also, if T is both compact and pseudo-generalized invertible, from [7, Example

2.2, Remark 2.3], we can deduced that the fact rank(Tn) < +∞, does not mean that Tn−1 is also of finite rank.
Now, from Theorem 2.2, we obtain the following remark.

Remark 2.3. Let T ∈ K (X) and n ∈N\{0}. If Tn is of infinite rank, then T < Ωℓn ∪Ωr
n.

It follows that injective compact operators could not be pseudo-generalized invertible as can be seen in
the following.

Corollary 2.4. Let T ∈ K (X). If there exists n ∈ N\{0}, such that T ∈ Ωℓn ∪ Ωr
n, then T is neither onto nor

one-to-one.

Proof.
By Theorem 2.2, we see that T ∈ Ωℓn (resp. Ωr

n) if and only if T ∈ Ωℓn ∩Ωr
n. Now, Lemma 2.1, allows us to

conclude the stated result. □

The reasoning presented in Lemma 2.1, for compact pseudo-generalized invertible operators enables us
to formulate the following result.

Lemma 2.5. Let T ∈ B(X) and n ∈N\{0}.

1) If T ∈ Ωℓn and K (X) ∩ TSℓn , ∅, then T is not one-to-one.

2) If T ∈ Ωr
n and K (X) ∩ TSr

n , ∅, then T is not onto.

As in ”(1) =⇒ (3)” and ”(2) =⇒ (3)” in Theorem 2.2, we can obtain the next proposition.

Proposition 2.6. Let T ∈ B(X) and n ∈N\{0}.

1) If T ∈ Ωℓn and K (X) ∩ TSℓn , ∅ then rank(Tn) < +∞.

2) If T ∈ Ωr
n and K (X) ∩ TSr

n , ∅ then rank(Tn) < +∞.

Under the same assumptions as in Proposition 2.6, rank(Tn) is finite does not necessarily imply that
rank(Tn−1) is finite, as we can see in the following example.

Example 2.7. Let s ∈ N\{0, 1} and N ≥ s − 1. In a separable Hilbert space H with an orthonormal basis
(ek)k∈N\{0}, let us consider the operator defined by

Ts(ek) =


1
k ek+1 if k ∈N\{sN + s − 1} and k > N
ek if k ∈ sN + s − 1 and k ≤ N
0 if not.

We see that rank(Ts−1
s ) is infinite and rank(Ts

s) < +∞, (see [7, Remark 2.3]). On the other hand, if S is a
12-inverse of Ts

s, then STs−1
s ∈ K (X) ∩ TsSℓs and Ts−1

s S ∈ K (X) ∩ TsSr
s. In fact, we know that rank(S) < +∞,

so rank(STs−1
s ) < +∞ and rank(Ts−1

s S) < +∞. Thus, both STs−1
s and Ts−1

s S are compact operators. Finally,
clearly we have STs−1

s ∈
TsSℓs and Ts−1

s S ∈ TsSr
s. Hence the result.

In the following, we give some conditions to characterize some pseudo-generalized inverses of compact
operators.
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Proposition 2.8. Let T ∈ K (X) and S ∈ B(X).

1) If there exist L ∈ I−STSℓ1 and n ∈N\{0}, such that R(L) ⊆ N(Tn
− TnST), then rank(Tn) < +∞ and S ∈ TSℓn.

2) If there exist L ∈ I−TSSr
1 and n ∈N\{0}, such that R(Tn

− TSTn) ⊆ N(L), then rank(Tn) < +∞ and S ∈ TSr
n.

Proof.
Since T ∈ K (X), then I − ST and I − TS are Fredholm operators. Therefore, I − ST ∈ Ωℓ1 and I − TS ∈ Ωr

1.
1) As L ∈ I−STSℓ1, then

(I − ST)L(I − ST) = I − ST.

Hence
I = ST + (I − ST)L(I − ST).

Consequently,

Tn = TnST + Tn(I − ST)L(I − ST)
= TnST + (Tn

− TnST)L(I − ST).

In the other hand, from R(L) ⊆ N(Tn
− TnST),we obtain Tn = TnST. So, T ∈ Ωℓn and S ∈ TSℓn.Now the result

can be deduced from Theorem 2.2.
2) This assertion can be proved in the same way as 1). □

Analogously, if some pseudo-generalized inverse is compact, then we have the following result.

Proposition 2.9. Let T ∈ B(X) and S ∈ K (X).

1) If there exist L ∈ I−STSℓ1 and n ∈N\{0}, such that R(L) ⊆ N(Tn
− TnST), then rank(Tn) < +∞ and S ∈ TSℓn.

2) If there exists L ∈ I−TSSr
1 and n ∈N\{0}, such that R(Tn

− TSTn) ⊆ N(L), then rank(Tn) < +∞ and S ∈ TSr
n.

