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Abstract. This paper mainly introduces some properties of several generalized inverses of matrices,
especially some equivalent characteristics of generalized inverses of matrices, specifically by constructing
some specific matrix equations and discussing whether these matrix equations have solutions in a given
set to determine whether a group invertible matrix is some generalized inverse of matrices.

1. Introduction

Throughout this paper, Cn×n stands for the set of all n × n complex matrices. AH denotes the conjugate
transpose matrix of A ∈ Cn×n. Recall that a matrix A ∈ Cn×n is said to be group invertible [4] if there exists
X ∈ Cn×n such that

AXA = A,XAX = X,AX = XA

hold. If such matrix X exists, then it is unique, denoted by A#, and called the group inverse of A. It is well
known that the group inverse of A ∈ Cn×n exists if and only if rank(A2) = rank(A) [1].

A matrix A ∈ Cn×n is said to be Moore-Penrose invertible [5–7, 11] if there exists X ∈ Cn×n such that

AXA = A,XAX = X, (AX)H = AX, (XA)H = XA

hold. According to [11], such matrix X always exists uniquely, denoted by A+, and called the Moore-Penrose
inverse of A.

A matrix A ∈ Cn×n is called EP [12] if A# exists and A# = A+; A is called partial isometry (or PI) [3] if
A+ = AH; A is said to be normal [2] if AAH = AHA; A is said to be SEP if A is EP and PI.

In [10], it has studied the generalized inverse of an operator with the aid of specific operator equation.
In [15], it has studied the connection between the normal element and the existence of solutions to some
equation on rings in a given set.

In [13], it has discussed the necessary and sufficient conditions for the EP element and the existence of
solutions to equations on rings in a given set.

Inspired by these, the purpose of this paper is that we collect some new characteristics of EP matrices,
normal matrices and partial isometry matrices through various matrices equations admitting solutions in
a definite set ρA = {A,A#,A+,AH, (A#)H, (A+)H

}, (A+)#, (A#)+}.
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2. Several lemmas

We begin with the following lemma.

Lemma 2.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if A+ = (A#)HA+A#.
Proof ”⇒ ” Assume that A is SEP. Then A# = A+ = AH, which implies (A#)HA+A# = AA+A# = A# = A+.
” ⇐ ” If A+ = (A#)HA+A#, then AHA+ = AH(A#)HA+A#. Noting that AH(A#)HA+ = (AA#)H(A+AA+) =
(A+A2A#)HA+ = (A+A)HA+ = A+. Then AHA+ = A+A#. Thus A is SEP by [14, Theorem 1.5.3].

Observing carefully the proof of Lemma 2.1, we have the following corollary.

Corollary 2.2. Let A ∈ Cn×n be a group invertible matrix. Then
(1) AH(A#)HA+ = A+ = A+AH(A#)H;
(2) A is a SEP matrix if and only if A# = (A#)HA+A#.

Now we give following lemma which proof is routine.

Lemma 2.3. Let A ∈ Cn×n be a group invertible matrix. Then

(1) (A+)# = (AA#)HA(AA#)H;

(2) (A#)+ = A+A3A+;

(3) (A#)HA+A# is an EP matrix and ((A#)HA+A#)+ = A+A3AHA+A = (A#)+AAHA+A.

Corollary 2.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if (A#)HA+ = A+A.

Proof By Corollary 2.2, A is a SEP matrix if and only if A# = (A#)HA+A#. By Lemma 2.3, we obtain A is a
SEP matrix if and only if

A+A3A+ = A+A3AHA+A.

Multiplying the equality one left by (A#)HA+A# and again by Corollary 2.2, one has A is a SEP matrix if and
only if (A#)HA+ = A+A.

Lemma 2.1 and Lemma 2.3(3) imply the following corollary.

Corollary 2.5. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if A = A+A3AHA+A =
(A#)+AAHA+A.

Also Lemma 2.1, Lemma 2.3(1) and (3) imply the following corollary.

