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Abstract. Let σA and σB be two homomorphisms on Banach algebras A and B, respectively. In this paper,
we study σ-amenability, σ-weak amenability, σ-biflatness, and σ-biprojectivity of triangular Banach algebras
of the form TσA ,σB , where σ = σA ⊕ σB.

1. Introduction

Let A be a Banach algebra. The set of all continuous homomorphisms from A into A is denoted by
Hom(A). Suppose that σ ∈ Hom(A), and that X is a Banach A-bimodule. A bounded linear map D : A −→ X
is a σ-derivation if D(ab) = D(a).σ(b) + σ(a).D(b) for all a, b ∈ A. A σ-derivation D is σ-inner derivation if there
exists x ∈ X such that D(a) = σ(a) ·x−x ·σ(a) for all a ∈ A. The set of all σ-derivation from A into X is denoted
by Z1

σ(A,X), and the set of all σ-inner derivations from A into X by N1
σ(A,X). Then, we define the space

H1
σ(A,X) = Z1

σ(A,X)
N1
σ(A,X) . We say A is σ-amenable if H1

σ(A,X∗) = 0 for every Banach A-bimodule X [11]. We call A is

σ-weakly amenable if H1
σ(A,A∗) = 0 [3, 13]. Note that the module version of such notions are available in [2].

For a Banach algebra A, the corresponding diagonal operator π : A⊗̂A −→ A is defined by π(a⊗ b) = ab.
Let X and Y be Banach A-bimodules, and σ ∈ Hom(A). A bounded linear map T : X −→ Y is a σ-A-bimodule
homomorphism if T(a · x) = σ(a) · T(x) and T(x · a) = T(x) · σ(a) for a ∈ A, x ∈ X. Then, A is σ-biprojective if
there exists a σ-A-bimodule homomorphism ρ : A −→ A⊗̂A such that π ◦ ρ = σ [14]. Moreover, A is σ-biflat
if there exists a bounded linear map ρ : (A⊗̂A)∗ −→ A∗ satisfying ρ(σ(a) ·λ) = a ·ρ(λ) and ρ(λ ·σ(a)) = ρ(λ) · a,
such that ρ ◦ π∗ = σ∗ where a ∈ A, λ ∈ (A⊗̂A)∗ [7].

Let A and B be Banach algebras, and X be a Banach A,B-module; that is, X is a left Banach A-module
and is a right Banach B-module such that ||a · x · b|| ≤ ||a|| ||x|| ||b||, for a ∈ A, x ∈ X and b ∈ B. We define the

corresponding triangular Banach algebra T =
(
A X
0 B

)
with the sum and product being given by the usual

2 × 2 matrix operations and obvious internal module actions along with the norm∥∥∥∥∥∥
(
a x
0 b

)∥∥∥∥∥∥ = ∥a∥ + ∥x∥ + ∥b∥, (a ∈ A, b ∈ B, x ∈ X).
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For Banach A,B-module X, the first dual space of X, that is denoted by X∗ is a Banach B,A-module with the
following actions:

⟨b · x∗, x⟩ = ⟨x∗, x · b⟩ and ⟨x∗ · a, x⟩ = ⟨x∗, a · x⟩

for all a ∈ A, b ∈ B, x ∈ Xand x∗ ∈ X∗. Moreover, for each x ∈ X, x∗ ∈ X∗we can consider x·x∗ ∈ A∗ and x∗ ·x ∈ B∗

through
⟨x · x∗, a⟩ = ⟨x∗, a · x⟩, ⟨x∗ · x, b⟩ = ⟨x∗, x · b⟩ (a ∈ A, b ∈ B).

Similarly for each x ∈ X, a∗∗ ∈ A∗∗ and b∗∗ ∈ B∗∗ we can consider a∗∗ · x ∈ X∗∗ and x · b∗∗ ∈ X∗∗ through

⟨a∗∗ · x, x∗⟩ = ⟨a∗∗, x · x∗⟩, ⟨x · b∗∗, x∗⟩ = ⟨b∗∗, x∗ · x⟩,

for all x∗ ∈ X∗. We may continue this process to higher order dual spaces of X ; that is, X(2n) is a Banach
A,B-module X(2n−1) is a Banach B,A-module and A(2n)

· X ⊆ X(2n), X · B(2n)
⊆ X(2n), X · X(2n−1)

⊆ A(2n−1),
X(2n−1)

· X ⊆ B(2n−1) for all n ∈ N. Here, we recall that the n-weak amenability of Banach algebras based on
homomorphisms were investigated in [4].

In [1], the authors introduced a new product on triangular Banach algebras as follows.

Definition 1.1. ([1, Definition 1.1]) Let A and B be Banach algebras, X be a Banach A,B-module, σA ∈ Hom(A) and
σB ∈ Hom(B). Let TσA,σB denote the algebra whose underlying Banach space is T but whose multiplication is defined by(

a1 x1
0 b1

) (
a2 x2
0 b2

)
=

(
a1a2 σA(a1) · x2 + x1 · σB(b2)

0 b1b2

)
,

for all
(
a1 x1
0 b1

)
,
(
a2 x2
0 b2

)
∈ T.

Amenability, weak amenability, biflatness and biprojectivity of TσA,σB have been studied in [1]. In
this paper, motivated by [1–4], we shall study σ-amenability, σ-weak amenability, σ- biflatness and σ-
biprojectivity of TσA,σB for the homomorphism σ = σA ⊕ σB.

