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Abstract. In this paper, we consider the impulsive fractional integro-differential equations involving
Atangana-Baleanu fractional derivative. The main tools consist a fractional integral operator contains
generalized Mittag-Leffler function, Gronwall-Bellman inequality with continuous functions and the Kras-
noselskii’s fixed point theorem.

1. Introduction

Fractional differential equations play a key role to describe various problems in different areas of
science. Fractional models are more useful than the classical models. Fractional differential equations are
used in economics, image processing, physics, and so on. For detailed information on fractional differential
equations and their applications, see [2, 4, 7, 9, 11, 21, 22, 33].

Nonsingular Caputo and Riemann-Liouville version of fractional differential operator with Mittag-
Leffler function as its kernel is introduced in [5]. Bonyah et al. [8] constituted a mathematical model
involving AB-fractional derivative for co-infection of cancer and hepatitis diseases. They analyzed stability
analysis, existence and uniqueness, and reproductive number. The fractional-order tumor-immune-vitamin
model with AB-fractional derivative was presented for existence, uniqueness, and Hyers-Ulam stability
in [3]. Researchers [20] prepared a chaotic and comparative work of tumor and effector cells through the
fractional tumor-immune dynamical mode with AB-fractional derivative. In [12], the numerical solution
of the fractional immunogenetic tumor model was studied by utilizing the fractional AB derivative.

It was given that a work on transmission dynamics of COVID-19 mathematical model under ABC-
fractional-order derivative [29]. A mathematical model with AB-fractional derivative was investigated [23]
for spreading of COVID-19 infection in the world. Moreover, Logeswari et al. created a framework that
generates numerical outcomes to predict the outcome of the infection spreading all over India. For other
important works on this topic, see [1, 6, 13-15, 32].
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In [30], Liang et al. discussed the impulsive fractional differential equations with boundary value
problems of the form

“Dix(t) = f(t,x(), t € ] ]t bay ey b, 1 [0,T],
Ax(t) = u(ty —t;) = Ik(t;), k=0, 1,2,
ax(0) + bx(T) =,

where “D? is the Caputo fractional derivative of order a € (0,1) with the lower limit zero, f : ] X R —» R
is jointly continuous and t; satisfies 0 = t) < t; < ... <ty < typ1 = T, x(t;) = lime — 0+ x(t + €) and
x(t,) = lime — 0 — x(t + €) represent the right and left limits of x(f) at t = t.Iy € C(R,R), and 4, b, ¢ are real
constants witha + b # 0.

Yukunthorn et al. [34] studied the impulsive Hadamard fractional differential equations with boundary
value problems of the form:

DI x(t) = f(t,x(t), t€Ji Clto, T], t =t
Ax(tk) = (pk(x(tk)), k=1,2,..,m

x(to) + px(T) = Y yiflx(ti),
=0

where CDP * is the Hadamard fractional derivative of order 0 < px < 1 on intervals J; = (#, tk+1] k=1,2,..,m,
with Jp = [tO,tl] 0<t <t <t3< <t < <ty <ty =T are the impulse points, | := [ty, T], f : ] X ]R - ]R
is a continuous function, ¢ € C(R, R), ]'7’ is the Hadamard fractional integral of order g; > 0,i = 1 2,.
The jump conditions are defined by Ax(tk) = x(t]) — x(t), x(t]) = lime — 0*x(t + €),k = 1,2,3,.

Inspired by the works of [19, 26, 31], on the hne of [18, 24], we take into consideration multi—derivative
nonlinear impulsive FDEs involving Riemann-Liouville version of AB-fractional derivative (ABR deriva-
tive) of the from:

oDiw(7) = f(7, w(1), Bw(1)), t € ], 1
wt)) =wlt)) +yr, Yk ER, (2)
w(0) =wp e R (3)

where | = [0,T], T > 0, 0 < a < 1, D¢ denotes the ABR-fractional differential operator of order a and
feC(JxRxR — R)is anonlinear function,

Ba)(T)=ka(T,s,a)(s))ds, k:AX[0,T]> R, A={(1,s):0<s<1<T}
0

0=70<T1<T2< . <Tpy =1, Awlr=r, = a)(’c;) - a)(’c,:),
w(t)) = hhr& (T +h) and w(t}) = hlirgl_ w(t +h)

represent the right and left hand limits of 7(t) at T = ;.