Proof.
Since S ∈ K (X), then I − ST and I − TS are Fredholm operators. Therefore, as in the proof of Proposition
2.8, we deduce the stated result. □

We close this section with the following decomposition result.

Proposition 2.10. Let n ∈N\{0} and T ∈ K (X).

1) If T ∈ Ωℓn, then for all S ∈ TSℓn, there exists L ∈ TSℓn, such that

T = TLT + TP,

where P ∈ B(X) is a projection of range R(I − ST).

2) If T ∈ Ωr
n, then for all S ∈ TSr

n, there exists L ∈ TSr
n, such that

T = TLT + PT,

where P ∈ B(X) is a projection of kernel N(I − TS).

Proof.

1) Let S ∈ TSℓn, since T is a compact operator, then I − ST is a Fredholm operator and so I − ST ∈ Ωℓ1.
Consequently, as in the proof of [7, Theorem 4.3], we can see that there exists L ∈ TSℓn, such that
T = TLT + TP,where P is a projection of range R(I − ST).

2) Let S ∈ TSr
n. Since T is a compact operator, then I − TS is a Fredholm operator and so I − TS ∈ Ωr

1. Now,
as in the proof of [7, Theorem 4.3], we can see that there exists L ∈ TSr

n, such that T = TLT + PT,where P
is a projection of kernel N(I − TS). □
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3. Product of commuting pseudo-generalized invertible operators

In this section, we give some cases where the product of two commuting pseudo-generalized invertible
operators is preserved. First, from [1], recall that the product of two 1-invertible operators is not necessary
1-invertible, even for commuting operators. The same fact is proved for pseudo-generalized invertible
operators, as we can see in the following examples inspired by those of Caradus [1] and Harte [4].

Example 3.1. Let H be a separable Hilbert space with orthonormal basis (ek)k≥1 and M,C ∈ B(H) defined
by :

M(ek) =
{

ek+1 if k ∈ 3N\{0}
0 if not,

and

C(ek) =
{

1
k ek−1 if ∈ 3N\{0} + 1,

0 if not.

Let λ < σ(C),where σ(C) is the spectrum of C.We set T = (λI − C)M, then

T(ek) =
{
λek+1 −

1
k+1 ek if k ∈ 3N\{0}

0 if not.

It is clear that R(M) is closed, hence M ∈ Ωℓ1 (= Ωr
1). As λI − C is invertible, we get T ∈ Ωℓ1 (= Ωr

1) and
therefore T ∈ Ωℓn ∩Ωr

n, for all n ∈N\{0}. On the other hand, for m ∈N\{0},we see that

T2(ek) =
{
−λ
k+1 ek+1 +

1
(k+1)2 ek if k ∈ 3N\{0}

0 if not

and

T2m(ek) =
{

−λ
(k+1)2m−1 ek+1 +

1
(k+1)2m ek if k ∈ 3N\{0}

0 if not.

It is clear that T2m is a compact operator of infinite rank, so by Remark 2.3, T2 < Ωℓ ∪Ωr.Hence the result. □

Example 3.2. Let H be a seperable Hilbert space with an orthonormal basis (ek)k>0. Let U,V ∈ B(H), such
that

U(ek) = ek+1

and

V(ek) =
{

0 if k = 1,
ek−1 if not.

We define T,S ∈ B(H × H) as follows
T(x, y) = (U(y), 0)

and
S(x, y) = (0,V(x)).

It is clear that
TST = T

and therefore T ∈ (Ωℓ1 ∩ Ω
r
1) ⊆ (Ωℓn ∩ Ωr

n), for all n ∈ N\{0} and S ∈ TSℓ1 (= TSr
1). We consider the map

W ∈ K (H), defined by ek 7−→
1

k+2 ek, for all k ∈N\{0}. It is clear that ∥W∥ < 1
2 . Now, let λ ∈ R, such that

2∥W∥ < λ < 1.

We define the operator L ∈ B(H × H) as follows

L(x, y) = (λx +W(y), λy +W(x)), ∀(x, y) ∈ H × H.
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Since
(I − L)(x, y) = ((1 − λ)x +W(y), (1 − λ)y +W(x)),

we deduce that

∥(I − L)(x, y)∥ = ∥((1 − λ)x +W(y), (1 − λ)y +W(x))∥
= ∥((1 − λ)x +W(y)∥ + ∥(1 − λ)y +W(x))∥.

Therefore
∥(I − L)(x, y)∥ ≤ ∥(1 − λ)x∥ + ∥W(y)∥ + ∥(1 − λ)y∥ + ∥W(x)∥

≤ (1 − λ)∥x∥ + ∥W∥∥y∥ + (1 − λ)∥y∥ + ∥W∥∥x∥.