The organization of the paper is as follows. In section 2, we prove that TσA,σB is σA ⊕ σB-amenable if and
only if A is σA-amenable and B is σB-amenable and X = 0 provided σA and σB are idempotents. Section
3 is devoted to σA ⊕ σB-weak amenability of TσA,σB . In other words, for unital Banach algebras A and B
with idempotents σA and σB, we show that TσA,σB is σA ⊕ σB-weakly amenable if and only if A is σA-weakly
amenable and B is σB-weakly amenable. In section 4, under some mild conditions, we prove that TσA,σB is
σA ⊕ σB-biprojective (biflat) if and only if A is σA-biprojective (biflat) and B is σB-biprojective (biflat) and
X = 0.

2. σA ⊕ σB- amenability of TσA,σB

Let A and B be Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B). Let X be a Banach algebra A,B-module.
We consider the map σA ⊕ σB : TσA,σB → TσA,σB defined by

σA ⊕ σB

(
a x
0 b

)
=

(
σA(a) x

0 σB(b)

)
(a ∈ A, b ∈ B, x ∈ X).

Proposition 2.1. Let A and B be Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B). Let X be a Banach algebra
A,B-module. If σ2

A = σA and σ2
B = σB, then σA ⊕ σB ∈ Hom(TσA,σB ).

Proof. For
(
a1 x1
0 b1

)
,

(
a2 x2
0 b2

)
∈ TσA,σB ,

σA ⊕ σB(
(
a1 x1
0 b1

) (
a2 x2
0 b2

)
) = σA ⊕ σB

(
a1a2 σA(a1) · x2 + x1 · σB(b2)

0 b1b2

)
=

(
σA(a1a2) σA(a1) · x2 + x1 · σB(b2)

0 σB(b1b2)

)
.
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On the other hand,

σA ⊕ σB

(
a1 x1
0 b1

)
σA ⊕ σB

(
a2 x2
0 b2

)
=

(
σA(a1) x1

0 σB(b1)

) (
σA(a2) x2

0 σB(b2)

)
=

(
σA(a1a2) σ2

A(a1) · x2 + x1 · σ2
B(b2)

0 σB(b1b2)

)
=

(
σA(a1a2) σA(a1) · x2 + x1 · σB(b2)

0 σB(b1b2)

)
.

Thus σA ⊕ σB is a homomorphism.

Theorem 2.2. Let A and B be Banach algebras, X be a Banach A,B-module, and σA ∈ Hom(B), σB ∈ Hom(A) such
that σ2

A = σA, σ2
B = σB. Then TσA,σB is σA ⊕ σB-amenable if and only if A is σA-amenable and B is σB-amenable and

X = 0.

Proof. Suppose that TσA,σB is σA ⊕ σB-amenable and D : A −→ Y∗ is a σA-derivation such that Y is a Banach

A-bimodule. Define the map P : TσA,σB −→ A by P
(
a x
0 b

)
= a. It is obvious, that P is a homomorphism.

Now we can consider Y as a TσA,σB -bimodule via

σA ⊕ σB(T′) · y = P(σA ⊕ σB(T′)) · y and y · σA ⊕ σB(T′) = y · P(σA ⊕ σB(T′)),

for T′ ∈ TσA,σB , y ∈ Y. Hence for each T1,T2 ∈ TσA,σB , we have

D ◦ P(T1T2) = D(P(T1)P(T2)) = D(P(T1)) · σA(P(T2)) + σA(P(T1)) ·D(P(T2))
= D ◦ P(T1) · P(σA ⊕ σB(T2)) + P(σA ⊕ σB(T1)) ·D ◦ P(T2)
= D ◦ P(T1) · σA ⊕ σB(T2) + σA ⊕ σB(T1) ·D ◦ P(T2).

Hence D ◦ P is a σA ⊕ σB-derivation, so D ◦ P is σA ⊕ σB-inner, thus there exists a y∗ ∈ Y∗ such that for

every
(
a x
0 b

)
∈ TσA,σB , we have,

D(a) = D ◦ P
(
a x
0 b

)
= σA ⊕ σB

(
a x
0 b

)
· y∗ − y∗ · σA ⊕ σB

(
a x
0 b

)
= σA(a) · y∗ − y∗ · σA(a).

It implies that A is σA-amenable and similarly, B is σB-amenable. Now we prove that X = 0. Since

X ≃
(
0 X
0 0

)
, we get X∗∗ ≃

(
0 X∗∗

0 0

)
. Hence for the map D : TσA,σB −→ X∗∗ defined by D

(
a x
0 b

)
=

(
0 x
0 0

)
, we

have

D(
(
a1 x1
0 b1

) (
a2 x2
0 b2

)
) = D

(
a1a2 σA(a1) · x2 + x1 · σB(b2)

0 b1b2

)
=

(
0 σA(a1) · x2 + x1 · σB(b2)
0 0

)
=

(
0 x1 · σB(b2)
0 0

)
+

(
0 σA(a1) · x2
0 0

)
=

(
0 x1
0 0

) (
σA(a2) x2

0 σB(b2)

)
+

(
σA(a1) x1

0 σB(b1)