Corollary 2.6. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if (AA#)HA(AA#)H =
A+A3AHA+A.

3. Consistency of relative equations

According to Lemma 2.1, we can construct the following equation.

(A#)HXA# = A+. (3.1)

Theorem 3.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(3.1) is consistent
in Cn×n, and the general solution of Eq.(3.1) is given by

X = A+ +U − AA+UAA+, where U ∈ Cn×n. (3.2)
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Proof ”⇒ ” Assume that A is SEP. Then A+ = (A#)HA+A# by Lemma 2.1, this gives

(A#)H(A+ +U − AA+UAA+)A# = A+. (3.3)

Hence the formula (3.2) is the solution of Eq.(3.1).
Now, let X = X0 be any solution of Eq.(3.1). Then (A#)HX0A# = A+,
which implies

AA+X0AA+ = (AA+)AH((A#)HX0A#)A2A+ = AA+AHA+A2A+.

Noting that A is SEP. Then AA+AHA+A2A+ = AA#A#A#A2A# = A# = A+, it follows that AA+X0AA+ = A+.
Choose U = X0. Then X0 = A+ +U − AA+UAA+. This shows that the Formula (3.2) is the general solution
of Eq.(3.1).
”⇐ ” If the general solution of Eq.(3.1) is given by (3.2), then

(A#)H(A+ +U − AA+UAA+)A# = A+,

e.1. (A#)HA+A# = A+.

Hence A is SEP by Lemma 2.1.

Remark 3.2. Let A ∈ Cn×n be a group invertible matrix. Then A is an EP matrix if and only if Eq.(3.1) is consistent
in Cn×n.

In this case, the general solution of Eq.(3.1) is given by

X = AH +U − AA+UAA+, where U ∈ Cn×n. (3.4)

Proof ”⇒ ” If A is EP, then (A#)HAHA# = (A#)HAHA+ = A+ by Corollary 2.2. Hence Eq.(3.1) is consistent.
”⇐ ” Assume that Eq.(3.1) is consistent, then A+ = (A#)HX0A# for some X0 ∈ Cn×n, this gives A+ = A+A+A.
Hence A is EP.

The rest can be similarly proved as Theorem 3.1.

Now we construct the following equation.

A+XAA+(A#)H = A+. (3.5)

Theorem 3.3. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(3.4) is given by (3.3).
Proof It is routine.

Remark 3.2 and Theorm 3.3 imply the following corollary.

Corollary 3.4. Let A ∈ Cn×n be a group invertible matrix. Then A is an EP matrix if and only if Eq.(3.1) and Eq.(3.4)
have the same solution.

Now we consider the following equation.

(AA#)HXAA+ = A+. (3.6)

Theorem 3.5. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(3.5) is given by (3.2).

Proof Similar to the proof of Theorem 3.1, we can easy prove it.

Clearly, Theorem 3.3 and Thorem 3.5 lead to the following corollary.

Corollary 3.6. Let A ∈ Cn×n be a group invertible matrix. Then A is is an SEP matrix if and only if Eq.(3.1) and
Eq.(3.5) have the same solution.
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4. The solution of a matrix equation in a given set

According to Lemma 2.1, we can construct the following equation.

X = (A#)HXA#. (4.1)

The following theorem follows from [16, Theorem 2.8].

Theorem 4.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(4.1) has at least
one solution in ρA = {A,A#,A+,AH, (A#)H, (A+)H, (A+)#, (A#)+}.

It is well known that A is SEP if and only if A# is SEP. Hence use A# to replace A in Eq.(4.1), we have
the following equation.

X = AHXA. (4.2)

Theorem 4.1 implies the following corollary.

Corollary 4.2. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(4.2) has at least
one solution in ρA.

Noting that if A is SEP, then A+ = A#. Hence we can change Eq.(4.2) as follows.

X + A+ = AHXA + A#. (4.3)

Theorem 4.3. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(4.3) has at least
one solution in ρA.