Now, since 2∥W∥ < λ < 1, it follows that

∥(I − L)(x, y)∥ < (1 − λ)∥x∥ +
λ
2
∥y∥ + (1 − λ)∥y∥ +

λ
2
∥x∥.

Hence,

∥(I − L)(x, y)∥ < (1 −
λ
2

)∥(x, y)∥.

As a result, we obtain ∥I−L∥ ≤ (1− λ2 ) < 1 and L is therefore invertible. Now, since T ∈ Ωℓ1 (= Ωr
1), it follows

that TL ∈ (Ωℓ1 ∩Ω
r
1) ⊆ (Ωℓn ∩Ωr

n), for all n ∈N\{0} and

TL(x, y) = (λU(y) +UW(x), 0).

Hence, for n ∈N\{0},we see that

(TL)n(x, y) =
(
(UW)n−1(λU(y) +UW(x)), 0

)
.

Since W is a compact operator, then for any n ∈N\{0, 1}, (TL)n is too. Now, let k, s ∈N\{0} and n ∈N\{0, 1},
then we have

(TL)n(ek, es) =
(
λ
( n+1∏

r=3

s + r
)−1

es+n +
( n+1∏

r=2

k + r
)−1

ek+n, 0
)
.

It is clear that for all n ∈ N\{0, 1}, (TL)n is of infinite rank and since (TL)n is a compact operator, then by
Remark 2.3, (TL)n < Ωℓ ∪Ωr. Hence the result. □

Consequently, the product stability of pseudo-generalized invertible operators is not preserved in gen-
eral except for left-invertible or right-invertible operators. In the remainder of this section we focus on
some specific cases in which the pseudo-generalized invertibility of the product of commuting pseudo-
generalized invertible operators is preserved.

The following proposition serves as a starting point for our investigation.

Proposition 3.3. Let n ∈N\{0} and T,A,B ∈ B(X), such that TA = BT and TBT = BT2.

1) If T ∈ Ωℓn and B ∈ Ωℓ0, then TA ∈ Ωℓn.

2) If T ∈ Ωr
n and A ∈ Ωr

0, then TA ∈ Ωr
n.

3) If T,A ∈ Ωℓn and there exists S ∈ TSℓn such that AS = SB, then TA ∈ Ωℓn.

4) If T,B ∈ Ωr
n and there exists S ∈ TSr

n such that AS = SB, then TA ∈ Ωr
n.
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Proof.
First, we will prove by induction that

TkA = BTk, ∀k ≥ 1.

In fact, for k = 1 the result is obvious. Now, for k ≥ 2, assume that TkA = BTk. Since TBT = BT2,we see that

Tk+1A = TBTk = (TBT)Tk−1 = BTk+1,

hence the result.
Therefore, we are able to prove, by induction, that

(TA)k = TkAk = BkTk = (BT)k, ∀k ∈N.

For k = 0 and k = 1, the result is obvious. Now, for k ≥ 2, assume that

(TA)k = TkAk = BkTk = (BT)k

and let us prove that
(TA)k+1 = Tk+1Ak+1 = Bk+1Tk+1 = (BT)k+1.

We see that
(TA)k+1 = (TA)kTA = BkTk+1A = Bk+1Tk+1.

Similarly,
(BT)k+1 = BT(BT)k = BTk+1Ak = Tk+1Ak+1.

1) Let S ∈ TSℓn and L ∈ BSℓ0, then

(TA)nSLTA = (TA)nSLBT = BnTnST = BnTn = (TA)n.

2) Let S ∈ TSr
n and L ∈ ASr

0, then

TALS(TA)n = TSTnAn = TnAn = (TA)n.

3) Let L ∈ ASℓn, then

(TA)nLSTA = TnAnLSBT = TnAnLAST = TnAnST = BnTnST = (TA)n.

4) Let L ∈ BSr
n, then

TASL(TA)n = TSBLBnTn = TSBnTn = TSTnAn = TnAn = (TA)n.

Therefore the proof is complete. □

Proposition 3.4. Let n ∈N\{0}, T,A ∈ B(X) such that Tn = Tn+1 and TA = AT.

1) If A ∈ Ωℓn, then TA ∈ Ωℓn.

2) If A ∈ Ωr
n, then TA ∈ Ωr

n.

Proof.
1) Let B ∈ ASℓn, then we see that

(TA)nB(TA) = TnAnBAT = TnAnT = Tn+1An = TnAn = (TA)n.

Hence the result.
2) This assertion can be proved in the same way as 1). □

As a consequence of Proposition 3.4, we obtain the following corollary.
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Corollary 3.5. Let n ∈N\{0}, T ∈ B(X) and P ∈ B(X) be a projection such that PT = TP.

1) If T ∈ Ωℓn, then TP ∈ Ωℓn.

2) If T ∈ Ωr
n, then TP ∈ Ωr

n.

Now we state the following result.