) (
0 x2
0 0

)
= D

(
a1 x1
0 b1

)
· σA ⊕ σB

(
a2 x2
0 b2

)
+ σA ⊕ σB

(
a1 x1
0 b1

)
·D

(
a2 x2
0 b2

)
.
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Therefore, D is a σA⊕σB-derivation. Since TσA,σB is σA⊕σB-amenable, there exists an element
(
0 x∗∗

0 0

)
∈ X∗∗

such that,(
0 x
0 0

)
= D

(
a x
0 b

)
= σA ⊕ σB

(
a x
0 b

)
·

(
0 x∗∗

0 0

)
−

(
0 x∗∗

0 0

)
· σA ⊕ σB

(
a x
0 b

)
=

(
0 σA(a) · x∗∗ − x∗∗ · σB(b)
0 0

)
,

set a = b = 0, as a result x = 0 and hence X = 0. Conversely, suppose that A is σA-amenable and B is
σB-amenable and X = 0. Then TσA,σB is the l1-direct sum of A and B , that is, TσA,σB = A ⊕1 B. Since A
and B ≃ A⊕1B

A are ideals in A ⊕1 B, similar to the proof of [12, Theorem 2.3.10], we obtain that TσA,σB is
σA ⊕ σB-amenable.

Let A and B be Banach algebras, and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA, σ2

B = σB. By [10, Theorem
4.2] and [1, Theorem 2.3], amenability of two triangulars Banach algebras T and TσA,σB are equivalent.

It is clear that amenability of TσA,σB implies σA ⊕ σB-amenability of TσA,σB . However, we show that the
converse is not true.

Example 2.3. Suppose that A is a non-amenable Banach algebra with a right (or a left) approximate identity. Then
A♯ (the unitization of A) is not amenable [12, Corollary 2.3.11]. Define σA♯ ∈ Hom(A♯) by σA♯ (a + λ) = λ for a ∈ A,

λ ∈ C. Then σ2
A♯
= σA♯ . By [8, Corollary 3.2], A♯ is σA♯ -amenable. Hence Tσ

A♯
,σ

A♯
=

(
A♯ 0
0 A♯

)
is σ♯A ⊕ σ

♯
A-amenable

by Theorem 2.2, however Tσ
A♯
,σ

A♯
is not amenable, since A♯ is not amenable [1, Theorem 2.3]. Consequently T is not

amenable.

3. σA ⊕ σB-weak amenability of TσA,σB

Lemma 3.1. Let A and B be Banach algebras, X be a Banach A,B-module and σA ∈ Hom(A), σB ∈ Hom(B). Then

for
(
a x
0 b

)
∈ TσA,σB and

(
a(2n−1) x(2n−1)

0 b(2n−1)

)
∈ T(2n−1)

σA,σB
, the following statements hold;

(i)
(
a x
0 b

) (
a(2n−1) x(2n−1)

0 b(2n−1)

)
=

(
a · a(2n−1) + σ(2n−1)

A (x · x(2n−1)) σB(b).x(2n−1)

0 b · b(2n−1)

)
;

(ii)
(
a(2n−1) x(2n−1)

0 b(2n−1)

) (
a x
0 b

)
=

(
a(2n−1)

· a x(2n−1)
· σA(a)

0 b(2n−1)
· b + σ(2n−1)

B (x(2n−1)
· x)

)
.

Proof. (i) It is easily seen that for each
(
a(2n−2) x(2n−2)

0 b(2n−2)

)
∈ T(2n−2)

σA,σB
we have(

a x
0 b

) (
a(2n−2) x(2n−2)

0 b(2n−2)

)
=

(
a · a(2n−2) σA(a) · x(2n−2) + x · σ(2n−2)

B (b(2n−2))
0 b · b(2n−2)

)
,

and(
a(2n−2) x(2n−2)

0 b(2n−2)

) (
a x
0 b

)
=

(
a(2n−2)

· a σ(2n−2)
A (a(2n−2)) · x + x(2n−2)

· σB(b)
0 b(2n−2)

· b

)
.
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So,

⟨

(
a x
0 b

) (
a(2n−1) x(2n−1)

0 b(2n−1)

)
,

(
a(2n−2) x(2n−2)

0 b(2n−2)

)
⟩

= ⟨

(
a(2n−1) x(2n−1)

0 b(2n−1)

)
,

(
a(2n−2) x(2n−2)

0 b(2n−2)

) (
a x
0 b

)
⟩

= ⟨

(
a(2n−1) x(2n−1)

0 b(2n−1)

)
,

(
a(2n−2)

· a σ(2n−2)
A (a(2n−2)) · x + x(2n−2)

· σB(b)
0 b(2n−2)

· b

)
⟩

= ⟨a(2n−1), a(2n−2)
· a⟩ + ⟨x(2n−1), σ(2n−2)

A (a(2n−2)) · x + x(2n−2)
· σB(b)⟩

+ ⟨b(2n−1), b(2n−2)
· b⟩

= ⟨a · a(2n−1), a(2n−2)
⟩ + ⟨σ(2n−1)

A (x · x(2n−1)), a(2n−2)
⟩

+ ⟨σB(b) · x(2n−1), x(2n−2)
⟩ + ⟨b · b(2n−1)), b(2n−2)

⟩

= ⟨

(
a · a(2n−1) + σ(2n−1)

A (x · x(2n−1)) σB(b) · x(2n−1)

0 b · b(2n−1)

)
,

(
a(2n−2) x(2n−2)

0 b(2n−2)

)
⟩.

