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Abstract. In this paper, a three-species stochastic hybrid Lotka-Volterra system with distributed delay
and Lévy noise is proposed and studied by using stochastic analytical techniques. First, the existence and
uniqueness of global positive solution with positive initial condition is proved. Then, sufficient conditions

for persistence in mean and extinction of each species are established. Finally, some numerical simulations
are provided to support our results.

1. Introduction

The relationship between predators and their preys has long been and will continue to be one of the
dominant themes in ecology due to its ubiquity and importance ([1], [2], [3]). The most significant advance
in population dynamics was the widely-accepted two-species Lotka-Volterra system ([4], [5]). However,
several researchers found that numerous critical behaviors can only be exhibited by models with three or
more species ([6]). The classical three-species food chain model can be expressed as follows:

djg:t) ZX1(t) [}’1 — a11x1(t) - a12x2(t)] ’
df;t( . =x2(8) [-72 + az1x1 () — aznx2(t) — azsxs(t)], v
duxs(f)

T =x3(t) [-73 + azx2(t) — azxs(t)],

where x1(t), x2(t) and x3(t) are the population sizes of prey, intermediate predator and top predator, respec-
tively. r; and a;; are positive constants.

However, the deterministic system has its limitation in mathematical modeling of ecosystems since the
parameters involved in the system are unable to capture the influence of environmental noises ([7], [8]).
Hence, it is important to consider the stochastic population systems. Assume that the growth rate and the
death rates are affected by white noises, i.e., 11 < 11 + 01 Wi (t), =12 <> —r2 + 62 Wa(t), =13 < =13 + a3 Wi(t),
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where Wj(t) are mutually independent standard Wiener processes defined on a complete probability space
(Q, F, P) with a filtration {¥} >0 satisfying the usual conditions and the three-species food chain model with
white noises can be expressed as follows ([9]):

dx1(t) =x1(t) [r1 — anx1(t) — appx(t)] dt + o1x1 () AW (2),
dxo(t) =x2(t) [=12 + az1x1(t) — axnxo(t) — axxs(t)] dt + o2x2()dWa(t), ()
dxs(t) =x3(t) [-r3 + asxa(t) — azzxz(t)] dt + o3x3(H)dWa(t).

On the other hand, population system may be affected by telephone noises, which can cause the system
to switch from one environmental regime to another ([10], [11], [12]). Some authors claimed that the regime
switching can be described by a continuous-time Markov chain p(f) with finite-state space ([11], [12], [13],
[14], [15], [16], [17], [18]). System (2) under regime switching can be described by the following system:

duxy (t) =x1(t) [r1(p()) — anrxa(t) — araxa(H)] At + o1(p(t))x1 (AW (2),
dxa(t) =x2(f) [-r2(p(t)) + anx1(t) — axnxa(t) — axxs(t)] df + a2(p(t)x2(t)dWa(t), 3)
dxs(t) =x3(t) [-73(p(t)) + asaxa(t) — azsxz(t)] At + a3(p(£))x3(H)dWs(t).

Now, let us further improve system (3) by considering time-delay and another type of environmental
noise-Lévy noise. On the one hand, ”all species should exhibit time-delay” in the real world, and in-
corporating time-delays in biological systems makes the systems much more realistic than those without
time-delays ([19], [20], [21]). As is known, systems with discrete time-delays and those with continuously
distributed time-delays do not contain each other. However, systems with S-type distributed time-delays
contain both ([22], [23]). On the other hand, some scholars pointed out that Lévy noise can be used to de-
scribe some sudden environmental perturbations, for instance, earthquakes and hurricanes ([24], [25], [26],
[27], [28], [29], [30]). Recently, stochastic population systems have been received great attention ([31], [32],
[33], [34], [35], [36], [37], [38], [39]). However, to the best of our knowledge, results about stochastic hybrid
delay population systems with Lévy noise have rarely been reported. So, in this paper we concern the
dynamics of the following stochastic hybrid three-species food chain model with distributed time-delays
and Lévy noise:

dx1 (8) =x1(t) [(r1(p(£)) — D1 (x1)(t) — Diz(x2)(#)) dt + S1 (¢, p(1))],
doxo(t) =x2(t) [(=12(p(1) + D1 (x1)(t) — Do (x2)(t) — Dz(x3)(F)) dt + Sa (¢, p(t))], 4)
dxs(t) =x3(t) [(=73(p(t)) + Daz(x2)(t) — Daz(x3)(t)) dt + Sz (t, p(t))],