We provide an equivalent fractional integral equation to ABR-FDEs (1)-(2) analytically. Using the
properties of fractional integral operator ey,y,w;u +» we obtain some results. The existence of solution is
established by using Krasnoselskii’s fixed point theorem. We get uniqueness of solution via Gronwall-
Bellman inequality as well as using the properties of fractional integral operator ¢, Pt

The paper is structured as follows: In section 2, we introduce the required background for the de-
velopment of the paper. The existence and uniqueness results of impulsive fractional integro differential
equations are discussed in section 3.
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2. Preliminaries

This section includes some definitions and facts on AB-fractional derivative and the generalized Mittag-
Leffler function.

Definition 2.1. ([16]) Let p € [1, o0) and w be an open subset of R. The Sobolev space HP (w) is defined by
HP(w) = {f € L*(w) : DPf € L*(w) forall |p| < w).

Definition 2.2. ([5]) Let x € H'(0,1) and 0 < a < 1. The left Atangana-Baleanu fractional derivative of w of order
a in Riemann-Liouville sense (ABR derivative) is defined by

. B(a) d N
Df = - a)dof E, ((1 )(T—O) )a)(o)do,

where B(a) > 0 is a normalization function satisfying B(0) = B(1) = 1and IE is one parameter Mittag-Leffler function.

Definition 2.3. ([5]) Let € H'(0,1) and 0 < a < 1. The left Atangana-Baleanu fractional derivative of x of order
a in Caputo sense is defined by

D = B@ ]E(

= d-w (T—a)“)a) (0)do.

(1-a)
where B(a) > 0 is a normalization function satisfying B(0) = B(1) = 1and IE is one parameter Mittag-Leffler function.

Definition 2.4. ([10, 17]) The generalized Mittag-Leffler function IEZZ,[;(Z) for the complex a, B with Re(ar) > 0 is
defined by

Eop@ = Z P(ak +5 k'
where yy is the Pochhammer symbol given by

yo=1, yk=y(y+1...(y+k-1), k=1,2,3,...

Note that
]Ei,}g(z) = ]Ea,ﬁ(z)/ ]Ecl,,,l(z) = [E,(2).

We need the following results related with Laplace transformation.

Lemma 2.5. ([5]) If L{f(7); p} = F(p), then Df{f(T);P}=M PEp)

— gy Q.
1-a p*+1%;

kip®~ B
(pa+a)k+1 ’

Lemma 2.6. ([27]) L[#*F1E) (xat); p| = E®t = 4

Definition 2.7. ([17, 28]) Let p, 4, w,y € C(Re(p), Re(u) > 0), b > a. The fractional integral operator E,
class L(a, b) is defined by

p,u,w;a+ ona

t
(€], s )T = f (x - o)), [wo(x - 0 1é(o)do, 7 € [, b].

Lemma 2.8. ([17,28]) Let p, u, w,y € C(Re(p), Re(u) > 0), b > a. The operator &)
that

is bounded on Cla, b] such

o, u,w;a+

IEL s )OIl < QU
where ok
(6211 lw(b — a)**P)|
Re(u)
=b-a) Z IC(ok + WI[Re(p)k + p(u)] k!
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Lemma 2.9. ([17, 28]) Let p, 4, w,y € C(Re(p), Re(u) > 0). The operator E,
and for f € L(a, b) its left inversion is given by the relation

-1 HEV oY
( pyma+ f)T_ D Spywa-#f)’r/ lZ<T§b,

o 15 invertible in the space L(a, b)

wherev € C, (Re(v) > 0) and D.T" is the Riemann-Liouville fractional differential operator of order u + v with lower
terminal a.

Lemma 2.10. ([17, 28]) Let p, u, w,y € C(Re(p), Re(u) > 0). If the integral equation

t
f (t- o)V_llEg,y[x(t - 0)lp(o)do = f(t), a <t <D,
a
is solvable in the space L(a, b), then its unique solution ¢(t) is given by
(1) = (Dé‘:"g;’é/w;ﬁf)’c, a<t<b,

where v € C, (Re(v) > 0) and D" is the Riemann-Liouville fractional differential operator of order i + v with lower
terminal a.