It implies (i). The proof of (ii) is similar.

Suppose that A has a unit eA and B has a unit eB and σA ∈ Hom(A), σB ∈ Hom(B), then X is unital, if
eA · x = x · eB = x for all x ∈ X. Moreover, X is said (σA, σB)-unital if σA(eA) · x = x · σB(eB) = x for all x ∈ X.

Lemma 3.2. Let A and B be unital Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA and

σ2
B = σB. Let X be a (σA, σB)-unital Banach A,B-module. Let D : TσA,σB −→ T(2n−1)

σA,σB
be a σA ⊕ σB-derivation and

n ∈N. Then there exist σA-derivation δA : A −→ A(2n−1) and σB-derivation δB : B −→ B(2n−1) and x(2n−1)
0 ∈ X(2n−1),

such that

(i) D
(
a 0
0 0

)
=

(
δA(a) x(2n−1)

0 · σA(a)
0 0

)
;

(ii) D
(
0 0
0 b

)
=

(
0 −σB(b) · x(2n−1)

0
0 δB(b)

)
;

(iii) D
(
0 x
0 0

)
=

(
−σ(2n−1)

A (x · x(2n−1)
0 ) 0

0 σ(2n−1)
B (x(2n−1)

0 · x)

)
.

Proof. (i) Setting D
(
a 0
0 0

)
=

(
δA(a) s(a)

0 θ(a)

)
, we wish to find the maps δA(a), s(a)

and θ(a). Since D is a σA ⊕ σB-derivation, so

D
(
aa′ 0

0 0

)
= D

(
a 0
0 0

) (
σA(a′) 0

0 0

)
+

(
σA(a) 0

0 0

)
D

(
a′ 0
0 0

)
.

By lemma 3.1,
(
δA(aa′) s(aa′)

0 θ(aa′)

)
=

(
δA(a) · σA(a′) s(a) · σA(a)

0 0

)
+

(
σA(a) · δA(a′) 0

0 0

)
. As a result δA(aa′) =

δA(a) · σA(a′) + σA(a) · δA(a′), i.e, δA is a σA-derivation, and also s : A −→ X(2n−1) is a right σA-A-module
homomorphism. Consider s(eA) = x(2n−1)

0 ∈ X(2n−1), therefore s(a) = s(eA) · σA(a) = x(2n−1)
0 · σA(a). Moreover

θ(aa′) = 0 for each a, a′ ∈ A, hence θ(a) = 0.

(ii) Suppose that D
(
0 0
0 b

)
=

(
θ(b) r(b)

0 δB(b)

)
. A calculation similar to (i) shows that δB : B −→ X(2n−1) is a
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σB-derivation and θ(b) = 0. Furthermore from(
0 0
0 0

)
= D

((
0 0
0 b

) (
a 0
0 0

))
= D

(
0 0
0 b

)
·

(
σA(a) 0

0 0

)
+

(
0 0
0 σB(b)

)
·D

(
a 0
0 0

)
we obtain −σB(b) · x(2n−1)

0 · σA(a) = r(b) · σA(a). Putting a = e, since X is (σA, σB)-unital, we conclude that
r(b) = −σB(b) · x(2n−1)

0 .

(iii) Suppose D
(
0 x
0 0

)
=

(
θ(x) s(x)

0 r(x)

)
. Since D is a σA ⊕ σB-derivation,

D
(
0 x
0 0

)
= D

((
eA 0
0 0

) (
0 x
0 0

))
= D

(
eA 0
0 0

)
·

(
0 x
0 0

)
+

(
σA(eA) 0

0 0

)
·D

(
0 x
0 0

)
.

Similar arguments as in (i) and (ii) shows that r(x) = σ(2n−1)
B (x(2n−1)

0 · x) and s(x) = 0.
Moreover from,

D
(
0 x
0 0

)
= D(

(
0 x
0 0

) (
0 0
0 eB

)
) = D

(
0 x
0 0

)
·

(
0 0
0 σB(eB)

)
+

(
0 x
0 0

)
·D

(
0 0
0 eB

)
,

we get θ(x) = −σ(2n−1)
A (x · x(2n−1)

0 ).

Lemma 3.3. Let A and B be Banach algebras, let σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA and σ2

B = σB. Let
X be a Banach A,B-module. If δA : A −→ A(2n−1) is a σA-derivation, then the mapping DδA : TσA,σB −→ T(2n−1)

σA,σB
by

DδA

(
a x
0 b

)
=

(
δA(a) 0

0 0

)
is a σA ⊕ σB-derivation. Futhermore, δA is σA-inner if and only if DδA is σA ⊕ σB-inner.

Proof. For each
(
a1 x1
0 b1

)
,

(
a2 x2
0 b2

)
∈ TσA,σB we have

DδA

((
a1 x1
0 b1

) (
a2 x2
0 b2

))
= DδA

(
a1a2 σA(a1) · x2 + x1 · σB(b2)

0 b1b2

)
=

(
δA(a1a2) 0

0 0

)
=

(
δA(a1) · σA(a2) + σA(a1) · δA(a2) 0

0 0

)
=

(
δA(a1) 0

0 0

)
· σA ⊕ σB

(
a2 0
0 0

)
+ σA ⊕ σB

(
a1 0
0 0

)
.

(
δA(a2) 0

0 0

)
.

