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Abstract. Kuelbs-Steadman spaces are studied within the framework of Henstock-Kurzweil integrable
function spaces with bounded variable exponent. We describe a relationship between the Lebesgue spaces
with bounded variable exponents and variable Kuelbs-Steadman spaces. The geometrical properties of the
spaces are studied. Finally, we discuss the boundedness behaviour of the maximal operator on variable
Kuelbs-Steadman spaces.

1. Introduction and preliminaries

Let Ω be a set in Rn with |Ω| > 0. Lebesgue spaces with variable exponent appeared for the first time
in 1931 by W. Orlicz is a generalization of classical Lp spaces, replacing the constant exponent p with an
exponent function p(.) consist of all functions f such that

∫
Rn | f (x)|p(x)dx < ∞. Nakano (see [16, 17]) has

conducted extensive research on this space. Various results on maximal, potential and singular operators
in variable Lebesgue spaces were obtained in the articles [3, 4, 11, 12, 14, 16, 20, 22]. Sharapudinov in [23]
introduced the Lexemberg norm for the lebesgue space and shown the reflexivity. In literature Kuelbs-
Steadman space KSp(Ω) was introduced by T.L. Gill and W.W. Zachary in 2008 (see [9]). Interesting fact of
this space is that it is a Banach space which parallels the standard Lp spaces, but contains as dense compact
embeddings. These spaces are of particular interest because they contain the Henstock-Kurzweil integrable
functions and the HK-measure, which generalizes the Lebesgue measure . In all section of the article the
Lebesgue measure of set or functions are separable. We denote the Lebesgue measure and the characteristic
function for a set A ⊂ Rn by µ(A) and ch(A). We denote P(Ω) the family of all (measurable) functions
P : Ω→ [0,∞]. For p ∈ P(Ω),we putΩ1 = {x ∈ Ω : p(x) = 1}, Ω∞ = {x ∈ Ω : p(x) = ∞}, Ω0 = Ω \ (Ω1 ∪Ω∞)
and p∗ = ess inf

Ω0

p(x), p∗ = ess sup
Ω0

p(x) if |Ω| > 0.We assume p∗ < ∞ in our work. Under this assumption with

the assumption of boundedness of p(.); Lp(.) gives good behaviour for many fundamental results (see [21]

and references therein). Throughout the article C∞0 (R) =
{

f ∈ C∞(R) : supp f ⊊ R
}

is the space of bump

functions i.e., functions that are both smooth, in the sense of having continuous (strong) derivatives of all
orders, and compactly supported. In section 2, we discuss Kuelbs-Steadman space with variable exponent
with its fundamental properties and geometrical properties. Under our assumption of p(x), p(x) is not
allowed to tend to infinity. In this case of a bounded set Ω, the function p(x) will be supposed to satisfy

1 ≤ p0 ≤ p(x) ≤ p < ∞, x ∈ Ω (1)
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|p(x) − p(y)| ≤
A

ln
(

1
|x−y|

) , |x − y| ≤
1
2
, x, y ∈ Ω. (2)

When Ω is unbounded that is p(∞) = lim
|x|→∞

p(x) and

|p(x) − p(y)| ≤
C

ln[e +min(|x|, |y|)]
x, y ∈ Ω. (3)

For Lp(.),we can recall the following results with their proof:
Given Ω, p(x) ∈ P(Ω) in short we write p(.) ∈ P(Ω) and a measurable function f , define the modular
functional associated with p(.) by

ρ( f ) = ρp(.)( f ) =
∫
Ω\Ω∞

| f (x)|p(x)dx + || f ||L∞(Ω∞) (4)

Proposition 1.0.1. Given Ω, p(.) ∈ P(Ω). If p∗ < ∞, then f ∈ Lp(.)(Ω) if and only if ρ( f ) =
∫
Ω
| f (x)|p(x)dx < ∞.

Proof. Since p∗ < ∞,we can drop the L∞ term in the modular. If ρ( f ) < ∞, then f ∈ Lp(.).