Lemma 2.11. ([2]) (Krasnoselskii’s fixed point theorem) Let w be a Banach space. Let S be a bounded, closed, convex
subset of w and F1,F, be maps of S into w such that F1w + Fon € S for every pair w,n € S. If F7 is contraction and
> is completely continuous, then the equation

Flw + Fro = w
has a solution on S.

Lemma 2.12. ([25]) (Gronwall-Bellman inequality) Let u and f be continuous and nonnegative functions defined
on | = [a, B], and c be a nonnegative constant. Then the inequality

u(t) < C+ fT flo)u(o)d(o), te]

implies that
u(t) < Cexp(f flo)d(o)), t€]

Lemma 2.13. For any function h € C(]), the function w € C(]) is a solution of ABR-FDEs

oDra(t) = h(7), T €], 4)
w(t)) = w(t) + ¥k, Yk ER, 5)
w(0) = wy € R, (6)

if and only if x is a solution of fractional integral equation

wo + B(a) [ R T((l—ol;) (- a)“) @' (0)do + fOT o)do, fort €[0,11),
B(a) 01 ((1 a5 (T - o)“)a) (0)do + fo h(o)do, fort € (11,72),
i+ taot 2 [UE ((1 =5(t = 0)*) @' (0)do + [ h(o)do, for T € (12, 73),

Y yi+ w0+ 12 [V Ea (55%5(1 - 0)*) ' (0)do + [ h(o)do, forT € (T, TI.
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Proof. (=) Assume that w satisfies (4)-(6). If T € [0, 71), then we obtain the followings:

sD%w(t) = h(1),t €], 8)
w(0) = wy €R, )

w(T) = wy + ()f (

If T € (11, 12), then we have

(T - 0)“) w’'(0)do + fT h(o)do.
0

\DY(r) = h(x), T €T,
(1) = (t) + Yo Y€ R,

(1) = w(t]) - j:l h(o)do + wp + 1B(_a) ; E ( __aa)(”[ - o)"‘) w'(0)do + fT h(o)do
( )

:w('rf)+y1—j; h(a)da+wo+n ]E (

- )(’L' —0) )a) (0)do + j(; h(o)do

(t— a)“) ' (0)do + f h(o)do
0

:y1+wo+B(a) 1]E ((1 )

If T € (15, T3), then we find

(1) = w(ty) - jo‘ 2 h(o)do + wo + 1B(_a; j(; 1 E, ((1%0;)(1 - o)"‘) w'(0)do + f(; h(o)do

= () + Y2 — jom h(o)do + wo + 1B(_02 OTl E, ((1—_aa) (T - a)“) ' (0)do + fOT h(o)do

= y1+ Yo+ wo + 1B (_“‘)X fo E, ( (1__“a) (t— o)”‘) W' (0)do + fo h(o)da.

Let consider the case 7 € (1, T]. Then we conclude

w(T)ziyl+a)o+—f (
i=1

(&) Conversely, assume that w satisfies the impulsive equations (7). Using the definition of fractional
integral operator & the equivalent fractional integral equation (7) to the ABR-FDEs (4)-(6) is given by

(T -0)* )a)’(a)dc7+ fT h(o)do. (10)
0

p,1,w;a+7

- B(a t
w(t) = Z Yi + wp — % (]E;/L%;ma)) (t) + j; h(o)do, T€].
i=1
O

Theorem 2.14. For any f € C(] X R, R), the function w € C(]) is a solution of ABR-FDEs (1)—(2) if and only if w
is a solution of fractional integral equation

m T t
w(T) = ; Yi+wo — 1B(_a; | E, ((1—_aa) (t— a)“) w(o)do + [} flo,w(o))do, te]. 11
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Proof. Proof follows by taking h(t) = f(17,w(t)), T € J in the Lemma 2.8. [J

The proof of following theorem is based on the properties of fractional integral operator 8P ot Studied
in [46, 47].
Theorem 2.15. Let 0 < a < 1. Define the function ¥ on C(J) by
B(@)
(F)0) = s (€L 00| D0 € CO), T (12)

Then we have the followings:

1. F is bounded linear operator on C(J).

2. F satisfies Lipschitz condition.

3. F(S) is equicontinuous, where S is any bounded subset of C(]).

4. F is invertible and for any f € C(]), the operator equation ¥ w = f has unique solution in C(J) .

Proof. (i) Since, by definition and Lemma 2.3, the integral operator E!
on C(J), such that

w1, 20 is bounded and linear operator

IE, I<Qlwl, T€]

a,1, 7% 0+

where we find

(1) =T o T ( a )
Q= ler(ak+1)(ak+1)ll k! _;;F(ak+2)_TIE“’2 l—aT '
Since

B(a) B(a)

Fw = |||8 ||w|| for allw € C()),

a1, 7% 0+(u” -

¥ is bounded linear operator on C(J).