Theorem 3.6. Let T,A ∈ B(X) such that T ∈ Ωℓ1, A ∈ Ω
ℓ
n, for some n ∈ N and let X1 be a topological complement

of N(T) in X. If

(1) AT = TA,

(2) A(X1) ⊆ X1,

then AT ∈ Ωℓn.

Proof.
Let P be a projection of range R(T) and let us denote by i the canonical injection of X1 into X. Define

T1 : X1 −→ R(T)
x 7−→ Tx.

We know that S = iT−1
1 P is a 12-inverse of T (see [1]). Since A(X1) ⊆ X1 and AT = TA, then

AT1x = i1T1Ax, ∀x ∈ X1,

where i1 is the canonical injection of X1 into X. Now, let y ∈ R(T), then T−1
1 y ∈ X1. So

AT1T−1
1 y = i1T1AT−1

1 y, ∀ y ∈ R(T),

and this implies that
Ay = i1T1AT−1

1 y, ∀y ∈ R(T).

Since AT = TA, it follows that A(R(T)) ⊆ R(T), and hence

iT−1
1 Ay = iT−1

1 T1AT−1
1 y, ∀ y ∈ R(T).

Therefore,

iT−1
1 Ay = AT−1

1 y, ∀ y ∈ R(T). (*)

Now, let B ∈ ASℓn, since TA = AT and PT = T, then

(AT)nBS(AT) = TnAnBT−1
1 PAT = TnAnBT−1

1 AT.

So, by (*), we see that
(AT)nBS(AT) = TnAnBAT−1

1 T.

As AnBA = An,we get

(AT)nBS(AT) = TnAnT−1
1 T = AnTnT−1

1 T = AnTnST = (AT)n.

Hence the result. □

Consequently, under the same hypotheses as in Theorem 3.6, if T is 1-invertible then the 1-invertibility
can be obtained for any power of T.
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Corollary 3.7. Let T ∈ Ωℓ1 and X1 be a topological complement of N(T). If R(T) ⊆ X1, then

Tn
∈ Ωℓ1, ∀n ∈N\{0}.

Proof.
Since T ∈ Ωℓ1 and T(X1) = R(T), then T(X1) ⊆ X1. By Theorem 3.6, we deduce that T2

∈ Ωℓ1. Now, suppose
that for some k ≥ 2,we have Tk

∈ Ωℓ1.We will show that Tk+1
∈ Ωℓ1. Notice that

Tk(X1) ⊆ Tk−1(X1) ⊆ · · · ⊆ T(X1) ⊆ X1

and since TTk = TkT, then by Theorem 3.6 we deduce that Tk+1
∈ Ωℓ1. Hence the result. □

We also have a result analogous to Theorem 3.6, for right pseudo-generalized invertible operators.

Theorem 3.8. Let A,T ∈ B(X) such that A ∈ Ωr
n, where n ∈N and T ∈ Ωr

1. Let X2 be a topological complement of
R(T) in X. If

(1) AT = TA,

(2) X2 ⊆ N(A),

then AT ∈ Ωr
n.

Proof.
Let X1 be a topological complement of N(T) in X, P the projection onto R(T) along X2, i the canonical injection
of X1 into X and

T1 : X1 −→ R(T)
x 7−→ Tx.

We know that S = iT−1
1 P is a 12-inverse of T (see [1]). Let x ∈ X, so there exists (x1, x2) ∈ R(T) × X2, such that

x = x1 + x2. Since X2 ⊆ N(A),we obtain
APx = Ax1 = Ax,

this implies that AP = A. Now, let B ∈ B(X), such that ABAn = An. Then

(AT)SB(AT)n = ATT−1
1 PBAnTn = APBAnTn = ABAnTn = (AT)n.

Hence the result. □

As a consequence we obtain the following result.

Corollary 3.9. Let T ∈ Ωr
1 and X2 be a topological complement of R(T). If X2 ⊆ N(T), then

Tn
∈ Ωr

1, ∀n ∈N\{0}.

Proof. Since T ∈ Ωr
1 and X2 ⊆ N(T), by Theorem 3.8, we deduce that T2

∈ Ωr
1. Now, assume that for k ≥ 2,

we have Tk
∈ Ωr

1.We will show that Tk+1
∈ Ωr

1. First, we notice that

X2 ⊆ N(T) ⊆ N(Tk).

Moreover, since TTk = TkT, so from Theorem 3.8 we deduce that Tk+1
∈ Ωr

1. This completes the proof. □

Finally, as in [9, Lemma 5, P. 126], we obtain the following proposition.

Proposition 3.10. Let n ∈N\{0} and A,T ∈ B(X), such that An = A2n−1
∈ Ωℓ1 (= Ωr

1) and TA = AT.