Coversely, by [25, Property 5, Proposition 2.7], we have ρ
(

f
λ

)
< ∞ for some λ > 1. But then

ρ( f ) =
∫
Ω

(
| f (x)λ
λ

)p(x)

dµ(x)

≤ λp∗(Ω)ρ
( f
λ

)
< ∞.

Theorem 1.0.2. Lp(.)(Ω) is a Banach space endowed with a norm

|| f ||p(.) = inf
{
λ > 0 ρp(

f
λ

) ≤ 1
}
, f ∈ Lp(.)(Ω). (5)

Proof. Let { fk} ⊂ Lp(.)(Ω) be a Cauchy sequence. Choose k1 such that || fi − f j||p(.) < 2−1 for i, j ≥ k1; choose
k2 > k1 such that || fi − f j||p(.) < 2−2 for i, j ≥ k2, and so on.

This construction yields a subsequence { fk j }, k j+1 > k j, such that

|| fk j+1 − fk j ||p(.) < 2− j.

Define the new sequence {1 j} by 11 = fk1 and for j > 1, 1 j = fk j − fk j−1 . Then for all j we get the telescoping
sum

j∑
i=1

1i = fk j ;

further, we have that
∞∑
j=1

||1 j||p(.) ≤ || fk1 ||p(.) +

∞∑
j=1

2− j < ∞.

Therefore, by [25, Theorem 2.24], there exists f ∈ Lp(.)(Ω) such that fk j → f in norm.
Finally, by the triangle inequality we have that

|| f − fk||p(.) ≤ || f − fk j ||p(.) + || fk j − fk||p(.);

since { fk} is a Cauchy sequence, we can make both terms on the right-hand side as small as desired. Hence,
fk → f in norm.
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Theorem 1.0.3. Given Ω, and p(.) ∈ P(Ω). Suppose p∗ < ∞ for any sequence ( fn) ⊂ Lp(.)(Ω) and f ∈ Lp(.)(Ω) then

|| fn − f ||p(.) → 0⇔ ρ( f − fn)→ 0.

Proof. Suppose the sequence converges in norm. By [25, Corollary 2.16], for all k sufficiently large,

ρ( f − fk) ≤ || f − fk||p(.) ≤ 1,

and so ρ( f − fk)→ 0.
To prove the converse, fix λ < 1. By [25, Proposition 2.10],

ρ
( ( f − fk)
λ

)
≤

( 1
λ

)p∗
ρ( f − fk).

Hence, for all k sufficiently large we have that

ρ
( f − fk
λ

)
≤ 1.

Equivalently, for all such k, || f − fk||p(.) ≤ λ. Since λwas arbitrary, fk → f in norm.

2. Kuelbs-Steadman spaces with variable exponent

Kuelbs-Steadman spaces with variable exponents are a concept that will be introduced in this section.
We recall the construction of KSp(Rn) as follows:

Let {Bk}
∞

k=1 is the countable collection of balls in Rn such that radius Br = Γ(Bl) is of the form 2−l, l ∈ N,
and the centre of Bk is contained in Qn. Let τ = {tk} be a non negative real sequence such that

∑
∞

k=1 tk = 1.
Let Ek(x) be the characteristic function of Bk, so that Ek(x) is in Lp(Rn)∩ L∞(Rn) for 1 ≤ p < ∞. Recalling the
space KSp(Rn) is the closure of Lp(Rn) with respect the norm

|| f ||KSp =
( ∞∑

k=1

tk|

∫
Bk

Ek(x) f (x)dµ(x)|p
) 1

p

.

By defining the weighted lp space lp(τ),we can write this as follows:

||{σk}||lp(τ) =
( ∞∑

k=1

tk|σk|
p
) 1

p

.

Then,∣∣∣∣∣∣∣∣∣∣ f ∣∣∣∣∣∣∣∣∣∣
KSp
=

∣∣∣∣∣∣∣∣∣∣{ ∫
Bk

f (x)
}∣∣∣∣∣∣∣∣∣∣

lp(τ)

=

∣∣∣∣∣∣∣∣∣∣{ f (Bk)
}∣∣∣∣∣∣∣∣∣∣

lp(τ)
.