— 0
where Dji(x)(1) = ajxi(t) + [, it + 0)du;(0), Si (1, p(h) = apENAW,) + f, vilut, p)N(t, dp), [°, it +
0)du;i(0) are Lebesgue-Stieltjes integrals, 7; > 0 are time-delays, 11;;(0) are nondecreasing bounded variation
functions defined on [-7,0], T = max; =123 {T ]-i}, p(t) is a right-continuous Markov chain, taking values in
5=1{1,2,..,5}, Nis a Poisson counting measure with characteristic measure A on a measurable subset Z of
[0, +00) with A(Z) < +oo and N(dt, du) = N(dt,du) — A(dp)dt, yi(u, p(t)) > =1 (u € Z) are bounded functions
(j=1,2,3).

The structure of this paper is as follows. In Section 2, we show the existence and uniqueness of global
positive solution. In Section 3, we obtain sufficient conditions for persistence in mean and extinction of each
species. In Section 4, some numerical simulations are provided to verify the correctness of the theoretical
results.

2. Existence and uniqueness of global positive solution
Throughout this paper, the generator I' = (y;j)sxs of p(t) is given by

Yijc +0(¢), L# ],

. 5
1+yiic+o(c), i=j ©)

Plp(t+c) = jlp(t) = i} = {
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where ¢ > 0. Here y;; represents the transition rate from i to j and y;; > 0if i # j, while yii = = Y1 yij.
Assume that p(t), Wi(t), Wa(t), W3(t) and N are mutually independent and p(t) is irreducible. Hence, system
(4) can switch from any regime to any other regime and p(t) has a unique stationary probability distribution
7 = (1, Ty, ..., s) € RS which can be determined by solving nI’ = 0, subject to Z,-Szl ;= 1and r; > 0,
Vi € 5. Denote

a3()
816 =16 - 50 = [ D) = + 16 M A,
z
UJZ»(') ,
B =10+ =5+ [ [0 =+ pie D] A, (=23,
0
Aij = aij + f dlulj(e) (l,] = 1/2/3/ (l/]) # (1/3)/ (l/ ]) * (3/ 1))/
—T,-,-
s s A s A
N Byt N g, An I o
% = ;mBl(l), T = ;71132(1) + 2B, T, = ;77133(1) wert
M‘Al _ A11 A12 A1 _ z‘41 A12 |As| All Z‘41
B |-An Ap|” B Zz—g—ﬂzl Ap|” 778 |-Ay L —ﬁ}—ﬁzl ’
A11 A12 0 Z}‘ A12 0
A= —A21 A22 A23 , A1 = Z'2 - A_ﬁzl A22 A23 ,
0 _A32 A33 23— ﬁ—ZZz —A32 A33
A11 Y 0 A11 AlZ |
Ay =|-An Lo- ﬁ—ﬁzl Ax|, Az =|-An Axn Xo- ﬁ“_ﬁzl )
0 X3-4E5, Agp 0 -Ap I3- 45

In this paper, we impose the following assumptions:
(Hy) (@) > 0, ag > 0 and there exist y;(i) > 7j(i) > =1 such that y.(i) < yj(u,i) < )/;(i) (u€Z),Vies,
i k=1,2,3.
(Hz) A AssMi] > A1 A2 A3 Asy.

Theorem 2.1. For any initial condition (qb, p(O)) € C([-7,0],R3) x S, system (4) has a unique global positive
solution on t € [—1,+00) a.s.

Proof. Since the coefficients of system (4) are locally Lipschitz continuous, from [40] and [41] we observe
that system (4) admits a unique local solution x'(t) on t € [-7, 7,) a.s., where 1, is the explosion time. To
prove 7, = +o0 a.s., consider the following stochastic hybrid delay differential equation:

dXi(t) =X (t) [(ri(p(h)) — D (Xa)(1) df + S1 (¢, p(t))],
dXo(t) =X(F) [(=r2(p(1)) + D (X1)(t) = Do(X2)(1)) dt + Sa (¢, p(1))], (6)
dXz(t) =X3(t) [(=73(p(t)) + Da2(X2)(t) — D33(X3)(t)) dt + Sz (¢, p(t))] .

