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p-matrices and p-tensors
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Abstract. In this manuscript we introduce the class of f-matrices, which gives a new sufficient condition
for the positivity of the determinant. However, we show that nonnegative f-matrices are not necessarily
P-matrices. For column stochastic matrices, the property of being a -matrix is weaker than strict diagonal
dominance. We extend f-matrices to tensors and call them S-tensors. Although they are not in general
P-tensors, we prove that nonnegative -tensors of odd order are P-tensors

1. Introduction

By the Levy-Desplanques theorem (see Corollary 5.6.17 of [4]), strictly diagonally dominant matrices
with positive diagonal entries provide an example of matrices with positive determinant. In fact, they are
also P-matrices, that is, all their principal minors are positive. A B-matrix is a matrix with positive row sums
and such that each off-diagonal entry is less than the corresponding row sum. B-matrices form another
class of P-matrices (see [8]) that is, in general, far from diagonally dominant matrices. In this paper, we
introduce a new class of matrices with positive determinant (called p-matrices) that is also, in general,
far from diagonal dominance. We call them p-matrices and we also show that they are not necessarily
P-matrices. For column stochastic matrices, the property of being a f-matrix is weaker than strict diagonal
dominance.

Strictly diagonally dominant matrices and B-matrices and their generalizations (see [6]) have been
extended to tensors (see [7], [9]). We also extend p-matrices to p-tensors and we prove that nonnegative
B-tensors of odd order are P-tensors.

The paper is organized as follows. Section 2 introduces p-matrices with their properties, examples and
counterexamples. In particular, we prove that a f-matrix has always a positive determinant. Their rela-
tionship with other classes of matrices is also analyzed. Section 3 is devoted to -tensors. We analyze their
relationship with other classes of tensors and some associated decompositions. We prove that nonnegative
B-tensors of odd order are P-tensors.

We finish the introduction with some basic definitions and notations. A real matrix A = (a;j)1<; j<n is a
Z-matrix if all its off-diagonal entries are nonpositive, i.e., a;; <0 for i # j. If all its entries are nonnegative,
then A is called nonnegative and it is denoted by A > 0. We say that a matrix A = (a;j)1<; j<n is strictly
diagonally dominant (by rows) if |a;il > }..;la;j| and that it is diagonally dominant (by rows) if |ai| > Y, laijl.
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Finally, we say that A is (strictly) diagonally dominant by columns if AT is (strictly) diagonally dominant by
rows.

2. B-matrices
We start this section by introducing the class of f-matrices.

Definition 2.1. Let A = (a;j)1<ij<n be a square real matrix with n > 2 such that, forall j=1,...,n,C; := Y ajj #
0, and let a;; := ?for all i, j and
7

S; = min{dij}, i= 1,...,1’1. (1)
1<j<n

We say that A is a p-matrix if, forall j=1,...,n,C; > 0 and

3 (Tpei i) =
aii>Si>?, i=1,...,n. (2)
The following theorem shows that a f-matrix has always positive determinant.
Theorem 2.2. If A is a p-matrix, then det A > 0.

Proof. If we define the matrix A= (@i11<ij<n and the diagonal matrix D := diag{Cy,...,C,}, observe that
A = AD and so it is sufficient to prove that det A > 0 because D has positive diagonal entries. The matrix
A satisfies ATe = ¢, where ¢ = a,..., 1)T. Therefore, 1 is an eigenvalue of A. Since A is real, its complex
non-real eigenvalues occur in conjugate pairs, whose product is positive. Since detA is the product of its
complex non-real eigenvalues and the real ones, it is sufficient to see that, if A # 1 is a real eigenvalue of A,
then A > 0.

If s = (s1,...,5,)7, we can write

A=A"+C ©)

where A% = (@jj — 5i)1<ij<n for all i,j and C := se’. By (2), A* has positive diagonal entries and, for all
i=1,...,n,

Z(ﬁik —5;) < dji — 8
ki

because
Z g — (n—2)s; < dj.
ki

Thus, A* is a strictly diagonally dominant matrix with positive diagonal entries. Then, by applying the
Gerschgorin circles by rows to A*, we deduce that the real eigenvalues of A* are positive.

Since A(# 1) is a real eigenvalue of A, there exists an eigenvector x(# 0) such that Ax = Ax. Trasposing
both parts of this equality, we have that AxT = xT AT and multiplying by e, we get

AxTe = xTATe = xTe
and so, (A — 1)(xTe) = 0, which implies that xTe = 0 and so e’ x = 0. Hence, by (3), we deduce that
Atx=(A-C)x = Ax —se’x = Ax = Ax

and A is also an eigenvalue of A*, and so positive, which proves the result. [J
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Remark 2.3. Let us notice that Theorem 2.2 still holds if we extend Definition 2.1 to the case n = 2 by modifying
condition (2). In fact, for n = 2, (2) can be replaced by a; > s; for i = 1,2. Following the arqumentation given in
the proof of Theorem 2.2, we see that, when n = 2, this new condition implies that the matrix A* in (3) is a diagonal
matrix with positive diagonal entries. Hence, it has positive determinant.