1) If T ∈ Ωℓn and there exist C,D ∈ B(X), such that TD + CA = I, then TA ∈ Ωℓn.
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2) If T ∈ Ωr
n and there exist C,D ∈ B(X), such that DT + AC = I, then TA ∈ Ωr

n.

Proof.
1) Let S ∈ TSℓn and B ∈ ASr

n. Since TD + CA = I, then we see that

(TA)nSBAn−1(TA) = AnTnS(CA + TD)BAnT
= AnTnSCAnT + AnTnDBAnT.

Consequently, we see that

(TA)nSBAn−1(TA) = AnTnS(I − TD)An−1T + AnTn−1(I − CA)BAnT.

Using the fact that TA = AT, AnBA = An and A2n−1 = An, it follows that

(TA)nSBAn−1(TA) = AnTn
− AnTn−1TDAn−1T + AnTn

− AnTn−1CAAn−1T.

Finally, we obtain

(TA)nSBAn−1(TA) = (AT)n + AnTn
− AnTn−1(TD + CA)An−1T = (TA)n.

Hence the result.
2) As in 1),we can deduce that TA ∈ Ωr

n. □

4. Adjoint and product in the case of Hilbert spaces

In this section, H denotes a complex Hilbert space of infinite dimension. For T ∈ B(H),we denote by T∗

its adjoint. We recall that T is n-left pseudo-generalized invertible, for some n ∈N, if and only if its adjoint
T∗ is n-right pseudo-generalized invertible. In this section, if T is a pseudo-generalized invertible operator,
we give some cases where the product TT∗ still pseudo-generalized invertible.

In our starting result, we deal with normal right pseudo-generalized invertible operators.

Proposition 4.1. Let n ∈ N\{0} and T ∈ B(H) be a normal operator. If T ∈ Ωr
n and there exists S ∈ B(H), such

that TSTn = Tn with TS self-adjoint, then
(TT∗)n

∈ Ωℓ1 (= Ωr
1).

Moreover, we have SS∗ ∈ TT∗Sℓn ∩ TT∗Sr
n and Sn(S∗)n is a 11-inverse of (TT∗)n.

Proof.
Since TSTn = Tn and TS is self-adjoint, then

((TT∗)n Sn(S∗)n (TT∗)n = (T∗)n Tn−1(TS) Sn−1(S∗)n−1(TS)∗ (T∗)n−1Tn

= Tn−1 ((T∗)nS∗T∗) Sn−1(S∗)n−1(TSTn) (T∗)n−1

= Tn−1 (T∗)n Sn−1(S∗)n−1Tn (T∗)n−1.

Hence, by repeating the same process, we obtain

(TT∗)n Sn(S∗)n (TT∗)n = (TT∗)n.

This implies that (TT∗)n
∈ Ωℓ1 (= Ωr

1) and TT∗ is therefore n-left and n-right pseudo generalized invertible.
Also, we have

(TT∗)n SS∗ TT∗ = (T∗)n Tn S(TS)∗ T
= (T∗)n Tn STST
= (TT∗)n.

This implies that SS∗ is a n-left pseudo-generalized inverse of TT∗, and also SS∗ is a n-right pseudo-
generalized inverse of TT∗. □

Similarly, for normal left pseudo-generalized invertible operators, we have



A. Lahmar, H. Skhiri / Filomat 36:13 (2022), 4575–4590 4585

Proposition 4.2. Let n ∈ N\{0} and T ∈ B(H) be a normal operator. If T ∈ Ωℓn and there exists S ∈ B(H), such
that TnST = Tn and ST is self-adjoint, then

(TT∗)n
∈ Ωℓ1 (= Ωr

1).

Moreover, we have S∗S ∈ TT∗Sℓn ∩ TT∗Sr
n and (S∗)nSn is a 11-inverse of (TT∗)n.

Proof.
As T ∈ Ωℓn, Tn = TnST and ST is self-adjoint, then T∗ ∈ Ωr

n, T∗
n = T∗ S∗ T∗n and T∗S∗ is self-adjoint. Since T is

normal, the result can be deduced, from Proposition 4.1. □

It is natural to ask if Propositions 4.1 and 4.2 can be generalized to normal operators.

Question : The conclusion of Proposition 4.1 (resp. Proposition 4.2) holds if we suppose only that TS (resp.
ST) is normal?

Now, let us give the following result.

Proposition 4.3. Let n ∈ N\{0}, T ∈ B(H), be a normal operator such that T ∈ Ωℓn ∩ Ωr
n and TSℓn ∩ TSr

n , ∅.
If there exists S ∈ TSℓn ∩ TSr

n such that TS is normal, then TT∗ ∈ Ωℓn ∩ Ωr
n and SS∗ is a n-left (resp. n-right)

pseudo-generalized inverse of TT∗.

Proof.
As S ∈ TSℓn,we see that

(TT∗)nSS∗TT∗ = (T∗)n Tn−1 (TS) (TS)∗ T.