The relation above implies that DδA is σA ⊕ σB-derivation. Now, suppose that δA is σA-inner. Then there

exists a(2n−1)
0 ∈ A(2n−1) such that δA(a) = σA(a) ·a(2n−1)

0 −a(2n−1)
0 ·σA(a) for all a ∈ A.Consider

(
a(2n−1)

0 0
0 0

)
∈ T(2n−1)

σA,σB
,

then

DδA

(
a x
0 b

)
=

(
δA(a) 0

0 0

)
=

(
σA(a) · a(2n−1)

0 − a(2n−1)
0 · σA(a) 0

0 0

)
=

(
σA(a) · a(2n−1)

0 0
0 0

)
−

(
a(2n−1)

0 · σA(a) 0
0 0

)
=

(
σA(a) x

0 σB(b)

)
·

(
a(2n−1)

0 0
0 0

)
−

(
a(2n−1)

0 0
0 0

)
.

(
σA(a) x

0 σB(b)

)
.

Thus, DδA is σA ⊕ σB-inner.
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Conversely, suppose that DδA is σA ⊕ σB-inner. Then there exists
(
a(2n−1)

0 x(2n−1)
0

0 b(2n−1)
0

)
∈ T(2n−1)

σA,σB
such that

(
δA(a) 0

0 0

)
= DδA

(
a x
0 b

)
=

(
σA(a) 0

0 σB(b)

)
·

(
a(2n−1)

0 x(2n−1)
0

0 b(2n−1)
0

)
−

(
a(2n−1)

0 x(2n−1)
0

0 b(2n−1)
0

)
·

(
σA(a) 0

0 σB(b)

)
=

(
σA(a) · a(2n−1)

0 + σ(2n−1)
A (x · x(2n−1)

0 ) σ2
B(b) · x(2n−1)

0
0 σB(b) · b(2n−1)

0

)
−

(
a(2n−1)

0 · σA(a) x(2n−1)
0 · σ2

A(a)
0 b(2n−1)

0 · σB(b) + σ(2n−1)
B (x(2n−1)

0 · x)

)
.

It follows that δA(a) = σA(a) · a(2n−1)
0 + σ(2n−1)

A (x · x(2n−1)
0 )− a(2n−1)

0 · σA(a), for each a ∈ A, x ∈ X. Setting x = 0, we
get δA(a) = σA(a) · a(2n−1)

0 − a(2n−1)
0 · σA(a), so δA is σA-inner, as required.

Theorem 3.4. Let A and B be unital Banach algebras and X be a (σA, σB)-unital Banach A,B-module. Let σA ∈

Hom(A), σB ∈ Hom(B) such that σ2
A = σA and σ2

B = σB. Then for each n ∈ N,

H1
σA,σB

(TσA,σB ,T
(2n−1)
σA,σB

) ≃ H1
σA

(A,A(2n−1)) ⊕H1
σB

(B,B(2n−1))

Proof. Suppose that δ : TσA,σB −→ T(2n−1)
σA,σB

is a σA ⊕ σB-derivation. By Lemma 3.2, there exist σA-derivation
δA : A −→ A(2n−1), and σB-derivation δB : B −→ B(2n−1) and x(2n−1)

0 ∈ X(2n−1) such that

δ

(
a x
0 b

)
=

(
δA(a) − σ(2n−1)

A (x · x(2n−1)
0 ) x(2n−1)

0 · σA(a) − σB(b) · x(2n−1)
0

0 σ(2n−1)
B (x(2n−1)

0 · x) + δB(b)

)
.

It is clear that the map K : Z1(TσA,σB ,T
(2n−1)
σA,σB

) −→ H1
σA

(A,A(2n−1)) ⊕H1
σB

(B,B(2n−1)),
defined by K(δ) = (δA +N1

δA
(A,A(2n−1)), δB +N1

δB
(B,B(2n−1))) is linear. Then Lemmas 3.2 and 3.3 together with

the proof of [6, Theorem 3.4], show that the map K is onto and
kerK = N1(TσA,σB ,T

(2n−1)
σA,σB

). Thus,

H1
σA⊕σB

(TσA,σB ,T
(2n−1)
σA,σB

) ≃ H1
σA

(A,A(2n−1)) ⊕H1
σB

(B,B(2n−1))

Corollary 3.5. Let A and B be unital Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA and

σ2
B = σB. Let X be a (σA, σB)-unital Banach A,B-module. Then TσA,σB is σA ⊕ σB-weakly amenable if and only if A is
σA-weakly amenable and B is σB-weakly amenable.

Let A,B be Banach algebras and X be a Banach A,B-module. Then, X is called essential, if A · X = X =
X · B. A Banach A,B-module X is non-degenerate, if A · x = 0 implies x = 0 and x ·B = 0 implies x = 0 for all
x ∈ X. It is easily see that if X is essential then X∗ is a non-degenerate Banach B,A-module. Moreover, for a
Banach algebra A with a bounded approximate identity, A∗ is non-degenerate.

Definition 3.6. Let A,B be Banach algebras, X be a Banach A,B-module and σA ∈ Hom(A), σB ∈ Hom(B). We say
that X is (σA, σB)-essential, if σA(A) · X = X = X · σB(B). Furthermore, X is (σA, σB)-non-degenerate, if σA(A) ·x = 0
implies x = 0 and x · σB(B) = 0 implies x = 0.