Proof ”⇒ ” If A is a SEP matrix, then X = A+ is a solution because A+ = A# = AH.
”⇐ ” 1) If X = A, then A+A+ = AHAA+A#, Post-multiplying the equality by A+A, one yields A+ = A+A+A.
Hence A is EP, which implies A+ = A#, this gives A = AHAA, it follows that X = A is a solution of Eq.(4.2).
Hence A is SEP by Corollary 4.2;
2) If X = A#, then A# + A+ = AHA#A + A#. Post-multiplying the equality by A+A, one yields A+ = A+A+A.
Hence A is EP, which implies A# = AHA#A, Thus X = A# is a solution of Eq.(4.2). Hence A is SEP by
Corollary 4.2;
3) If X = A+, then A+ + A+ = AHA+A + A#. Pre-multiplying the equality by A+A, one gets A# = A+AA#.
Hence A is EP, it follows that A+ = AHA+A. Thus A is SEP by Corollary 4.2;
4) If X = AH, then AH + A+ = AHAHA + A#. Similar to the proof of 3), we can show that A is SEP;
5) If X = (A+)H, then (A+)H + A+ = AH(A+)HA + A#. Post-multiplying the equality by A+A, one obtains
A+ = A+A+A. Hence A is EP, which implies (A+)H = AH(A+)HA. Thus X = (A+)H is a solution of Eq.(4.2).
By Corollary 4.2, we have A is SEP;
6) If X = (A#)H, then (A#)H + A+ = AH(A#)HA + A#. Pre-multiplying the equality by A+A, one yields
A# = A+AA#. Hence A is EP, one obtains (A#)H = AH(A#)HA. By Corollary 4.2, we have A is SEP because
X = (A#)H is a solution Eq.(4.2);
7) If X = (A+)#, then (A+)#+A+ = AH(A+)#A+A#. Pre-multiplying the equality by A+A, one has A# = A+AA#.
Hence A is EP, this leads to X = (A+)# = A is a solution. Hence A is SEP by 1);
8) If X = (A#)+, then (A#)+ + A+ = AH(A#)+A + A#. Pre-multiplying the equality by A+A and using Lemma
2.3, we have A# = A+AA#. Hence A is EP. Now X = (A#)+ = A is a solution. Thus A is SEP by 1).

5. The general solution of equations

Now we generalize Eq.(4.1) as follows

X = (A#)HYA#. (5.1)
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Theorem 5.1. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Eq.(5.1) is given by{
X = (A#)HPA#

Y = P + V − AA+VAA+, where P,V ∈ Cn×n. (5.2)

Proof First, we have
(A#)H(P + V − AA+VAA+)A# = (A#)HPA#.

Hence Formula (5.2) is the solution of Eq.(5.1).

Next, let
{

X = X0

Y = Y0
be a solution of Eq.(5.1). Then X0 = (A#)HY0A#.

Choose P = AA+AHX0A2A+, V = Y0.
Then (A#)HPA# = (A#)HAA+AHX0A2A+A# = (A#)HAHX0AA#

= (A#)HAH(A#)HY0A#AA# = (A#)HY0A# = X0.
And Y0 = AA+Y0AA+ + Y0 − AA+Y0AA+

= AA+AH(A#)HY0A#A2A+ + Y0 − AA+Y0AA+

= AA+AHX0A2A+ + Y0 − AA+Y0AA+ = P + V − AA+VAA+

Hence
{

X0 = (A#)HPA#

Y0 = P + V − AA+VAA+,
it follows that the general solution of Eq.(5.1) is given by Formula (5.2).