Thanks to Theorem 2.1 in [42] and the stochastic comparison theorem, we deduce that system (6) admits a
unique global positive solution on t € [-7, +00) a.s. By the stochastic comparison theorem, x;(f) < X;(t) a.s.,
t € [0,+00) (i = 1,2,3), which implies 7, = +o a.s. The proof is complete. [

3. Extinction and persistence in mean

Lemma 3.1. ([43]) Let Z(t) € C(QAx [0, +00),R,.) and f(t) be two stochastic processes satisfying lim; .. f(t)/t =0
as..
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(1) If there exist positive constants T and O such that forall t > T,
t
InZ(t) < 6t - 6Of Z(s)ds + f(t), 7)
0
then

t
lim sup t‘lf Z(s)ds Sg as. if 020;
0 0

t—+o0 (8)
tlim Z(t) =0 as. if 6<0.
—+00
(it) If there exist positive constants T, 6 and 6¢ such that for all t > T,
¢
InZ(t) > ot — 60f Z(s)ds + (), 9)
0
then
' 5
liminf#! f Z(s)ds > — a.s. (10)
t—+00 0 50
Lemma 3.2. For system (6):
() If X1 <0, then limy_,4 Xi(t) = 0a.s. (i =1,2,3).
(i) If£1 20, Zp <O, then
' b
lim ¢+ f Xi(s)ds = =%, Hm X;(t) =0 as. (i =2,3). (11)
t—+o00 0 A11 t—+oc0
(i) [f X1 20,22 >0, X3 <0, then
¢ 5.
lim t‘lf Xi(s)ds = =, lim X3(t)=0as. (i=1,2). (12)
t—+o0 0 Aii t—+o00
(iv) Ile >0,X,>0,X3>0, then
¢ 5
lim 7! f Xi(s)ds = = a.s. (i =1,2,3). (13)
t—+o0 0 Aii

Proof. Consider dXy(f) = X1(t) [(r1(p(f)) — D11(X1)(#)) df + S1 (¢, p(#))]. Similar to the proof of Lemma 2.3 in
[44], we have

tlim Xi(t) =0 as. (X1 <0);
—+00
(7 L (14)
lim ¢ f Xi1(s)ds = — a.s. (X1 20).
t—+o00 0 All
By Lemma 3.1 in [24] and the strong law of large numbers,
t
tlir+n t‘lf ai(p(s))dWi(s) =0 as.
0 (15)

¢
lim t‘lf fln<1+yj(y,p(s))>ﬁ(ds,dy) =0 as.
0 Jz

t—>+o00
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By Itd’s formula and (15),
t t
1,0 = [ Bu(po)ds = An [ Xi)ds = T (00 + o),
0 0

t

t t
InX,(f) = - fo By(p(s))ds + Ay, fo Xa()ds — Az fo Xa(9)ds + Tan (X2)(8) — Toa(Xa)(H) + 0(t),

In Xs(t) = - fo B3(p(s))ds + Asy fo Xa(s)ds — Ass f X3(9)ds + Taa(X2)(8) — Taa(Xa)(®) + o(t),

0

0 (0 0
where 75:(X)() = [, [} Xi(s)dsdu(©) - [, [, Xi(s)dsdp;i(6).
Case (i) : 1 < 0. Then limy—, 4+ X1 (f) = 0 a.s. Therefore, for Ve € (0,1) and ¢t > 1,

S t
In Xz(i’) < [— Z T(,’BQ(i) + 6] t—ax» f Xz(S)dS.
0

i=1

Thus, lim;_, 4+ X5(f) = 0 a.s. Similarly, lim; .. X3(t) =0 a.s.
Case (it) : £1 > 0. Then,

t
x
lim t‘lf Xi(s)ds = =% a.s.
0 An

t—+o00

Consider the following auxiliary function:

dXa() =%0) [(-r2(p(®) + Do (X0)(8) — a2 Xa{B)) dt + Sa (1, p(8))]
Then X5(t) < }/Zz\(?/) a.s. By Itd’s formula and (18),