With some sign restrictions, let us see some relations of f-matrices with linear complementarity problems.
Let us recall that, given an # X n real matrix A and q € R", the linear complementarity problem, denoted by
LCP(A, g) consists of finding, if possible, vectors x € R" satisfying

Ax+q>0, x>0, x"(Ax+4)=0,

where the inequalities are entry wise. It is well known that A is a P-matrix if and only if the LCP(A, ) has
a unique solution x* for any g € R". Let us also recall that an n X n real matrix A is called a Q-matrix if
LCP(A, g) has a solution for any g € R” (see [1]).

Proposition 2.4. Let A = (a;j)1<ij<n be a B-matrix. Then the following properties hold.

i) If A is a Z-matrix, then it is strictly diagonally dominant by columns with positive diagonal entries and so it is
a P-matrix.
ii) If A is nonnegative, then it has positive diagonal entries and so it is a Q-matrix.

Proof. (i) If a Z-matrix is also a f-matrix, then it is strictly diagonally dominant by columns with positive
diagonal entries because it has positive column sums. It is well known that a strictly diagonally dominant
matrix with positive diagonal entries is a P-matrix.

(ii) If A is a nonnegative f-matrix, all entries 4;; are also nonnegative and then (1) and (2) imply that
di > s; 2 0 for all i. Then the positivity of all column sums C; also implies that A has positive diagonal
entries. Now the fact that A is a Q-matrix follows from Theorem (3.10) of Chapter 10 of [1] because it is a
nonnegative matrix with positive diagonal entries. [

However, as the following example shows, not all f-matrices are Q-matrices.

Example 2.5. Let us consider the matrix

10 3 3
A=1-4 1 =2].
-1 -1 1

We can see that A is a B-matrix since it has positive column sums and A satisfies (2). However, this example does not
satisfy the hypotheses of Proposition 2.4 i) or ii). In fact, we now show that it is not a Q-matrix because the LCP(A, q)
does not have a solution for g = (0, -1, -7, A feasible solution x = (x1, X2, x3) should verify that Ax +q > 0, i.e.,

10x, +3JC3+3X3 >0,
—1—4x1 +x,—2x3 >0,
-1-x1—x+x3>0,

with x1,x2,x3 > 0. The first inequality holds for any nonnegative value of the variables. However, the second and
third inequalities are incompatible. If =1 — 4x1 + x, — 2x3 and —1 — x1 — xp + x3 are nonnegative, its sum should be
also nonnegative. But =2 — 5x1 — x3 % 0 for any x1,x3 > 0, and hence, the LCP(A, q) does not have a solution and A
is not a Q-matrix.

Observe that the matrix A of Example 2.5 also shows that the transpose of a f-matrix is not necessarily
a B-matrix because AT has columns with negative sums.

The following remark shows that, for matrices A stochastic by columns (that is, A > 0 and ATe = ¢), the
concept of f-matrix is weaker than strict diagonal dominance by rows.
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Remark 2.6. Let n > 2 and let A = (a;j)1<i j<n be a matrix stochastic by columns. Then C; = 1forall j=1,...,n
and so @;; = a;j for all i, j. So, a matrix A stochastic by columns is a f-matrix if and only if the following condition
holds:

Ykwi Qi) — i
w s; = minf{a;}, i=1,...,n @

a; > s >
no n-2 " 717 gz

Observe also that, if a matrix stochastic by columns A is also strictly diagonally dominant by rows, then A is a
B-matrix because (4) clearly holds:

( Zk;ti aik) — aji

a; >s; > 0> s

i=1,...,n

The next remark shows that, in general, we cannot replace in Theorem 2.2 the condition (2) of Definition
2.1 by the condition (4).

Remark 2.7. A matrix A = (a;j)1<i,j<n With positive column sums and satisfying (4) can have nonpositive determi-
nant. In fact, take € > 0 and

2+¢ 2 0
A=| 2 3+¢ 3 1.
0 1 2+¢

Then detA = (2 + €)(e? + 5¢ — 1) < 0 for & small enough. However, A has positive column sums and satisfies (4):
24e>0>-¢3+e>2>2—cand2+e>0>-1-c¢.

The following example shows that, in spite of having positive determinant, nonnegative f-matrices are
not necessarily P-matrices.