Theorem 5.2. Let A ∈ Cn×n be a group invertible matrix. Then A is SEP if and only if the general solution of
Eq.(5.1) is given by{

X = (A#)HPAH

Y = P + V − AA+VAA+, where P,V ∈ Cn×n. (5.3)

Proof ”⇒ ” If A is SEP, then A# = AH, which implies Formula (5.3) is same as Formula (5.2). By Theorem
5.1, the general solution of Eq.(5.1) is given by Formula (5.3).
” ⇐ ” If the general solution of Eq.(5.1) is given by Formula (5.3), then (A#)HPAH =
(A#)H(P + V − AA+VAA+)A#,
that is, (A#)HPAH = (A#)HPA# for all P ∈ Cn×n. Especially, choose P = AH. Then we have AH = (AA#)HA#,
this gives A = (A#)HAA#. By Theorem 4.1, we obtain that A is SEP.

It is not clear which equation has the general solution given by Formula (5.3), so, we construct the
following equation.

X = (A#)HYAA+AH. (5.4)

Theorem 5.3. Let A ∈ Cn×n be a group invertible matrix. Then the general solution of Formula (5.4) is given by{
X = (A#)HPAH

Y = P + V − AA+VAA+, where P,V ∈ Cn×n and PA+ = PAA+A+. (5.5)

Proof First, Formula (5.5) is the solution to Eq.(5.4). In fact,
(A#)H(P + V − AA+VAA+)AA+AH = (A#)HPAA+AH

= (A#)HPAA+A+AAH = (A#)HPA+AAH = (A#)HPAH.

Next, let
{

X = X0
Y = Y0

be the any solution of Eq.(5.4). Then

X0 = (A#)HY0AA+AH.
Choose P = AA+AHX0(A#)H, V = Y0.
Then PAA+A+ = AA+AHX0(A#)HAA+A+ = AA+AHX0(A#)HA+ = PA+;
(A#)HPAH = (A#)HAA+AHX0(A#)HAH = (A#)HAHX0(A#)HAH

= (A#)HAH((A#)HY0AA+AH)(A#)HAH
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= (A#)HY0AA+AH = X0;
Y0 = AA+VAA+ + Y0 − AA+VAA+

= AA+Y0AA+ + Y0 − AA+VAA+

= AA+AH(A#)HY0AA+AH(A#)H + Y0 − AA+VAA+

= AA+AHX0(A#)H + Y0 − AA+VAA+

= P + Y0 − AA+VAA+.
Hence the general solution of Eq.(5.4) is given by Formula (5.5).

Theorem 5.4. Let A ∈ Cn×n be a group invertible matrix. Then A is a SEP matrix if and only if Eq.(5.1) and Eq.(5.4)
have the same solution.

Proof ” ⇒ ” If A is SEP, then A is EP and by Theorem 5.2, the general solution of Eq.(5.1) is given by
Formula (5.3). Since A is EP, we have PA+ = PAA+A+ for each P ∈ Cn×n. So by Theorem 5.3, the general
solution of Eq.(5.4) is given by Formula (5.3), this implies Eq.(5.1) and Eq.(5.4) have the same solution.
”⇐ ” If Eq.(5.1) and Eq.(5.4) have the same solution, then, by Theorem 5.1, the general solution of Eq.(5.4)
is given by Formula (5.2). Thus we have

(A#)HPA# = (A#)H(P + V − AA+VAA+)AA+AH

i.e. (A#)HPA# = (A#)HPAA+AH for all P ∈ Cn×n, especially, take P = A#A, then (A#)HA# = (AA#)H. It follows
that AA# = (A#)HA# = (AA#)H, so A is EP. And then by Theorem 5.3, the general solution of Eq.(5.4) is given
by (5.5), so by (5.3). This leads to the general solution of Eq.(5.1) is given by (5.3). By Theorem 5.2, A is SEP.

6. The solutions of bivariate equations in a given set

Nothing that A+ = A+AH(A#)H. Hence, by Lemma 2.1, we have A is SEP if and only if A+AH(A#)H =
(A#)HA+A#. So we can construct the following equation.