Since TS is normal, it follows that

(TT∗)nSS∗TT∗ = Tn−1(T∗)nS∗T∗TST = Tn−1(TSTn)∗TST.

Now, as S ∈ TSr
n,we have

(TT∗)nSS∗TT∗ = Tn−1(T∗)nTST = (TT∗)n.

From the fact that TT∗ and SS∗ are self-adjoint, we deduce the result. □

Finally, in the same way, as in Proposition 4.3, we obtain the following result.

Proposition 4.4. Let n ∈N\{0}, T ∈ B(H) be a normal operator such that T ∈ Ωℓn∩Ωr
n and TSℓn∩ TSr

n , ∅. If there
exists S ∈ TSℓn∩TSr

n such that ST is normal, then TT∗ ∈ Ωℓn∩Ωr
n and S∗S is a n-left (resp. n-right) pseudo-generalized

inverse of TT∗.

5. Some other results of product

In this section, we return to the case of Banach spaces. Other results of product related to pseudo-
generalized invertible operators will be presented giving some applications to the notion of 1-invertibility.
First, recall that T ∈ B(X) is Drazin invertible if there exists S ∈ B(X) such that

TnST = Tn, STS = S and TS = ST. (5.1)

In such a case, S is unique, called the Drazin inverse of T and denoted by TD. For a better understanding of
this notion see [2, 3, 5, 11] and we refer to [6], for a more general concept. Clearly, if T is Drazin invertible,
then T is pseudo-generalized invertible and if S ∈ B(X) is a n-left (resp. n-right) pseudo-generalized inverse,
such that TS = ST, then (TS)n+1 = (TS)n. Consequently, TS ∈ Ωℓ ∩Ωr, In fact, more generally, we have the
following remark.

Remark 5.1. Let n ∈ N\{0}, T ∈ Ωℓn (resp. Ωr
n) and S, L ∈ B(X), such that SL ∈ TSℓn (resp. TSr

n). It is clear that if
TS = ST, then TS ∈ Ωℓn (resp. Ωr

n) and if TL = LT, then TL ∈ Ωℓn (resp. Ωr
n).
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As an application, we see in the following that the notion of pseudo-generalized invertibility allows
us to establish the 1-invertibility in some special cases. Let us start with the following lemma, which is a
generalization of [4, Theorem 3.8.7] proved for 1-invertible operators.

Lemma 5.2. Let n ∈ N\{0}, T ∈ B(X) and U ∈ B(X) be an invertible operator. If one of the following assertions
holds :

(1) T ∈ Ωℓn and S ∈ TSℓn such that TnS ∈ Ωℓ1 and I + S(U − T) is invertible,

(2) T ∈ Ωr
n and S ∈ TSr

n such that TnS ∈ Ωr
1 and I + (U − T)S is invertible,

then Tn
∈ Ωℓ1 (= Ωr

1).

Proof.
If the first assertion holds and if we suppose that V ∈ B(X) is the inverse of I + S(U − T),we see that

Tn = Tn(I + S(U − T))V = (Tn + TnSU − TnST)V = TnSUV.

As UV is invertible and TnS ∈ Ωℓ1,we obtain Tn
∈ Ωℓ1.

Now, if the assertion (2) holds, then the result can be obtained in the same way. The proof is therefore
complete. □.

For a subspace M ⊆ X,we denote by T|M the restriction of T from M onto M.
Now, we discuss some cases in which the pseudo-generalized invertibility of two operators allows us

to obtain the 1-invertibility of their product. First, we start with the left pseudo-generalized invertibility.

Proposition 5.3. Let A,T ∈ B(X) such that N(AT) ⊆ N(T) and N(T) be a complemented subspace of X and let X1be
a topological complement of N(T). If

(1) A(X1) ⊆ X1 and T(X1) ⊆ X1,

(2) T1 = T|X1 ∈ Ω
ℓ
1 and A1 = A|X1 ∈ Ω

ℓ
n, where n ∈N,

(3) T1A1 = A1T1,

then AT ∈ Ωℓ1.

Proof.
Since T1 ∈ Ω

ℓ
1, A1 ∈ Ω

ℓ
n, A1T1 = T1A1 and N(T1) = {0}, then by Theorem 3.6, A1T1 ∈ Ω

ℓ
n in B(X1). Now, we

have (AT)|X1 = A1T1, N(AT) = N(T) is complemented and

AT(X1) ⊆ A(X1) ⊆ X1,

where X1 is a topological complement of N(AT). Then according to [7, Proposition 8.1], we get AT ∈ Ωℓ1. □

A similar result in the case of right pseudo-generalized invertibility can be also obtained.