Example 2.8. Let us consider the following matrix

3¢ 20 1
0 2+¢ 2 0

C=l 2 2 3:¢ 3| ()
1 0 1 2+¢

We can see that C is a B-matrix. The column sums are positive, C; = 6 + ¢ > 0 for j = 1,...,4, and the matrix C
given by Definition 2.1 satisfies (2) for i = 1,2,3,4. However, C is not a P-matrix. As it can be seen in Remark 2.7,
the principal minor using indices 2,3 and 4 is given by det A = (2 + €)(¢* + 5¢ — 1) and it takes negative values for
& small enough.

Observe that the previous example also shows that the property of being a f-matrix is not inherited by
principal submatrices. In fact, C is a f-matrix and its principal submatrix A is not a f-matrix (take into
account Remark 2.7 and Theorem 2.2).

The following examples show nonsymmetric and symmetric f-matrices that are far from being strictly
diagonally dominant matrices and from being B-matrices, which are other classes of matrices with positive
determinant.
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Example 2.9. Let us first consider the n X n (n > 2) matrix A:

Nae 1 e een e 1 n
no . 1
1

A= , >0
: 1
1  cev evv woi 1 n n+e

Observe that A is not strictly diagonally dominant and that it is not a B-matrix because n > ¥=2£_ The matrix A
has positive column sums and, if we construct the matrix A given by Definition 2.1, we can check that (2) holds:
n+e¢ 1 2n-1)—(n+e) _ n—-2+e
3n-2+4¢ 3n-2+¢ (Bn-2+e)mn-2) @Gu-2+¢e)n-2)

Then A is a -matrix and, by Theorem 2.2, det A > 0.

The next matrix B is very close to the previous matrix A, although B is symmetric. The n X n (n > 2 even)
symmetric matrix B has also n + € on the main diagonal, it has n,1,n,1,...,n,1,n on the line below (and above)
the main diagonal, and 1’s elsewhere. Observe again that B is not strictly diagonally dominant and that it is not a
B-matrix because n > 3=2*<  The matrix B also satisfies Definition 2.1, and so B is also a p-matrix and, by Theorem
2.2, detB > 0.

3. p-tensors

A real mth order n-dimensional tensor A = (a;,..;,) € R"™" is a multi-array of real entries 4;,..;, € R,
wherei, € N:={1,...,n}fork =1,...,m. We call the set of entries aj,..;, the i-th row of Afori,iy,...,i, € N.
A tensor A is called diagonally dominant if

n

aid > Y il i€ N, ©6)

12 # (iyeo/1)

If (6) holds strictly, then A is called strictly diagonally dominant.

We say that A = (4;,..;,,) € R s nonnegative if a;,..;, > 0 for all iy, ...,i, € N and that A is a Z-tensor
if all its off-diagonal entries are nonpositive. Let us now introduce the important concept of P-tensor and
some previous notations. Let us first recall that, given an m-th order tensor A = (a;,..,,) € RI"1 and x € R,
then Ax"~! € R" is given by

n

(ﬂxm‘l)i = Z iy, Xiy -+ X;,, foreachi=1,...,n.

Given an index iy € N with k € {1,...,m}, let us define the ixth mode-k sum of A (see [2]), 7(A, ik, k), as

n

(A, i, k) = Z Ay iy » ?)

1 e flk=1 041 oo i =1

This sum will play the role of the row sums of the matrix whenever k = 1 and the role of the column
sums for a given j € {2,...,m}. We are also interested in the case where the tensor is diagonally dominant
with respect to this index j. In this case, we say that the tensor A is strictly k-diagonally dominant if
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n

lai..i| > Z i |, 1 € N. (8)

01 eesik1 ikt 1 oo A # (eeesf)

Definition 3.1. (see [3] or page 192 of [9]) A tensor A € RI™™ is called a P-tensor if for each nonzero x € R" there
exists an index i € N such that

XN A > 0. )

For the case of tensors of order 2, a P-tensor coincides with a P-matrix (see page 338 of [3]). We now consider
an extension of the definition of -matrices to the higher order case. This definition will give us a sufficient
condition to identify nonnegative odd order P-tensors.

Definition 3.2. Givenm >2andk € {2,...,m},let A = (a;,.;,) € R™ e q real tensor such thatforallj=1,...,n

n

Cr=rA= Y i, 0, (10)

i1 ee k1 A 1 ool =1

~ Ajir i o .
let dij..;, = CZZ—C’for all i,iy,. .., 0, and
S; = mm {d,’,’z...im} fOT’ i= 1, oo n. (11)
120l

We say that A is a B-tensor (for the index k) if, foralli=1,...,n,C; > 0 and

Z. PPN PP, Jip

~ 12,0 i # (1., 1) Hllpe1 i1

Aj.; > S; > 20 r) - . (12)
nm-l—2

As it has been the case with structured matrices and the linear complementarity problem, structured
tensors and its application to the tensor complementarity problem have received a lot of attention recently.
Given a tensor A = (a;,..;,) € R and a vector g € R", the tensor complementarity problem, denoted by
TCP(A,q), consists of finding a vector x € R" such that

x>0, Ax" 1 +4>0, (A" +4)=0.
We say that A is a Q-tensor if the TCP(A,q) has a solution for all 4 € R".