XAHY = YXA#. (6.1)

Theorem 6.1. Let A ∈ Cn×n be a group invertible matrix. Then A is a PI matrix if and only if Eq.(6.1) has at least
one solution in τA

2 = {(X,Y)|X,Y ∈ τA}, where τA = {A,A#,A+, (A+)H, (A#)H
}.

Proof ”⇒ ” Assume that A is PI, Then AH = A+, this infers (X,Y) = (A,A#) is a solution.
”⇐ ” I) If Y = A, then we have the following equation.

XAHA = AXA#. (6.2)

1) If X = A, then AAHA = A2A# = A. Hence A is PI;
2) If X = A#, then A#AHA = AA#A# = A#, this gives A = A2A# = A2A#AHA = AAHA. Hence A is PI;
3) If X = A+, then A+AHA = AA+A# = A#, which implies A# = A+AHA = A+A(A+AHA) = A+AA#. Hence A
is EP, it follows that X = A+ = A#. Thus A is PI by 2);
4) If X = (A+)H, then (A+)HAHA = A(A+)HA#. e.g. A = A(A+)HA#, it follows from Corollary 2.2 that
A#A = (A+)HA#. Hence A = (A+)HA#A = (A+)H, which infers A is PI;
5) If X = (A#)H, then (A#)HAHA = A(A#)HA#, one gets

(En − AA+)(A#)HAHA = 0,
this gives (En − AA+)AH = (En − AA+)(A#)HAHAA+AH = 0. Hence A is EP, which infers X = (A#)H = (A+)H.
Thus is A is PI by 5);

II) If Y = A#, then we have the following equation.

XAHA# = A#XA#. (6.3)
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6) If X = A, then AAHA# = A#AA# = A#. Hence A is PI by 2);
7) If X = A#, then A#AHA# = A#A#A#, this give A = A2(A#A#A#)A2 = A2(A#AHA#)A2 = AAHA. Hence A is
PI;
8) If X = A+, then A+AHA# = A#A+A# = (A#)3. This gives (En − A+A)(A#)3 = 0, and (En − A+A)A =
(En − A+A)(A#)3A4 = 0. Hence A is EP and so X = A+ = A#. Thus A is PI by 7);
9) If X = (A+)H, then (A+)HAHA# = A#(A+)HA#, e.g. A# = A#(A+)HA#.
Hence A = AA#A = AA#(A+)HA#A = (A+)H, it follows that A is PI;
10) If X = (A#)H, then (A#)HAHA# = A#(A#)HA#.
One obtains (En−A+A)A#(A#)HA# = (En−A+A)(A#)HAHA# = 0, and (En−A+A)A#(A#)H = (En−A+A)A#(A#)HA#A2A+ =
0.
Hence (En − A+A)A# = (En − A+A)A#(A#)HAHA+A = 0, which implies A is EP. Thus X = (A#)H = (A+)H, by
9), we have A is PI;

III) If Y = A+, then we have the following equation.

XAHA+ = A+XA#. (6.4)

11) If X = A, then AAHA+ = A+AA#, one has AAHA+(En − A+A) = A+AA#(En − A+A) = 0. Pre-multiplying
the last equality by (A#)HA+, one has A+ = A+A+A. Hence A is EP, which implies Y = A+ = A#. Thus A is
PI by II);
12) If X = A#, then A#AHA+ = A+A#A#, it gives A+A#A#(En−AA+) = 0, and AA#(En−AA+) = A3A+A#A#(En−

AA+) = 0. Hence A is EP, which infers Y = A#. Thus A is PI by II);
13) If X = A+, then A+AHA+ = A+A+A#, so A+AHA+(En−A+A) = 0, and AHA+(En−A+A) = (A#A)HAA+AHA+(En−