InX>(F) = — j; t Ba(p(s))ds + An fo t X1(s)ds — az fo t X>(3)ds + o(b).
Thanks to (18) and (20), for Ve € (0,1) and { > 1,

¢
In X5(t) < (22 + 6) t—an f X5(s)ds,
0
— t T~
InXo(t) > (o —€)t —an f Xy (s)ds.
0
In view of Lemma 3.1, (21) and the arbitrariness of €, we obtain:
(HIfX; 20, L, <0, then lim;_, 4o Xo(t) = 0 a.s.
2yIf X 20,X; >0, then
t
lim 7! f }?2\(5/)ds = L a.s.
t—+o00 0 an»

Therefore, for arbitrary y > 0,

t—+o00

¢
lim t‘lf Xi(s)ds =0 as. (i=1,2).
t=y
According to (23) and system (16), for Ve € (0,1) and t > 1,
t
InXp(f) <(Xa+e€)t—Anxp f Xo(s)ds,
0

t
In Xz(t) > (22 - 6) t— Azz f Xz(S)dS.
0

4741

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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Thanks to Lemma 3.1 and the arbitrariness of €, we obtain:
(3YIfXq > 0, I, < 0, then limy_ 100 Xa2(f) = 0 a.s.
@yIf¥, 20,2, >0, then

t
X
lim t‘lf X>(8)ds = — a.s.
t—+00 0 2( ) A22

Therefore, the desired assertion (i) follows from combining (18) with (3).

Case (iit) : X1 2 0, X > 0. Consider the following stochastic differential equation:

dXa(0) =300 [(-ra(p(H) + Daa(Xa)(t) — a5 X3(B) dt + S5 (£, p(1))]

By Itd’s formula and (25),

t

t t
InX5(F) = — fo Bs(p(s))ds + Az fo X»(s)ds — a3 fo X3(5)ds + o(t).

Thanks to (25) and (27), for Ve € (0,1) and { > 1,
— t —
11’1X3(t) < (23 + 6) t—ass f X3(S)dS,
0

t
In X3(F) > (3 —G)t—ﬂ33f X3(5)ds.
0

Thanks to Lemma 3.1, (28) and the arbitrariness of €, we deduce:

—~

GYIfX, 20,2, >0, 23 <0, then lim;, 4 X3(f) = 0 a.s.
6YIfL; 20,2, >0,X3 >0, then

R AP Y5
lim ¢ X3(s)ds = — a.s.
0

t—+o00 as3

Hence, for arbitrary y > 0,

t
lim + f Xi(s)ds =0 as. (i=1,273).
t=y

t—+o0

Combining (30) with system (16) yields that for Ve € (0,1) and t > 1,
t
In X3(f) < (23 + 6) t—Ass f X3(S)dS,
0

t
In X3(t) > (23 - 6) t— A33 f Xg(S)dS.
0

Thanks to Lemma 3.1, (31) and the arbitrariness of €, we deduce:
NHIfX>0,YX20,Z3 <0, then lim;_, ;o X3(£) = 0 a.s.
8YIfX1>0,%X >0, %3 >0, then

¢
X
lim tlf Xs(s)ds = =5 s,
0 Ass

t—+o00

4742

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

In view of (18), (4) and (7), we obtain (iit). And (iv) follows from combining (18), (4) with (8). The proof is

complete. [
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Lemma 3.3. For system (4):
(i) limsup, ,, t'Inx;(t) <0as. (i=1,2,3).
(i) im0 Xi(t) = 0 = limy 100 xj(t) = 0as. (1 <i<j<3).

Proof. An application of (30) and Lemma 3.2 in system (16) yields

lim sup 1 InX;(t) <0 as. (i=1,2,3). (33)

t—+00

Hence, the desired assertion (i) follows from (33). The proof of (ii) is similar to that of Lemma 3.2 (a) and
here is omitted. O

Theorem 3.4. For system (4):
(i) if |As| > O, then

t .
lim t_lf xi(s)ds = @ as. (i=1,2,3). (34)
t—+00 0 |A]
(i) if ME2' > 0 > |As|, then
t Al
1 M3 .
lim f xi(s)ds = —=, lim x3(t) =0 as. (i=1,2). (35)
=400 0 MAT oo
33
(iif) if £y > 0 > M, then
. -1 t 21 . .
lim ¢ x1(s)ds = — lim x;(t) =0 as. (i=2,3). (36)
t—+o0 0 All t—+00

(iv) if 0 > Ly, then lims 1 x;(t) = 0a.s. (i=1,2,3).