Proposition 3.3. Let A be a B-tensor for an index k € {2,...,m}. Then the following properties hold:

i) If Ais a Z-tensor, then it is strictly k-diagonally dominant with positive diagonal entries.
ii) If A is nonnegative, then it has positive diagonal entries and so it is a Q-tensor.

Proof. i) If a B-tensor is also a Z-tensor, it is strictly k-diagonally dominant with positive diagonal entries
because its mode-k sums (10) are positive.

ii) If A is a nonnegative S-tensor, formula (11) implies that 4;..; > s; > 0 for all i € N. Moreover, since
its mode-k sums (10) are positive, A has positive diagonal entries. Hence, A is a nonnegative tensor with
positive diagonal entries and it is a Q-tensor by Theorem 3.2 of [5]. O

Let us now introduce the Yang-Yang transformation, first used in [10]. Given n nonzero real numbers
dy,...,d,, we define the tensor

T = (tii,) = Y(A,dy,...,dy),
whose entries are given by

til"'im = (dil)_(m_l)diz e dimail'"im
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foranyij e N,j=1,...,m. Given a f-tensor A, let us define
A= Y(A1/Cy,...,1/Cp), (13)

where C; are the sums defined in (10) for j = 1,...,n. We are going to see that, when A is a p-tensor, A can
be decomposed as the sum of a strictly diagonally dominant tensor and a rank-one tensor.

Proposition 3.4. Let A = (a;,..;,) € R"™" be a p-tensor and let A be the tensor given by (13). Then
A=8B+C, (14)
where B is a strictly diagonally dominant tensor with positive diagonal entries and C is a rank-one tensor.

Proof. Let us first define the tensor C := (cj,..4,) such that ¢;,..;, = s; Cl’.f‘l, where s;, and C;, are given by
formulas (10) and (11). Then we consider the tensor 8 := A — C. Let us check that 8 is strictly diagonally
dominant with positive diagonal entries. Fori=1,...,n,

n n

Z iy, C11 = 5,CI Y| = Z (@iiy-i,, — 8)CI L

Then we need to prove the following inequality

n

Z (Giiyei,, — si)C;.”‘l < Qj..i — SiC;ﬂ_l, (15)

or analogously,

n

Z (Giiyewip, — Si) < @i — S

which holds because of (12). Hence, 8 is strictly diagonally dominant with positive diagonal entries. [J

Now we analyze the relationship of nonnegative f-tensors with P-tensors. By Example 2.8 we know that
B-tensors of even order are not necessarily P-tensors. As a consequence of the decomposition (14), in the
proof of the following result we are going to deduce that A is a P-tensor whenever it is a nonnegative tensor
of odd order. Then, because of the nice properties of the Yang-Yang transformation, we can conclude that
Ais also a P-tensor, and so, nonnegative -tensors of odd order are always P-tensors.

Theorem 3.5. Let A = (a;,..;,) € R be a nonnegative p-tensor of odd order m. Then A is a P-tensor.

Proof. Givenx # 0 € R", let us consider the decomposition (14) of A. We have thats; > 0 and that (Cx"~'); =
siCl" N (x1 + ...+ x,)" > 0 for all i € N because A is nonnegative. Hence, x"~'s;C/" 1 (x; + ...+ x,)" 1 >0
for i € N. Since 8 is a strictly diagonally dominant tensor with positive diagonal entries, it is a P-tensor
by Corollary 3.2 of [3]. So there exists an index i € N such that x”~!(8x™!); > 0. Hence, for that index we
deduce that

XA = Y (B + (O > 0,

and so A is a P-tensor.
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Given a nonzero vector x, let us now check that A is a P-tensor. Given an index j € N, because of the
relationship between A and A we see that

n

(A" = Z jiyiyy Xiy *** X,

1,eeeim=1
1 g
R M RO
- cim=D ; Zl 1Cj Ci,---Ci, Ci,xi, - - - Ci, i,
] 27eeerbm=
1 2 ,,m—1
= D (AY");,

]

where y = (Cyx1,...,Cyx,). We have that y # 0 because C; > 0 for all j € N. Then, since A is a P-tensor,
we deduce that there exists and index i € N such that yl’,”‘l(?(y’”‘l),- > 0. Hence, using again that C; > 0 we
conclude that

vyt
Cm—l C?’_l

1

(Ay"™ N = YA, > 0,
and so, that A is a P-tensor. [J
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