AA+) = 0. Hence A+(En − A+A) = (A#)HAHA+(En − A+A) = 0, it gives A is EP. Thus Y = A+ = A# and A is
PI by II);
14) If X = (A+)H, then (A+)HAHA+ = A+(A+)HA#, e.g. AA+A+ = A+(A+)HA#, this gives (En−AA+)A+(A+)HA# =
0, and by Corollary 2.2 (En − AA+)A+(A+)H = (En − AA+)A+(A+)HA#A = 0.
Hence (En −AA+)A+ = (En −AA+)A+(A+)HAH = 0, which implies A is EP and so Y = A+ = A#. Thus A is PI
by II);
15) If X = (A#)H, then (A#)HAHA+ = A+(A#)HA#, e.g. A+ = A+(A#)HA#.
Hence A is EP and so X = (A#)H = (A+)H. By 14), we have A is PI;

IV) If Y = (A+)H, then we have the following equation

XAH(A+)H = (A+)HXA#.

that is,

XA+A = (A+)HXA#. (6.5)

16) If X = A, then A = AA+A = (A+)HAA# = (A+)H. Hence A is PI;
17) If X = A#, then A# = A#A+A = (A+)HA#A#, this gives A = A#A2 = (A+)HA#A#A2 = (A+)H. Hence A is PI;
18) If X = A+, then A+A+A = (A+)HA+A#, so (En−AA+)A+A+A = 0 and (En−AA+)A+ = (En−AA+)A+A+A(AA#)H =
0. Hence A is EP, which implies X = A+ = A#. Thus A is PI by 17);
19) If X = (A+)H, then (A+)H = (A+)HA+A = (A+)H(A+)HA#, it follows (A+)HA = (A+)H(A+)HA#A =
(A+)H(A+)H.
Hence A+A2 = AH(A+)HA = AH(A+)H(A+)H = A+A(A+)H and A2 = A(A+)H. Thus A is PI;
20) If X = (A#)H, then (A#)HA+A = (A+)H(A#)HA#, this gives (En − AA+)(A#)HA+A = 0, and (En − AA+)A+ =
(En − AA+)(A#)HA+AAHA+ = 0. Hence A is EP and so X = (A#)H = (A+)H. Thus A is PI by 19);

V) If Y = (A#)H, then we have the following equation.

XAH(A#)H = (A#)HXA#. (6.6)



W. Nie, J. Wei / Filomat 36:13 (2022), 4591–4598 4598

21) If X = A, then AAH(A#)H = (A#)HAA#, this gives

(En − AA+)(A#)HAA# = 0.

It follows that
(En − AA+)(A#)H = (En − AA+)(A#)HAA#A2A+ = 0.

Hence A is EP, which implies Y = (A#)H = (A+)H. By IV), we have A is PI;
22) If X = A#, then A#AH(A#)H = (A#)HA#A#, it gives

A#AH(A#)H(En − A+A) = 0.

Pre-multiplying the last equality by A+A+A2, one has A+(En −A+A) = 0. Hence A is EP and so Y = (A#)H =
(A+)H. By IV), A is PI;
23) If X = A+, then A+AH(A#)H = (A#)HA+A#, e.g. A+ = (A#)HA+A#, one yields

A+ = (A#)HA+A#A+A = A+A+A.

Hence A is EP, this infers Y = (A+)H. Thus A is PI by IV);
24) If X = (A+)H, then (A+)HAH(A#)H = (A#)H(A+)HA#.
Applying the involution to the equality, one has A#AA+ = (A#)HA+A#, this gives

A#AA+(En − A+A) = 0,

and
A+(En − A+A) = A+AA#AA+(En − A+A) = 0.

Hence A is EP and so Y = (A+)H. Thus A is PI by IV);
25) If X = (A#)H, then (A#)H = (A#)HAH(A#)H = (A#)H(A#)HA#, it follows that

A+ = A+AH(A#)H = A+AH(A#)H(A#)HA# = A+(A#)HA#,

so A+(En − A+A) = A+(A#)HA#(En − A+A) = 0, Hence A is EP, it follows that A+A = A+(A#)HA#A =
A+(A+)HA#A = A+(A+)H.Thus A is PI.
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