Proposition 5.4. Let, A,T ∈ B(X) such that A(R(T)) = R(T) and R(T) be complemented in X and let X2 be a
topological complement of R(T). If

(1) X2 ⊆ N(T),

(2) T2 = T|R(T) ∈ Ω
r
1 and A2 = A|R(T) ∈ Ω

r
n, where n ∈N,

(3) T2A2 = A2T2,

then AT ∈ Ωr
1.
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Proof.
Since X2 ⊆ N(T), it follows that

R(T) = T(R(T) ∔ X2) = T(R(T)) = R(T2).

So T2 is onto and hence {0} is the topological complement of R(T2) in R(T). Therefore Theorem 3.8 allows us
to deduce that A2T2 ∈ Ω

r
n. Now, since A(R(T)) = R(T), we get (AT)|R(T) = A2T2 ∈ Ω

r
n. As X2 is a topological

complement of R(T) and X2 ⊆ N(T) ⊆ N(AT), then by [7, Proposition 8.2], we deduce that AT ∈ Ωr
1. □

The last result of this section is the following proposition.

Proposition 5.5. Let T,S ∈ B(X).

1) If T,S ∈ Ωℓ such that α(T) < +∞ and α(S) < +∞, then TS ∈ Ωℓ1.

2) If T,S ∈ Ωr such that β(T) < +∞ and β(S) < +∞, then TS ∈ Ωr
1.

Proof.

1) By [7, Proposition 4.1], we have T,S ∈ Ωℓ1. Therefore, from [2, Theorem 4, P. 137] we deduce that TS ∈ Ωℓ1.

2) Using the same argument, we get the stated result. □

6. Results on pseudo-generalized inverses

In this section for a left pseudo-generalized invertible operator T, we discuss in some special cases the
relationship between TSℓn and TSℓk.We start our investigation by establishing the following lemma, which
will be used in subsequent proofs.

Lemma 6.1. Let n ∈N\{0, 1}, T ∈ Ωℓ1 (= Ωr
1).

1) If there exist S ∈ TSℓ1, L ∈
TSℓn and F ∈ B(X), such that S(R(F)) ⊆ N(Tn−1) with

T = TLT + F,

then L ∈ TSℓn−1.

2) If there exist S ∈ TSr
1, L ∈

TSr
n and F ∈ B(X), such that S(R(Tn−1)) ⊆ N(F) with

T = TLT + F,

then L ∈ TSr
n−1.

Proof.
1) Since T = TLT + F, it follows that

Tn−1STST = Tn−1STLTST + Tn−1SFST.

Now, as TST = T and S(R(F)) ⊆ N(Tn−1),we deduce that

Tn−1 = Tn−1STLT = Tn−1LT.

Hence L ∈ TSℓn−1.
2) This assertion can be proved in the same way as 1). □

Now, we state the following proposition, giving a more general result.
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Proposition 6.2. Let n ∈ N\{0, 1}, T ∈ Ωℓ1 and L ∈ TSℓn. If there exist S ∈ TSℓ1 and F ∈ B(X), such that
S(R(F)) ⊆ N(Tn−k), for some 1 ≤ k ≤ n − 1 with T = TLT + F, then L ∈ TSℓn−k.

Proof.
• The case n = 2 is obvious.
• If n > 2.As S(R(F)) ⊆ N(Tn−k),we deduce that S(R(F)) ⊆ N(Tn−1). So, according to Lemma 6.1, we conclude
that L ∈ TSℓn−1. Now, if n > 2 and k > 1, taking into account that L ∈ TSℓn−1 and S(R(F)) ⊆ N(Tn−k) ⊆ N(Tn−2),
by Lemma 6.1 we obtain that L ∈ TSℓn−2. Finally, we repeat the same process k times, hence we see that
L ∈ TSℓn−k. □

In the same way, we obtain for right pseudo-generalized inverses :

Proposition 6.3. Let n ∈ N\{0, 1}, T ∈ Ωr
1 and L ∈ TSr

n. If there exist S ∈ TSℓ1 and F ∈ B(X), such that
S(R(Tn−k)) ⊆ N(F), for some 1 ≤ k ≤ n − 1 and T = TLT + F, then L ∈ TSr

n−k.

Next, some particular cases where the subsets of pseudo-generalized inverses coincide are given. First,
we state the following lemma which we use to prove Propositions 6.5 and 6.6.

Lemma 6.4. Let n ∈N\{0} and T ∈ B(X).

1) If T ∈ Ωℓn and there exists S ∈ TSℓn such that R(S) ⊆ N(I − T), then Tn = Tk, for all k ≥ n.

2) If T ∈ Ωr
n and there exists S ∈ TSr

n such that R(I − T) ⊆ N(S), then Tn = Tk, for all k ≥ n.

Proof.
1) From R(S) ⊆ N(I − T), it follows that S = TS. Therefore,

TnST = Tn+1ST.