It is easily checked that if X is (σA, σB)-essential or (σA, σB)-non-degenerate then, it is essential or non-
degenerate. The following lemma is easily proved.
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Lemma 3.7. Let A have a bounded approximate identity and let S : A −→ X∗ be a right(left) σ-A-module homomor-
phism. Then there is a x∗0 ∈ X∗ such that S(a) = x∗0 · σ(a) (S(a) = σ(a) · x∗0) for all a ∈ A.

Theorem 3.8. Let A and B be Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA and σ2

B = σB. Let
A have a bounded approximate identity, let A(2n−1) be σA-non-degenerate, B(2n−1) be σB-non-degenerate and X(2n−1)

be (σB, σA)-non-degenerate. Then for each n ∈N,

H1
σA⊕σB

(TσA,σB ,T
(2n−1)
σA,σB

) ≃ H1
σA

(A,A(2n−1)) ⊕H1
σB

(B,B(2n−1)).

Proof. Suppose that D : TσA,σB −→ T(2n−1)
σA,σB

is a σA ⊕ σB-derivation. By Lemmas 3.2 and 3.7, there exist

σA-derivation δA : A −→ A(2n−1), σB-derivation δB : B −→ B(2n−1), and x(2n−1)
0 ∈ X(2n−1) such that D

(
a 0
0 0

)
=(

δA(a) x(2n−1)
0 · σA(a)

0 0

)
. Now set D

(
0 0
0 b

)
=

(
θ(b) r(b)

0 δB(b)

)
. By Lemma 3.2, we obtain δB : B −→ B(2n−1) is a

σB-derivation, θ(b) · σA(a) = 0 and −σB(b) · x(2n−1)
0 · σA(a) = r(b) · σA(a) for each a ∈ A, b ∈ B. Since A(2n−1) is

σA-non-degenerate and X(2n−1) is (σB, σA)-non-degenerate, we have θ(b) = 0 and r(b) = −σB(b) · x(2n−1)
0 , hence

D(b) =
(
0 −σB(b) · x(2n−1)

0
0 δB(b)

)
. For D

(
0 x
0 b

)
=

(
θ(x) r(x)

0 s(x)

)
. From the equation

(
0 0
0 0

)
= D

((
0 x
0 0

) (
a 0
0 0

))
=

(
θ(x) r(x)

0 s(x)

)
·

(
σA(a) 0

0 0

)
+

(
0 x
0 0

)
·

(
δA(a) x(2n−1)

0 .σA(a)
0 0

)
.

We have r(x) ·σA(a) = 0 and θ(x) ·σA(a)+σ(2n−1)
A (x ·x(2n−1)

0 ·σA(a)) = 0, hence (θ(x)+σ(2n−1)
A (x ·x(2n−1)

0 )) ·σA(a) = 0
because σ2

A = σA. Since A(2n−1) is σA-non-degenerate and X(2n−1) is (σB, σA)-non-degenerate, we conclude that
r(x) = 0 and θ(x) = −σ(2n−1)

A (x · x(2n−1)
0 ). Similarly s(x) = σ(2n−1)

A (x(2n−1)
0 · x). Consequently

D
(
a x
0 b

)
=

(
δA(a) − σ(2n−1)

A (x · x(2n−1)
0 ) x(2n−1)

0 · σA(a) − σB(b) · x(2n−1)
0

0 δB(b) + σ(2n−1)
A (x(2n−1)

0 · x)

)
,

The rest of proof follows from Theorem 3.4.

Definition 3.9. Let A be a Banach algebra. We say that A has a σ-bounded approximate identity, if there exists a
bounded net (eα) ⊆ A such that

σ(eα) · a→ a , a · σ(eα)→ a (a ∈ A).

Corollary 3.10. Let A and B be Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA and σ2

B = σB.
Let A have a σA-bounded approximate identity and B have a σB-bounded approximate identity, and X be a (σA, σB)-
essential. Then TσA,σB is σA ⊕ σB-weakly amenable if and only if A is σA-weakly amenable and B is σB-weakly
amenable.

Proof. It is easy to show that A∗ is σA-non-degenerate, B∗ is σB-non-degenerate and X∗ is (σA, σB)-non-
degenerate. Thus, it is immediate by Theorem 3.8.

4. σA ⊕ σB-biflatness and biprojectivity of TσA,σB

Suppose that A1, ...,An are Banach algebras. Then their direct sum A = ⊕n
k=1Ak with componentwise

operations and l1-norm is a Banach algebra. We write ϕk : Ak −→ A for the natural embedding Ak into A,
1 ≤ k ≤ n. Take σk ∈ Hom(Ak), 1 ≤ k ≤ n, and define σ := ⊕n

k=1σk : A −→ A via σ(a) = (σ1(a1), ..., σn(an)) for
every a = (a1, ..., an) ∈ A. Then, it is easy to see that σ ∈ Hom(A).
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Theorem 4.1. Let A1,A2, ...,An be Banach algebras, and A = ⊕n
k=1Ak. Then

(i) A is σ-biflat if and only if every Ak is σk-biflat, 1 ≤ k ≤ n;
(ii) A is σ-biprojective if and only if every Ak is σk-biprojective, 1 ≤ k ≤ n.