To extend this definition to the variable exponent setting, define p(.) : Rn
→ [1,∞) to be a measurable

exponent,

pk = pBk =
( 1
|Bk|

∫
Bk

1
P(X)

dX
)−1

.

In the other words pk is the harmonic mean of p(.) on Bk. Define lpk (τ) to be the variable exponent sequence
space with the norm

||{σk}||lpk (τ) = inf
{
λ > 0 :

∞∑
k=1

tk

(
|σk|

λ

)pk

≤ 1
}
.
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This is a Banach function space and behaves much as other sequence spaces to. We now define KSp(.) to be
the completion of Lp(.) with respect to the norm

ρ0( f ) = || f ||KSp(.) = ||{ f (Bk)}||lpk (τ).

This norm is well defined as f ∈ Lp(.) implies || f ||KSp(.) < ∞.

Definition 2.0.1. Given an exponent function p(.) ∈ P(Ω) we define KSp(.)(Ω) to be the Henstock-Kurzweil integrable
function (measurable with compact support) f such that ρ0( f

λ ) < ∞ for some λ > 0.

Proposition 2.0.2. Given Ω, and p(.) ∈ P(Ω) then:

1. For all f , ρ0( f ) ≥ 0 and ρ0(| f |) = ρ0( f ).
2. ρ0( f ) = 0 if and only if f = 0 for a.e. x ∈ Ω.
3. If ρ0( f ) < ∞ then f (x) < ∞ for a.e. x ∈ Ω.
4. ρ0 is convex given α, β ≥ 0, α + β = 1
ρ0(α f + β1) ≤ αρ0( f ) + βρ0(1)

5. If | f (x)| ≥ |1(x)| a.e. then ρ0( f ) ≥ ρ0(1).

Proof. For (1) using the definition of ρ0( f ) .
To prove (2): Let ρ0( f ) = 0 if and only if f = 0 a.e. x ∈ Ω.

ρ0( f ) = 0⇔ inf
{
λ > 0 :

∞∑
k=1

tk

( f (Bk)
λ

)pk

≤ 1
}
= 0

⇔

∞∑
k=1

fk
( f (Bk)
λ

)pk

= 0

⇔ f (Bk) = 0
⇔ f = 0 a.e. x ∈ Ω.

For (3) using property of L∞ norm.
For (4) using (3)
For (5) As | f (x)| ≥ |1(x)| so, f (x) ≥ 1(x). Using f (x) ≥ 1(x) in definition of ρ0( f ), we get the proof.

Proposition 2.0.3. Given Ω, p(.) ∈ P(Ω). If p∗ < ∞, then f ∈ KSp(.)(Ω) if and only if ρ0( f ) < ∞.

Theorem 2.0.4. If p(.) ∈ P(Ω) for Ω then KSp(.)(Ω) is a vector space.

Proof. Since the set of all Lebesgue measurable functions is itself a vector space, and since 0 ∈ KSp(.)(Ω),it
will suffice to show that for all α, β ∈ R not both zero, if f , 1 ∈ KSp(.)(Ω), then α f + β1 ∈ KSp(.)(Ω). Let
µ = (|α| + |β|)λ then,

ρ0

(α f + β1
µ

)
= ρ0

(
|α f + β1|
µ

)
≤ ρ0

(
|α|

|α| + |β|

| f |
λ
+

|β|

|α| + |β|

|1|

λ

)
≤

|α|
|α| + |β|

ρ0( f ) +
|β|

|α| + |β|
ρ0(1)

< ∞.

Therefore, α f + β1 ∈ KSp(.)(Ω).
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On the Kuelbs-Steadman spaces, if 1 ≤ p < ∞, then the norm is gotten directly from the modular:∥∥∥ f
∥∥∥

KSp =
{ {∑

∞

k=1 tk

∣∣∣∫
Rn Ek(x) f (x)dx

∣∣∣p}1/p , 1 ⩽ p < ∞.