Since S ∈ TSℓn,we deduce that Tn = Tn+1. Consequently, Tn = Tk, for all k ≥ n.
2) Can be proven using the same argument. □

Proposition 6.5. Let n ∈N\{0} and T ∈ Ωℓn. If there exist λ ∈ C∗ and S ∈ TSℓn such that R(S) ⊆ N(λ − T), then

Tn = λn−kTk, ∀ k ≥ n

and
TSℓn =

TSℓk, ∀ k ≥ n.

Proof.
First, we know that

T ∈ Ωℓn ⇐⇒ λT ∈ Ωℓn,∀λ ∈ C
∗.

Hence, we have T
λ ∈ Ω

ℓ
n. Also, by hypothesis, we see that λS ∈

T
λSℓn. Additionally, as R(S) = R(λS),we have

R(λS) ⊆ N
(
I −

T
λ

)
.

Therefore, by Lemma 6.4, we deduce that (T
λ

)n
=
(T
λ

)k
, ∀k ≥ n

which implies that
Tn = λn−kTk, ∀k ≥ n.
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Now let L ∈ TSℓk,where k ≥ n. As TkLT = Tk and Tn = λn−kTk,we see that

λn−kTkLT = λn−kTk.

Consequently,
TnLT = Tn.

□

For right pseudo-generalized inverses, as in Proposition 6.5, we can prove the following result.

Proposition 6.6. Let n ∈N\{0} and T ∈ Ωr
n. If there exist λ ∈ C∗ and S ∈ TSr

n such that R(λ − T) ⊆ N(S), then

Tn = λn−kTk, ∀ k ≥ n

and
TSr

n =
TSr

k, ∀ k ≥ n.

The next Lemmas will be used to prove Proposition 6.9.

Lemma 6.7. Let n ∈N\{0} and T ∈ Ωℓn. If I − T ∈ Ωℓ1, and TSℓn ∩ I−TSℓ1 , ∅, then

TSℓn =
TSℓk, ∀k ≥ n.

Proof.
Let L ∈ TSℓn ∩ I−TSℓ1, then

I − T = (I − T)L(I − T) = L − TL − LT + TLT.

This implies that
T = I − L + TL + LT − TLT.

Therefore,
Tn+1 = Tn

− TnL + Tn+1L + TnLT − Tn+1LT
= Tn

− TnL + Tn+1L + Tn
− Tn+1.

Hence,
2Tn+2 = 2Tn+1

− TnLT + Tn+1LT
= 3Tn+1

− Tn.

Let S ∈ TSℓn+1, then S ∈ TSℓn+2. By multiplying this last equality, on the right hand side, by ST,we obtain

2Tn+2 = 3Tn+1
− TnST.

Consequently, clearly Tn = TnST and S ∈ TSℓn.Now, suppose that TSℓn = TSℓk,we will show that TSℓn = TSℓk+1,
for all k ≥ n.
First, we know that TSℓn ⊆ TSℓk+1. Let S ∈ TSℓk+1,we have

2Tk+2 = 3Tk+1
− Tk.

Therefore,
2Tk+2 = 3Tk+1

− TkST,

and so Tk = TkST. This implies that S ∈ TSℓk =
TSℓn. The proof is completed. □

Using the same argument as the previous lemma, we obtain :

Lemma 6.8. Let n ∈N\{0} and T ∈ Ωℓn. If I − T ∈ Ωr
1 and TSr

n ∩
I−TSr

1 , ∅, then

TSr
n =

TSr
k, ∀k ≥ n.
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As a final result, we give the following proposition.

Proposition 6.9. Let n ∈N\{0}.

1) If T ∈ Ωℓn and there exists λ ∈ C∗ such that λ − T ∈ Ωℓ1 and if TSℓn ∩ λ−TSℓ1 , ∅, then

TSℓn =
TSℓk, ∀ k ≥ n.

2) If T ∈ Ωr
n and there exists λ ∈ C∗ such that λ − T ∈ Ωr

1 and if TSr
n ∩

λ−TSr
1 , ∅, then

TSr
n =

TSr
k, ∀ k ≥ n.

Proof.
1) First, since T ∈ Ωℓn and λ − T ∈ Ωℓ1, it follows that

T
λ
∈ Ωℓn and I −

T
λ
∈ Ωℓ1.

In addition, if we have TSℓn ∩ λ−TSℓ1 , ∅, then there exists S ∈ TSℓn ∩ λ−TSℓ1. So λS ∈
T
λSℓn ∩ I− T

λSℓ1. It follows
that

T
λSℓn ∩

I− T
λSℓ1 , ∅

and hence, by Lemma 6.7,
T
λSℓn =

T
λSℓk, ∀ k ≥ n.

Now, let L ∈ TSℓk, then λL ∈
T
λSℓk and therefore λL ∈

T
λSℓn. Consequently, L ∈ TSℓn.

2) This assertion can be proved in the same way as 1). □
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