Proof. We only prove (i). Suppose that A is σ-biflat, so there exists a bounded linear map ρ : (A⊗̂A)∗ −→ A∗

satisfying ρ(σ(a) · λ) = a · ρ(λ) and ρ(λ · σ(a)) = ρ(λ) · a for a ∈ A, λ ∈ (A⊗̂A)∗ such that ρ ◦ π∗ = σ∗. Consider
the bounded σ-A-bimodule homomorphism s : A −→ A⊗̂A such that s∗ = ρ. Then π ◦ s = σ. Take the
projection pk : A −→ Ak, and then define ρk := ϕ∗k ◦ ρ ◦ (pk ⊗ pk)∗ : (Ak⊗̂Ak)∗ −→ (Ak)∗, 1 ≤ k ≤ n. So for each
ak, bk ∈ Ak, λk ∈ (Ak⊗̂Ak)∗,

⟨ρk(σk(ak) · λk), bk⟩ = ⟨σk(ak) · λk, (pk ⊗ pk) ◦ s ◦ ϕk(bk)⟩
= ⟨λk, (pk ⊗ pk) ◦ s ◦ ϕk(bk) · σk(ak)⟩
= ⟨λk, (pk ⊗ pk)(s ◦ ϕk(bk) · (0, ..., 0, σk(ak), 0, ..., 0))⟩
= ⟨λk, (pk ⊗ pk)(s(ϕk(bkak)))⟩
= ⟨ak · (ϕ∗k ◦ ρ ◦ (pk ⊗ pk)∗)(λk), bk⟩ = ⟨ak · ρk(λk), bk⟩.

We get ρk(σk(ak) · λk) = ak · ρk(λk) and similarly ρk(λk · σk(ak)) = ρk(λk) · ak. For the diagonal operator
πk : Ak⊗̂Ak −→ Ak, because (pk ⊗ pk)∗ ◦ π∗k = π∗ ◦ p∗k, we see that ρk ◦ π∗k = ϕ∗k ◦ ρ ◦ (pk ⊗ pk)∗ ◦ π∗k =
ϕ∗k ◦ ρ ◦ π

∗
◦ p∗k = ϕ

∗

k ◦ σ
∗
◦ p∗k = σ

∗

k. Thus ρk ◦ π∗k = σ
∗

k, which implies that Ak is σk-biflat, 1 ≤ k ≤ n.
Conversely, suppose that Ak is σk-biflat for each 1 ≤ k ≤ n. Hence there are bounded linear maps

ρk : (Ak⊗̂Ak)∗ −→ A∗k with ρk(σk(ak) · λk) = ak · ρk(λk) and ρk(λk · σk(ak)) = ρk(λk) · ak, where ak ∈ Ak,
λk ∈ (Ak⊗̂Ak)∗ such that ρk ◦π∗k = σ

∗

k, 1 ≤ k ≤ n. Define ρ : (A⊗̂A)∗ −→ A∗ by ρ(λ) =
∑n

k=1 p∗k ◦ρk ◦ (ϕk⊗ϕk)∗(λ).
Therefore for each a ∈ A, λ ∈ (A⊗̂A)∗, we have

ρ(σ(a) · λ) =
n∑

k=1

p∗k ◦ ρk ◦ (ϕk ⊗ ϕk)∗(σ(a) · λ)

=

n∑
k=1

p∗k ◦ ρk(σk(ak) · (ϕk ⊗ ϕk)∗(λ))

=

n∑
k=1

p∗k(ak · (ρk ◦ (ϕk ⊗ ϕk)∗(λ)))

= a · (
n∑

k=1

p∗k ◦ ρk ◦ (ϕk ⊗ ϕk)∗(λ))

= a · ρ(λ).

Similarly ρ(λ · σ(a)) = ρ(λ) · a. As (ϕk ⊗ ϕk)∗ ◦ π∗ = π∗k ◦ ϕ
∗

k, thus

ρ ◦ π∗ =
n∑

k=1

p∗k ◦ ρk ◦ (ϕk ⊗ ϕk)∗ ◦ π∗

=

n∑
k=1

p∗k ◦ ρk ◦ π
∗

k ◦ ϕ
∗

k

=

n∑
k=1

p∗k ◦ σ
∗

k ◦ ϕ
∗

k

= σ∗.

Therefore A is σ−biflat.
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Lemma 4.2. Let A be a Banach algebra and σ ∈ Hom(A) such that σ2 = σ. Let N ⊆ A be a closed complemented
ideal where σ(N) = N and N2 = 0. Then σ(A)N ∩Nσ(A) = 0

Proof. Let i : N −→ A be the inclusion map, q : A −→ A
N be the quotient map, IA, IN and I A

N
be the identity

maps on A,N and A
N , respectively, and let p : A

N ⊗̂N −→ N be the map defined by p((a + N) ⊗ c) = ac
for each a + N ∈ A

N and c ∈ N. Suppose to wards a contraction that σ(A)N ∩ Nσ(A) , 0. Suppose that
0 , σ(a)c ∈ σ(A)N ∩Nσ(A) where a ∈ A, c ∈ N. Hence σ(a)c ∈ Nσ(A), so there exists sequences (σ(an)) ⊆ σ(A)
and (cn) ⊆ N such that σ(a)c = limn→∞ cnσ(an). Since A is σ-biflat, then there is a σ-A-bimodule homomor-
phism ρ : A −→ (A⊗̂A)∗∗ such that π∗∗ ◦ ρ = σ. For b ∈ N, let Rb(Lb) : A −→ N be the map of right (resp.left)
multiplication by b. Consider the operator q ⊗ Rc : A⊗̂A −→ A