Proof. Compute |A3| < A32M|3’?52‘ < AnAszXy. By (30), for any y > 0,

¢
lim t‘lf xi(s)ds =0 as. (1=1,2,3). (37)
t—+o0 t—y
By Itd’s formula and (37), we deduce
¢ ¢
In x1 (f) J Bi(p(s))ds Jp x1(s)ds 1
[ In x5 (f) J =| - fot By(p(s))ds |- A fot xo(s)ds |+ o(t)[ 1 ] (38)
In x5(t) _fot Bs(p(s))ds J(‘)t x3(s)ds 1
Case (i) : |As| > 0. According to system (38), we compute
¢
AnAz Inxi(t) + A11Az Inxo(t) + Mlzgl Inx3(t) = |As|t — |A] f x3(s)ds + o(t). (39)
0
Combining Lemma 3.3 with (39) yields that for Ve € (0,1) and ¢ > 1,
¢
M Inxs(t) > (|As] — )t — |A] fo x3(s)ds. (40)

In view of Lemma 3.1, (40) and the arbitrariness of €, we obtain

¢
liminf ¢! x3(s)ds > @ as. (41)
t—+00 0 |A|
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On the basis of system (38), we compute
t ¢
ApInx(t) — Ap Inx(t) = Mt — MY f x1(s)ds + A1pAzs f x3(s)ds + o(f).
0 0

By Lemma 3.3 and (42), for Ve € (0,1) and ¢ > 1,

¢ t
ApInx(t) < (M'S‘;]l + AjpAs lim sup 1 f x3(s)ds + e) t— M'g f x1(s)ds.
0 0

t—+o0

Based on Lemma 3.1, (43) and the arbitrariness of €, we obtain

t » ¢
limsup ¢! f x1(s)ds < (Mlsgl) (M';;f' + ApAplimsup t™! f x3(s)ds) 7 as.
0 0

t—+o0 t—+o00

According to (41), (44) and system (38), for Ve € (0,1) and t > 1,

An s f
lnxz(t) < ():2 - A_Zl + A21F F A23% + 6) - Azzf xz(s)ds.
0

In view of (41), Lemma 3.3, Lemma 3.1 and the arbitrariness of €, we obtain

t

Ar

lim sup 1 f X(s)ds < Az_zl (Zz Zl + A211"5“P A23| 3') as.
foo 0 An |A|

Combining (46) with system (38) yields that for Ve € (0,1) and t > 1,

AnA A
lnX3(t)S[23— Ry 2

S | 3| ft
AnI" - A )+e]t—A x3(s)ds.
Ay ™ ( 21 23— 33 | 3(s)

1Al

In view of (41), (47), Lemma 3.1 and the arbitrariness of €, we obtain

¢
) _ _ AxAz Az s |As]
hmsutlfx sdsSAl[Z— Y1+ —= (Al"p A )] a.s.
H+oop 0 3(6) BT AnAy Ap 7 Al

In other words, we have

|A1|
Z

AnAn Azz

A —

-1
limsup ¢ M' A‘

Azle:gl t—+o00

A221‘133]V1|§;)| — AppAnApAsz f g x3(5)ds < & AxAz
3 3=
0

In view of (49) and assumption (H;), we deduce

. _ |As|
hmsutlfx s)ds < —2 as
m sup s < )

Based on (41) and (50), we obtain

t
. -1 _ |A3|
tl_lmot j; x3(s)ds = Al a.s

Substituting (51) into (44) yields

t -1
lim sup t_l f xl(s)ds < (Mlggl) (Ml::hl + A12A2

|A3|) A4
t—+00 0 |A|

Al

|As]

ZSW

4744

(42)

(43)

(44)

(45)

(46)

(47)

(48)

a.s. (49)

(50)

(51)

(52)
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Substituting (52) into (46) leads to