(ii) Let w, 1 € C(J). Then using the linearity of ¥ and boundedness of operator E! 01,204 we find
a a
F o) ~ Pl = [Fw = F)0) = x| (8L, g0~ 1) (0 < Lo lE], ey =
< Q ( ) IIw =1l

for any 7 € J. This gives

lF w - ( )

, w,1m € C(]).

Thus the operator F satisfies Lipschitz condition with Lipschitz constantTlf(T'JZIEa, (1 - T“)
(iii) Let S = {w € C(]) : llwll £ R} be a closed and bounded subset of C(J). Then for any w € S and any
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T1, T2 € | with 71 < T2, we obtain

Foo(e) = Fn(e) = 2o (8, g0 )(1 e I

B(a | f ( (71 - o)‘*) w(o)do — fo E, (ﬁ(@ - a)“) w(o)do]
A et o) [ oo

1B (_a{)1| | Ea ((1_—)(T2 - o)“)a)(a)da|
B fia‘))‘ g‘ | (1_aa )k 'r(ak 1) f (r1 = )" = (12 - @)“lw(0)do
1B (—a; r '(1_—aa )k Tk + D f " (2 - @)oo
- IEB—(O;) g(l aa)k T(ak+1) f (12 = ) = (11 = )} w(0)do
I;B—(C;) g (1 iza)k F(akl +1) :(72 a)“w(o)do
) liB‘(i‘) kZ.OO(l fa)k F(akl T3 [T ) @) = @) (- )
- IiB—(O;) ] (1 - a)k r(adc1 L G

From the above inequalities, it follows that if |t1 — Tp| — 0, then |Fw(t1) — F1(72)] — 0. This proves that
¥ (S) is equicontinious on J.
(iv) Using Lemma 2.4 and Lemma 2.5, for any f € C(J), we have

(811 . f)_l (1) = ( 0EL f)_l (1), 7 € (a,b), (13)

where 8 € C, with Re(f) > 0.
Then from the definition of operator ¥ and Eq. (13), we have

_ 1-a -1
FUN@ = (L, L of) 0= (0lre, . f) @ tewb.
This proves that ¥ is invertible on C(J) and the operator equation

(Fo)7) = f(r), T€]

has the unique solution

l1-a
w(®) = — (z)}):ﬁg}mﬁmf)(f), 7€ (@a,b).

O

We get the next existence theorem for the particular case of ABR-FDEs (1).



K. Karthikeyan et al. / Filomat 36:13 (2022), 4617-4627 4624

Theorem 2.16. If the function f € C(J X R, R), then ABR-FDEs D% = f(t, w(7)), T € ] is solvable in C(J) and has
a solution in C(J) given by

1- . \
w(t) = Baa (Défai,l,ﬁ;m f) (1), Te]
where B € C with Re(B) > 0 and fOT flo,w(0)d(o), T€].

3. Main results

Theorem 3.1. (Existence Theorem) Let the function f € C(] X R, R), satisfies Lipschitz type condition
[f(r, w,x1) = f(T, 0, k2)l < p(Dllw — 7l + 1 = k2], @, 7, %1, k2 € C(J),

wherep : ] - R*, with L = sup p(7). If0 < L < min {1, %}, then ABR-FDEs (1)—(2) has a solution in C(]) provided

B(@)TEaz (7%) T°
1. 14
T . < (14)
Proof. Define
_ |w0| + MfT + M*
1- LT - 2Ol

where M = sup|f(t,0,0) and M* > 0 is a constant such that )", )yi| < M. By the choice of L and condition
(14), we have R > 0. Consider the following set

S={we()):llwll <R}.