N ⊗̂N and let d = ((q ⊗ Rc)∗∗ ◦ ρ)σ(a). We have
p ◦ (q ⊗ Rc) = Rc ◦ π and so p∗∗ ◦ (q ⊗ Rc)∗∗ = R∗∗c ◦ π∗∗. As a result
p∗∗(d) = (p∗∗ ◦ (q⊗Rc)∗∗ ◦ ρ)σ(a) = ((R∗∗c ◦π∗∗) ◦ ρ)(σ(a)) = R∗∗c ((π∗∗ ◦ ρ)(σ(a))) = R∗∗c (σ2(a)) = σ(a)c , 0, thus d , 0.
By the assumption there exists c1 ∈ N such that σ(c1) = c. As the proof of [9, Lemma 2.3], we have

(I A
N
⊗ i)∗∗(d) = (((I A

N
⊗ i)∗∗ ◦ (q ⊗ Rc)∗∗ ◦ ρ)(σ(a))

= (((I A
N
⊗ i) ◦ (q ⊗ IN) ◦ (IA ⊗ Rc))∗∗ ◦ ρ)(σ(a))

= (((q ⊗ IA) ◦ (IA ⊗ i) ◦ (IA ⊗ Rc))∗∗ ◦ ρ)(σ(a))
= (q ⊗ IA)∗∗(ρ(σ(a)) · c)

= (q ⊗ IA)∗∗(ρ(σ(a)) · σ2(c1))
= (q ⊗ IA)∗∗(ρ(σ(a)σ(c1)))
= (q ⊗ IA)∗∗(ρ(σ(a)c))
= (q ⊗ IA)∗∗( lim

n→∞
σ(cn)ρ(σ(an)))

= lim
n→∞

((q ⊗ IA)∗∗ ◦ ((i ◦ Lσ(cn) ⊗ IA)∗∗(ρ(σ(an)))

= lim
n→∞

((q ⊗ IA)∗∗ ◦ ((i ⊗ IA) ◦ (Lσ(cn) ⊗ IA))∗∗(ρ(σ(an))

= lim
n→∞

((q ◦ i ◦ Lσ(cn)) ⊗ IA)∗∗(ρ(σ(an)) = 0

The last equality is hold because of q ◦ i ◦ Lσ(cn) = 0. Since N is a complemented closed ideal in A , then the
map I A

N
⊗ i is injective and has closed range and hence (I A

N
⊗ i)∗∗ is injective by [5, A.3.48]. This contradicts

d = 0. Therefore σ(A)N ∩Nσ(A) = 0.

Theorem 4.3. Let A be a Banach algebra and σ ∈ Hom(A) where σ2 = σ. Let N ⊆ A be a closed σ-essential ideal,
that is, σ(A)N = Nσ(A) = N. Let σ(N) = N and N2 = 0. If A is σ-biflat, then A is not complement.

Proof. Since σ(A)N ⊆ N ⊆ Nσ(A). According to Lemma 4.2, N = 0, this is a contradiction.

Theorem 4.4. Let A and B be Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA, σ2

B = σB. Let X

be a (σA, σB)-essential module. Then the triangular Banach algebra TσA,σB =

(
A X
0 B

)
is σA ⊕ σB-biflat if and only if

A is σA-biflat and B is σB-biflat and X = 0.

Proof. Suppose A is σA-biflat and B is σB-biflat and X = 0. Then TσA,σB is the l1-direct sum of A and B, thus
by Theorem 4.1, it is σA ⊕ σB-biflat.

Conversely, suppose that TσA,σB is σA ⊕ σB-biflat. The closed ideal N =
(
0 X
0 0

)
of TσA,σB is complemented

closed ideal of TσA,σB such that
(
0 X
0 0

)2

= 0 and σA ⊕ σB(
(
0 X
0 0

)
) =

(
0 X
0 0

)
and
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0 X
0 0

)
=

(
0 σA(A)N
0 0

)
= (σA ⊕ σB(

(
A X
0 B

)
)
(
0 X
0 0

)
)
−

,(
0 X
0 0

)
=

(
0 XσB(B)
0 0

)
= (

(
0 X
0 0

)
σA ⊕ σB(

(
A X
0 B

)
))
−

.

Hence by Theorem 4.3, we conclude X =
(
0 X
0 0

)
= 0. Therefore TσA,σB is the l1-direct sum of A and B. By

Theorem 4.1, A is σA-biflat and B is σB-biflat.

Theorem 4.5. Let A and B be Banach algebras and σA ∈ Hom(A), σB ∈ Hom(B) such that σ2
A = σA. Let X be a

(σA, σB)-essential module. Then the triangular Banach algebra TσA,σB =

(
A X
0 B

)
is σA ⊕ σB-biprojective if and only if

A is σA-biprojective and B is σB-biprojective and X = 0.

Proof. Suppose that TσA,σB is σA ⊕ σB-biprojective, so TσA,σB is σA ⊕ σB-biflat. By Theorem 4.4, X = 0. Hence
TσA,σB is the l1-direct sum A and B, thus by Theorem 4.1, A is σA-biprojective and B is σB-biprojective.
Conversely, if X = 0 and A is σA-biprojective and B is σB-biprojective then TσA,σB is the l1-direct sum A and
B, Thus by Theorem 4.1, it is σA ⊕ σB-biprojective.
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