An |A1] |As| ) |As]
A =
|A|

—1 + A21—

t
lim su tlfx s)ds < A5} (Z - - —
P J, O = An B m g TRV

t—+o0
In view of system (38), we compute

t

t
A Inx(t) + An Inxo(f) = M2t — MY f xy(s)ds — A11 Az f x3(s)ds + o(t).
0

0
Based on Lemma 3.3 and (54), for Ve € (0,1) and ¢ > 1,

A t
A11 In Xz(t) > (M!;;Zl - A11A23% - €) t— M!gl f Xz(S)dS.
0

Thanks to (55), Lemma 3.1 and the arbitrariness of €, we obtain

lim inf ! txz(s)ds z (MlAl)_l (MlAZl — A11A23@) = @ a.s
t—+00 0 - 33 33 |A| |A|

Combining (53) with (56) yields

t
. 1A,
fl_lﬂot j; Xo(s)ds = Al a.s.

Combining (57) with system (38) yields that for Ve € (0,1) and t > 1,

t
h1x1(t) > (21 _A12||A7E|| - E)t —Allf xl(s)ds,
0

|Aa|

t
Inx;(t) < (21 —Ap—— + e) t—Aqn f x1(s)ds.
|A| 0

In view of (58), Lemma 3.1 and the arbitrariness of €, we obtain

¢
A A
lim t—lf x1(s)ds = A7} (21 —A12M) _ Al as
0

f—+00 |A] |A]
Case (if) : MY > 0 > |As|. Thanks to (39), we obtain
1Al
lifn sup tIn [x{1 24z (if)yc,‘?”A“’z(t)xISVI33 (t)] <|A3l <0 as.
—+00

In view of (60) and Lemma 3.3, we obtain
¢

lim + f x3(s)ds =0 a.s.

t—+o0 0
From (54) and (61), we derive that for Ye € (0,1) and t > 1,

¢
Aplnx(t) > (M';;f' - e) t— M';;' f Xo(s)ds.
0

According to (62), Lemma 3.1 and the arbitrariness of €, we have

t A
liminft‘lf xy(s)ds > —>_ gs.
f—+00 0 M|A|

33

4745

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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In view of (42) and (61), for Ye € (0,1) and f > 1,

¢
ApInxi() < (M +¢€)t — My fo x1(s)ds. (64)
Thanks to (63), Lemma 3.3, Lemma 3.1 and the arbitrariness of €, we deduce
t |A1]
limsup ! f x1(s)ds < —> g.s. 65
t—)+oop 0 1( ) Mli,gl ( )

Substituting (61) and (65) into system (38) yields that for Ve € (0,1) and ¢ > 1,

[Aq] t
A
Inx() <|To - 25 + Ay —o +e|t—Axp | xa(s)ds. (66)
An M 0
33
Based on (66), Lemma 3.1 and the arbitrariness of €, we deduce
t M|A1| MlAzl
limsup ¢! f x(5)ds < Ay | Zo - @21 FA—2 = 2 g (67)
f oo 0 A MIA\ Al
33 33
Combining (63) with (67) yields
t |As]
L _ a3
tl_l)l_"_réot fo Xo(s)ds = MI;;I a.s. (68)

Combining (68) with system (38) yields that for Ve € (0,1) and t > 1,

|Az] t
33
Inx1(t) 2[21 _A12M_|£| —€el|t—An jo‘ x1(s)ds,
|Az] t (69)
Inx;(t) < [Zl - Alzﬁ +elt—An j(; x1(s)ds.
33
Based on (69), Lemma 3.1 and the arbitrariness of €, we obtain
t |Aq]
. -1 _ Vi3
tl_l)]flot j(; x1(s)ds = _MIAI a.s. (70)
33
Gase (iif) : Ty > 0 > MY\ Then, limy_, 4o x3() = 0 a.s. In view of (54),
lim sup t11n (x’f”(t)x’;“(t)) < M';;Z' <0 as. (71)

t—+o00

On the basis of (71) and Lemma 3.3, we derive that lim;_, ;. x2(f) = 0 a.s. Thus, for Ye € (0,1) and t > 1,

t
In xl(t) > (21 - 6) t— A11 f X1 (S)dS,
0

t (72)
lnxl(t) < (21 + 6) t—An f xl(s)ds.
0
In the light of (72), Lemma 3.1 and the arbitrariness of €, we obtain
' by
lim 7! f x1(s)ds = =L s (73)
f—+00 0 A

Case (i) : 0 > X;. Then, lim; . x1(f) = 0 a.s. Consequently, based on Lemma 3.3, we obtain that
lim; o0 X2(t) = limy, 100 x3(t) = 0 a.s. O
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Remark 3.5. If§ = {1} and u;;(0) = C;; (6 € [~7,0]), then system (4) becomes the system discussed in [31].