Such a definition obviously fails since we cannot replace the constant exponent 1
p outside the integral with

the exponent function 1
p(.) . The solution is a more subtle approach which is similar to that used to define the

Luxemburg norm on Orlicz spaces. We define norm of KSp(.)(Ω) as

|| f ||p(.) = inf
{
λ > 0

∞∑
k=1

tk

( f (Bk)
λ

)pk

≤ 1
}
, f ∈ Lp(.)(Ω). (6)

Since KSp(.)(Ω) is the completion of Lp(.)(Ω) so we conclude the following theorem.

Theorem 2.0.5. For 1 ≤ q0 ≤ q(x) ≤ q < ∞, x ∈ Ω, Lq(.)(Ω) ⊂ KSp(.)(Ω) as a continuous dense embeddings.

Remark 2.0.6. The statement is very precise from [24, Corollary 2.27] that, given any Ω and p(.) ∈ P(Ω) if
f ∈ KSp(.)(Ω) then f is locally integrable.

Theorem 2.0.7. KSp(.)(Ω) is a Banach space endowed with a norm

|| f ||p(.) = inf
{
λ > 0

∞∑
k=1

tk

( f (Bk)
λ

)
≤ 1
}
, f ∈ Lp(.)(Ω). (7)

Proof. We need to prove the following properties :

1. || f ||p(.) = 0 ⇔ f = 0.
2. For all α ∈ R, ||α f ||p(.) = |α||| f ||p(.)

3. For f , 1 ∈ KSp(.), || f + 1||p(.) ≤ || f ||p(.) + ||1||p(.)

For (1) If f = 0, then f (Bk) = 0 < 1 for all λ > 0. Hence || f ||p(.) = 0.
Conversely, let || f ||p(.) = 0. Then for all λ > 0,

|| f ||p(.) = inf{λ > 0 :
∞∑

k=1

tk(
f (Bk)
λ

)pk ≤ 1} = 0

implies that f (Bk) = 0 for λ > 0. Hence f = 0 a.e.
For (2) If α = 0 then the condition is true. Let α , 0

||α f ||p(.) = inf
{
α > 0 :

∞∑
k=1

tk(
|α| f (Bk)
λ

)pk ≤ 1
}

= |α| inf
{
λ
|α|
> 0 :

∞∑
k=1

tk

( f (Bk)
λ
|α|

)
≤ 1
}

= |α||| f ||p(.).

For (3) let f , 1 ∈ Lp(.). Now,

|| f + 1||KSp(.) = inf
{
λ > 0 :

∞∑
k=1

tk

( ( f + 1)(Bk)
λ

)pk

≤ 1
}

≤ inf
{
λ > 0 :

∞∑
k=1

( f (Bk)
λ

)pk

≤ 1
}
+ inf{λ > 0 :

∞∑
k=1

(
1(Bk)
λ

)pk

≤ 1
}
.
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So,

|| f + 1||p(.) ≤ || f ||p(.) + ||1||p(.).

The similar technique of the proof of the Theorem 1.0.2 can be used to prove KSp(.)(Ω) is a Banach space
endowed with a norm

|| f ||p(.) = inf
{
λ > 0

∞∑
k=1

tk

( f (Bk)
λ

)
≤ 1
}
, f ∈ Lp(.)(Ω). (8)

Theorem 2.0.8. Let K be a weakly compact subset of Lp(.), then K is a compact subset of KSp(.).

Proof. Let ( fn) is any weakly convergence in K with limit f , then

ρ( f − fn)→ 0 this gives
∫
Ω

|( f − fn)(x)|p(x)dx→ 0.

So,
∑
∞

k=1 tk

(
f (Bk)
λ

)pk

→ 0 for λ > 0.

This implies, ρ0( f − fn)→ 0. Therefore, K is compact subset of KSp(.)(Ω).

2.1. Separability of KSp(.)(Ω)
In this subsection, we discuss the separability of KSp(.).We have study few denseness property of KSp(.)

for separability as follows:

Lemma 2.1.1. Given an open set Ω and p(.) ∈ P(Ω). Then the set of Henstock-Kurzweil integrable function which
is bounded with compact support with supp( f ) ⊂ Ω is dense in KSp(.).