One can verify that S is closed, convex and bounded subset of Banach space w . Consider the operators
F1:S— wand F; : S = w defined by

(Fiw)(1) = Z Vi +wo + f(; f(o,w(0), Bw(o))do, T €],
i=1
(Faw)(7) = (Fw)(1), T€]

where we take ¥ as defined in the Eq. (12). The equivalent fractional integral Eq. (11) to the ABR- FDEs
(1)-(2) can be written as operator equation in the form w = Fiw + Frw, w € C(J).

We prove that the operators 7 and %, satisfy conditions of Lemma 2.6. The proof is given in the
following steps.
Step 1: F7 is contraction.

Using Lipschitz condition on f, for any w,n € C(J) and 7 € ], we get

(1, (), Bw(0)) = F (7, 1(7), Bn(0)l < p(D)lw = .
This gives
[F10 = Fanll < LTllw = 7ll, w, 11 € C(J).

Step 2: ¥ is completely continuous.

By Ascoli-Arzela theorem and Theorem 2.10, it can be easily verified that the operator #, = —F is
completely continuous.
Step 3: Fiw + Fon € S, forany w,n € S.
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For any w, 11 € S, using Theorem 2.10, we find

[(Frw + Fon)(0)] < [(Frw)(@)] + [(Fan)(D)]

= T B(a) a

<lovl+ Y i+ | 1#60t0), Batopldo + £ TE, [ T ] Il (15)

. ‘ ‘ B(a) a
< |wo| + M* + |f (0, w(0), Bw(0)) — f(0,0,0)|do + |f(0,0,0)|do + ——=TE,2| ——T*|R  (16)

0 0 1-«a 1-a)

. ‘ ‘ B(a) a .

<|wgol+ M+ L |f(w(0), Bw(0)) + My do + TE,» T*[R (17)
0 0 I-a (1-a)
< lwol + M* + LR + My + 2 1E | —% 19| R (18)
= 1o B A T o)
<l|wg| + M*+LRT + M T+MT]E a T*|R (19)
=10 e T A -a) ’
By definition of R, we get
B(@)TEqz (7%) T°

lwol + M;T +M* = R1 - LT — — . (20)

We write from inequalities (15) and (16)
(Frw +Fa)(D)| <R, T€].

This gives
(Frw + Foll < R, forall w, neS.

This shows that Fiw + 21 € S for w, 1 € S. From steps 1 to 3, it follows that all the conditions of Lemma
2.6 are satisfied. Therefore by applying it, the operator equation

w=Fw+Fw
has a fixed point in S, which is a solution of ABR-FDEs (1)—(2). This completes the proof of the theorem. [

In the following theorem, we prove the uniqueness of solution to ABR-FDEs (1)-(2) in two different
ways. Firstly we give the proof via properties of fractional integral operator 8[11 | o, and then by using
1,
the Gronwall-Bellman inequality.

Theorem 3.2. (Uniqueness Result) Under the assumptions of Theorem 3.1, the ABR-FDEs (1)—(2) has unique
solution in C(]).

Proof. There are two ways for proof.
Proof 1: The equivalent fractional integral equation to ABR-FDEs (1)—(2) can be stated in operator equation
form as

(8;1,%/{”0}) (T) = f(T)r TE ] (21)

l-a (mo —we+ fo ' f(o, (o), Bw(a))do) + Z i, TET
i=1
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By Theorem 3.1, the operator Eq.(11) is solvable in C(J). Therefore by applying Lemma 2.5, the operator
equation Eq.(11) has unique solution in C(J), which is the unique solution of ABR-FDEs (1)-(2).

Proof 2: Let w, 1 be two solutions of ABR-FDEs (1)—(2). Using linearity of fractional integral operator, we
get

1-a

|mwwmw(m—%38;ammm+£fmmwmwwﬂ—

B T
(W—Q%@hﬂmwﬂ+ﬁfmmm&mwﬂ|

B(a) (T —a
1-a J Ea('(l—a)
Ba) [~ a
1-aJ, IEO‘((l—oc)

“[ B
fo [%E“ ((1 f a)(T)a + pll(a))] |lw(o) = n(o)ldo

for any 7 € |. Applying Lemma 2.7, we obtain

(T - a)“l) lw(o) — n(o)ldo + fo pli(0)lw(o) — n(o)ldo

IN

av%wrmww+£mmmwrmww

lw(t) =n(7)| <0, T€]

which shows that w(t) = n(t) for all 7 € J. This proves the uniqueness of solution of ABR-FDEs (1)—(2). O
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