Remark 3.6. If S = {1}, yi(1,-) = 0 (u € Z), uii(0) = C;; (0 € [-7,0]), a;j = 0 (i # ) and u;;(0) are defined as
follows:

ap, —-11<0<0, an, —-T»<0<0,
112(0) = {” ! uﬂ(e):{ﬂ ?

0, —-t2<60<-14, 0, -T1<0=Z-1y
a3, -13<0<0, ap, —-T4<60<0,
0) = 0) =
t2:(0) {0, —T33 <0< —13, a2(6) {0, —T3 < 0 < —1y,

then system (4) becomes the following system discussed in [45]:

doey (1) =x1(t) [r1 — anx1(8) — anpxa(t — 11)] dt + o1xa (AW (8),
dXQ(t) ZXZ(t) [—7’2 + ﬁﬂxl(t — 72) — 1122.7(2(1') — &Xg(t - T3)] dt + GzXz(t)sz(t),
dx3(t) :X3(t) [—1’3 + LESE.’XQ(t - T4) - a33x3(t)] dt + O'3X3(t)dW3(t).

4. Numerical simulations

In this section we provide some numerical simulations to show the effectiveness of our main theoretical
results by using the Milstein approach mentioned in [46]. For simplicity, we suppose that system (4) has
only two regimes, namely § = {1,2}. Then system (4) is a hybrid system of the following two subsystems:

dx1(t) =x1(8) [(r1 (1) — D11 (x1)(t) — Da(x2)(1)) dt + Sy (¢, 1)],
dxo(t) =x2(t) [(=72(1) + D21 (x1)(t) — D2 (x2)(t) — Doz(x3)(F)) dt + Sa (¢, 1)], (74)
dxs(t) =x3(t) [(=73(1) + Dsa(x2)(t) — Dsa(x3)(t)) dt + S5 (£, 1)],

and

dx1(t) =x1(t) [(r1(2) — D11 (x1)(t) — Dr2x2)(1)) dt + Si (¢,2)],
dxa(t) =x2(t) [(=72(2) + Da1(x1)(t) — Daz(x2)(t) — Daz(x3)()) dt + Sz (8,2)], (75)
dxs(t) =x3(t) [(=73(2) + Ds2(x2)(t) — D33(x3)(t)) dt + S5 (¢,2)].

Let 7ji = In2, uji(0) = pjie?, yj(u, i) = y(i), A(Z) = 1. Denote

ri(@) an a2 0 un p2 0 o1() y10)
Param(i) = |r2(i) a1 ax a3 por poo  poz 02(0)  y2(i)].
r3(0) 0 axn a0 psm wss o03() ys(D)

Then system (4) may be regarded as the result of regime switching between subsystems (74) and (75) with
the following parameters, respectively,

09 02 02 0 02 02 0 01 01
Param(1) ={03 04 03 02 04 02 02 01 01},
02 0 03 03 0 02 02 01 01

05 02 02 0 02 02 0 12 02
02 0 03 03 0 02 02 02 02

Param(Z):[O.Z 04 03 02 04 02 02 02 02

subject to x1(0) = 1.8e%, x2(0) = 1.3e%, x3(6) = 0.8e?, 0 € [-1n2,0]. For subsystem (74), we compute B;(1) =
0.795+In 1.1, Bo(1) = 0.405—-In1.1, B3(1) = 0.305—-1In 1.1, |A;| = 0.24375+0.25In 1.1, |A5| = 0.16965+0.27In 1.1,
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|As] = 0.0507 +0.661n1.1 = 0.1136 > 0. Based on Theorem 3.4 (i), all species in subsystem (74) are persistent
in mean and

¢
. _ A1l 02676
tl_lflot fo x1(s)ds = _IAI = 0156 1.7154 a.s.
. |A2| 0.1954
=1. S. 76
t1—1>1-;20t f x(s)ds = |A| 015 1.2526 a.s (76)
t
. _ |As] 01136
tl_grxlot fo x3(s)ds = _|A| = 0156 0.7282 a.s.