Proof. The set of Henstock-Kurzweil integrable bounded function with compact support is Lebesgue inte-
grable. Using ([24, Theorem 2.72]) supp( f ) is dense in KSp(.)(Ω).

Proposition 2.1.2. Given an open set Ω and p(.) ∈ P(Ω). If p∗ < ∞ then the set Cc(Ω) is dense in KSp(.)(Ω).

Proof. Let f ∈ KSp(.)(Ω) and fix ϵ > 0, then there exists a function 1 ∈ Cc(Ω) such that

|| f − 1||p(.) < ϵ.

Now, using the Lemma 2.10 there exists a bounded function of compact support h, such that

|| f − h||p(.) <
ϵ
2
.

Let supp(h) ⊂ B ∩Ω for some open ball B. Since p∗ < ∞, Cc(B ∩Ω) is dense in KSp∗ (B ∩Ω) thus there exists
10 ∈ Cc(B ∩Ω) ⊂ Cc(Ω). So,

||10 − 1||p(.) = ||10 − 1||p(.)(B ∩Ω)
< (1 + |B ∩Ω|)||10 − 1||p∗ (B ∩Ω)

<
ϵ
2
.

Corollary 2.1.3. C∞0 (Ω) is dense in KSp(.)(Ω).

Theorem 2.1.4. Given an open set Ω, and p(.) ∈ P(Ω), then KSp(.)(Ω) is separable if p∗ < ∞.
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Proof. Let p∗ < ∞. Then the proof is similar as the Proposition 2.11. Let Ω = ∪∞k=1Bk(0) ∩Ω. Since Bk(0) ∩Ω
is open, KSp(.)(Bk(0)∩Ω) is separable. So, it contains a countable dense subset. The union of all these sets is
a countable set contained in KSp(.)(Ω) so, this set is dense in KSp(.)(Ω).

Remark 2.1.5. If p∗ = ∞ that is |Ω∞| = 0 then KSp(.)(Ω) is non separable.

Theorem 2.1.6. Holder’s type inequality Let p, q, r ∈ P(Ω) such that 1
r(y) =

1
p(y) +

1
q(y) for µ−a.e y ∈ Ω then,

ρ0r(.)( f1) ≤ ρ0p(.)( f ) + ρ0q(.)(1), (9)
ρ0r(.) ( f1) ≤ 2|| f ||p(.)||q||q(.). (10)

Proof. Let f ∈ KSp(.) and q ∈ KSq(.). Since f , 1 are measurable also, f1 is measurable. Now using Young’s
inequalities by integration over y ∈ Ω is the required result of the Theorem (2.1.6).
If || f ||p(.) ≤ 1 and ||1||q(.) ≤ 1 then ρ0p(.) ≤ 1 and ρ0q(.) ≤ 1. Using the unit ball property and the Theorem (2.1.6),
we get

ρ0r (
1
2

f1) ≤
1
2
ρ0r(.) ( f1)

≤
1
2

(ρ0p(.) ( f ) + ρ0q(.) (1))

≤ 1.

Hence 1
2ρ0r(.) ( f1) ≤ 1. Consequently, using || f ||p(.) ≤ 1 and ||1||q(.) ≤ 1, gives

ρ0r(.) ( f1) ≤ 2|| f ||p(.)||1||q(.).

2.2. Geometric properties of KSp(.)

This part of our article contributes to the study of the geometric characteristics of the spaces KSp(x).We
present a characterization of their basic geometric properties, namely reflexivity, uniform convexity.

Definition 2.2.1. The Banach space KSp(.)(Ω) is a Banach function space if the following axioms are satisfied:

1. f ∈ KSp(.) if and only if || f ||p(.) < ∞,
2. || f ||p(.) = |||1|||p(.) for every measurable function on Ω,
3. 0 ≤ fn → f µ−a.e. implies || fn|| → || f ||,
4. ||ch(E)||p(.) < ∞ for every E ⊂ Ω such that µ(E) < ∞,
5. For every E ⊂ Ω such that µ(E) < ∞, there exist a constant CE such that

∫
E Ek(x) f (x)dµ(x) ≤ CE|| f || for every

f ∈ KSp(.).

We will define an absolutely continuous norm as follows:

Definition 2.2.2. f ∈ KSp(.) has an absolutely continuous norm if for every decreasing sequence {Dn} of subsets of
Ω satisfying µ(Dn)→ 0 then ||ch(Dn)|| → 0.

Recalling the Uniformly convex Banach space as follows:

Definition 2.2.3. [2] A Banach space X is called uniformly convex if for every ϵ ∈ (0, 2] there exists a δ > 0 such
that

||
1
2

(x + y)|| ≤ 1 − δ,

whenever x, y ∈ BX, BX is unit sphere with ||x − y|| ≥ ϵ.

Proposition 2.2.4. Let µ be non atomic and p∗ < ∞, then KSp(.) has absolutely continuous norm.
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Proof. Let p∗ < ∞. Let f ∈ KSp(.) with || f ||p(.) = 1. Assume {En} is a sequence of sets such that µ(En)→ 0. Let
z ∈ N with ϵ > 0 such that || f ch(En)|| > 1 − ϵ. If ϕ = f ch(Ω \ Ez) ; χ = f ch(Ez) , from the [15, Lemma 2.2]∫
Ω
|
ϕ(x)
||ϕ|| |

p(x)dµ(x) = 1 and
∫
Ω
|
χ(x)
||χ|| |

p(x)dµ(x) = 1. So,

∞∑
k=1

|

∫
Ω

Ek(x)
ϕ(x)
||ϕ||

dµ(x)|p(x) = 1

and
∑
∞

k=1 |
∫
Ω
Ek(x)χ(x)

||χ|| dµ(x)|p(x) = 1.
Now,

||χ||p
∗

≤

∣∣∣∣∣ ∞∑
k=1

νk(x)
∫
Ω

Ek(x)χ(x)dµ(x)
∣∣∣∣∣p

≤ 1 −
∞∑

k=1

νk(x)
∣∣∣∣∣ ∫
Ω

Ek(x)ϕ(x)dµ(x)
∣∣∣∣∣p

≤ 1 − ||ϕ||p
∗

.

Therefore, ||χ|| ≤ 1 − (1 − ϵ)p∗ .

Theorem 2.2.5. Every space KSp(.)(Ω) is a Banach function space.

Proof. To prove KSp(.)(Ω) is a Banach function space, we need to show f ∈ KSp(.) must satisfy Definition
2.2.1.
KSp(.) satisfies (1), (2) and (4) with very obviously.
For (3), let a sequence fn with 0 ≤ fn → f (µ -a.e.) implies || fn|| → || f ||. Since p∗ < ∞, then there exists
1 ∈ KSp(.)(Ω) such that | fn(x)| ≤ 1(x) a.e.(using [24, Theorem 6.2]).
For (5) let E ⊂ Ωwith µ(E) < ∞. Let

E0 = {x ∈ E ∩Ω0 : | f (x)| < 1 } (11)
E1 = {x ∈ E ∩Ω0 : | f (x)| ≥ 1}. (12)

Then,
1
|| f ||

[
sup
(∑

∞

k=1 tk(x)
∣∣∣∣∣ ∫Ω Ek(x) f (x)dµ(x)

∣∣∣∣∣) + ess supE∩Ω∞ | f (x)|
]

= sup(
∑
∞

k=1 tk(x)|
∫
Ω

Ek(x) f (x)
|| f || dµ(x)|) + ess sup

E∩Ω∞

| f (x)|
|| f ||

≤ sup[
∑
∞

k=1 tk(x)|
∫
E0

Ek(x) f (x)
|| f || dµ(x)| +

∑
∞

k=1 tk(x)|
∫
E1

Ek(x) f (x)
|| f || dµ(x)|] + ess sup

E∩Ω∞

| f |
|| f ||

≤ µ(E) + 1 = CE.
Therefore,

sup
( ∞∑

k=1

tk(x)|
∫
Ω

Ek(x) f (x)dµ(x)|
)
≤ CE|| f ||.

So, ∣∣∣∣∣ ∫
Ω

Ek(x) f (x)dµ(x)
∣∣∣∣∣ ≤ CE|| f ||.