For subsystem (75), we compute B1(2) = —0.42 +In1.2, B»(2) = 042 - 1In1.2, B3(2) = 042 -In12, ¥; =
—042 +1In1.2 = -0.2377 < 0. In view of Theorem 3.4(iv), all species in subsystem (75) are extinctive. See
Figure 1 (a) and Figure 1 (b), respectively.

!
osT /

o . . . . . . . .
0 20 40 60 8 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time Time

@) (b)

Figure 1: (a) shows the solution to subsystem (74) with Param (1). This subfigure represents that all species in regime 1 are persistent
in mean; (b) shows three sample paths of subsystem (75) with Param (2). This subfigure represents that all species in regime 2 are
extinctive.

9 107 10
0.225In1.1+0.025In 1.2, |A5| = 0.141345+0.243In 1.1+0.0271n 1.2, |A3| = 0.01791+0.594In 1.1+0.066In 1.2 =
0.0866 > 0. Based on Theorem 3.4 (i), all species in system (4) are persistent in mean (see Figure 2 (a)) and

Case 1. I' = (yij)axe = (_91 _1) Then = (71, 72) = (2 L). Thus, we have |A;] = 0.208875 +

. |A1| 0.2349
t1—1>I-E<Eot fxl(s)ds Al - 0156 =1.5058 a.s.
t
. _ A2l 01694 77
tl_grxlot fo x(s)ds = _|A| = 0156 = 1.0859 a.s. (77)
t
. _|As] _ 0.0866
tl_l){fr;t fo x3(s)ds = TAl ~ 0156 0.5551 a.s.

Case 2.1 = (yij)a2 = (119 _911). Then 7t = (111, 712) = (%, %) Thus, we compute |A3| = —0.096855 +
0.363In1.1 + 0.297In1.2 = -0.0081 < 0, M4 = 0.222825 + 0.055In 1.1 + 0.045In 1.2, M4 = 0.025425 +
0.495In1.1 +0.405In 1.2 = 0.1464 > 0. By Theorem 3.4 (ii), x1 () and x,(t) are persistent in mean, while x3(t)
is extinctive (see Figure 2 (b)) and

t |Aq]
lim ¢! f xi(s)ds = —>- = % =0.7877 as.
0 M33 .

(78)

; M2 01464
lim t‘lf Xo(s)ds = —o— = ———— = 0.4880 a.s.
t—+o00 M|A| 03

0 33
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0 20 40 60 8 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time Time

(a) (b)

g MWVM WL

60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time Time

© (d

Figure 2: (a) shows the solution to hybrid system (4) with = = (% lo) This subfigure represents that all species in Case 1 are persistent

in mean; (b) shows the solution to hybrid system (4) with 7w = (%(1], 20) This subfigure represents that in Case 2, x1(f) and x,(t) are

persistent in mean, while x3(f) is extinctive; (c) shows the solution to hybrid system (4) with 77 = (};, %) This subfigure represents that

in Case 3, x(t) is persistent in mean, while x,(#) and x3(f) are extinctive; (d) shows the solution to hybrid system (4) with = = (%, %)

This subfigure represents that all species in Case 4 are extinctive. Other parameters in Figure 2 are the same as those in Figure 1.
33 Then © = (M, mp) = ( 3) Thus, we obtain M2 = —0.194625 +
1 -1/ - 1,7t2) = \1r1 ’ 33 .

0.225In1.1 + 0.675In1.2 = —0.0501 < 0, 3 = —0.11625 + 0.25In1.1 + 0.75In 1.2 = 0.0443 > 0. By Theorem
3.4 (iit), x1(t) is persistent in mean, while x,(t), x3(t) are extinctive (see Figure 2 (c)) and

Case 3. I' = (yij)ax2 = (

t
X 0.0443

i -1 = —1 = — = 79

tl_l)rJrréot f(; x1(s)ds n 03 0.1477 a.s. (79)

Case 4.T = (yij)xa = (_15 _51 Then t = (111, 72) = (6, g) Hence, we have £; = =1305#nL15nl2 —

—0.0497 < 0. Based on Theorem 3.4 (iv), all species in system (4) are extinctive (see Figure 2 (d)).
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