This completes the proof.

Theorem 2.2.6. KSq(x) is isomorphic to the associated space of KSp(x).

Proof. In term of Banach function space the Theorem 2.2.5 and the Proposition 2.2.4 gives KSq(x) is isomorphic
to the associated space of KSp(x).
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Theorem 2.2.7. Assume that µ is nonatomic and p∗ < ∞, then the following are equivalent:

1. KSp(.) is reflexive.
2. The space KSp(.) and KSq(.) have absolutely continuous norm.

Proof. Since KSp(.) is Banach function space. Using [1, Corollary 4.4], (1)⇔ (2).

Theorem 2.2.8. If 1 < p∗ ≤ p∗ < ∞, then KSp(.) is uniformly convex.

Proof. The proof follow from a modification of the proof of Clarkson inequalities for lp norms of [2] and (4)
=⇒ (2) of [15, Theorem 3.3].

3. Boundedness of maximal operators in KSp(.)

In this section, we discuss about boundedness of Maximal operator. If B(x, r) is an arbitrary ball centre
at x and radius r, then for f ∈ L1

loc(Ω), MB(x,r) f =
∑
∞

k=1 tk(y)|
∫

B(x,r) Ek(y) f (y)dy|,where
∫

B(x,r) is the mean value
integral over B(x, r).

Definition 3.0.1. Maximal operator: Let

M f (x) = sup
r>0

1
|B(x, r)|

( ∞∑
k=1

tk(y)|
∫

B(x,r)∩Ω
Ek(y) f (y)dµ(y)|

)
be the maximal operator.

Clearly for any p(.) ∈ KSp(.)(Rn) if f ∈ KSp(.)(Rn), thenM f (x) is well defined andM f (x) < ∞ is a.e..

Proposition 3.0.2. ([6, Lemma 3.4]) Let p be a bounded exponent on Ω with condition (3) then there exists
a constant C(p) > 0 such that for all || f ||p(.) ≤ 1 then

(M f (x))
p(x)
p∗ ≤ C(p)(M(| f |

p
p∗ )(x) + 1) ∀x ∈ Ω. (13)

Theorem 3.0.3. Let Ω be a bounded domain under (2) and (3), the maximal operator M is bounded in the space
KSp(.)(Ω).

Proof. Since M f is a positive homogeneous, i.e M(λ f ) = ||λ||M f . We need to show ||M f ||p(.) ≤

C(p) ∀ f with || f ||p(.) ≤ 1. Since in our assumption p∗ < ∞, then it is sufficient to prove ρ0(M f ) ≤ C(p) ∀|| f ||p(.) ≤

1. If f ∈ KSp(.)(Ω) with || f ||p(.) ≤ 1 then ρ0( f ) ≤ 1. Let q = p
p∗
, using the Proposition 3.0.2, we get our need

ρ0(M f ) ≤ C(p) for all || f ||p(.) ≤ 1.

Theorem 3.0.4. Let p(x) satisfy condition (2), (3) and (4), then the maximal operator M is bounded in the space
KSp(.)(Ω).

Proof. Condition (4) is a natural analogue of (3) at infinity. So, there must a number p∞ such that |x| → ∞.
This limit holds uniformly in all direction. So proof is just extension of Theorem 3.0.3.

Let P(Rn) denote the set of exponents p with 1 < p∗ ≤ p∗ < ∞ such thatM is bounded in KSp(.)(Rn). Clearly
P(Rn) is closed under some simple operations ([5, Theorem 2.2]). Also if p ∈ P(Rn) and s ∈ [1,∞) then

||M f ||ssp(.) = C|| f ||ssp(.). (14)

Hence sp ∈ P(Rn).

Theorem 3.0.5. For p∗ < ∞. LetM is bounded in KSp(.), thenM is bounded in KS
p(.)

s (Rn) for every s ∈ [1,∞).

Proof. Proof is similar as [25, Theorem 3.38]. Hence, we have omitted the proof.

Theorem 3.0.6. M is bounded in Lp(.) thenM is bounded on KSp(.).
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