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Generalized Resolvents of Linear Relations Generated by Integral
Equations with Operator Measures

Vladislav M. Bruka

aSaratov State Technical University, Saratov, Russia

Abstract. We consider a symmetric minimal relation L0 generated by an integral equation with operators
measures. We obtain a form of generalized resolvents of L0 and give a description of boundary value
problems associated to generalized resolvents.

1. Introduction

Generalized resolvents of symmetric operators were introduced by M.A. Naimark in 1940 (see, for
example, [1]). In [27], A.V. Straus described the generalized resolvents of a symmetric operator generated
by a formally self-adjoint differential expression of even order in the scalar case. In [5], these results were
spread to the operator case, and in [9] to the case of a differential-operator expression with a non-negative
weight operator function. Further, the generalized resolvents of differential operators were studied in many
works (a detailed bibliography is available, for example, in [25], [21]).

In this paper, we consider the integral equation

y(t) = x0 − iJ
∫ t

a
dp(s)y(s) − iJ

∫ t

a
dm(s) f (s), (1)

where y is an unknown function, a ⩽ t ⩽ b; J is an operator in a separable Hilbert space H, J = J∗, J2 = E (E is
the identical operator); p, m are operator-valued measures defined on Borel sets ∆⊂ [a, b] and taking values
in the set of linear bounded operators acting in H; x0 ∈H, f ∈L2(H, dm; a, b). We assume that the measures
p, m have bounded variations and p is self-adjoint, m is non-negative.

We consider a symmetric minimal relation L0 generated by equation (1). We obtain a form of generalized
resolvents of L0 and give a description of boundary value problems associated to generalized resolvents.
We give a detailed example of constructing a generalized resolvent.

If the measures p, m are absolutely continuous (i.e., p(∆) =
∫
∆

p(t)dt, m(∆) =
∫
∆

m(t)dt for all Borel
sets ∆ ⊂ [a, b], where p(t), m(t) are bounded operators for fixed t and the functions

∥∥∥p(t)
∥∥∥, ∥m(t)∥ belong

to L1(a, b) ), then integral equation (1) is transformed to a differential equation with a non-negative weight
operator function. Linear relations and operators generated by such differential equations were considered
in many works (see [23], [6], [9], further detailed bibliography can be found, for example, in [21], [3]).
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The study of integral equation (1) differs essentially from the study of differential equations by the
presence of the following features: i) a representation of a solution of equation (1) using an evolutional
family of operators is possible if the measures p, m have not common single-point atoms (see [12]); ii)
the Lagrange formula contains summands relating to single-point atoms of the measures p, m (see [13]).
This article substantially uses the results of [17]. Also note that this article partially corrects the errors
made in the work [11]. Moreover, equation (1) was considered in [14] under the assumption that m is
the usual Lebesque measure on [a, b] and the set of single-point atoms of the measure p can be arranged
as an increasing sequence converging to b. In [14], a formula for generalized resolvents of L0 is obtained
and a description of boundary value problems related to generalized resolvents is given. In [14], L0, L∗0 are
operators.

2. Preliminary assertions

Let H be a separable Hilbert space with a scalar product (·, ·) and a norm ∥·∥. We consider a function
∆→P(∆) defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of linear bounded operators acting in
H. The function P is called an operator measure on [a, b] (see, for example, [4, ch. 5]) if it is zero on the empty
set and the equality P

(⋃∞
n=1 ∆n

)
=

∑
∞

n=1 P(∆n) holds for disjoint Borel sets ∆n, where the series converges
weakly. Further, we extend any measure P on [a, b] to a segment [a, b0] (b0>b) letting P(∆) = 0 for each Borel
set ∆⊂ (b, b0].

By V∆(P) we denote V∆(P)=ρP(∆)= sup
∑

n ∥P(∆n)∥, where the supremum is taken over all finite sums
of disjoint Borel sets ∆n⊂∆. The number V∆(P) is called the variation of the measure P on the Borel set ∆.
Suppose that the measure P has the bounded variation on [a, b]. Then for ρP-almost all s ∈ [a, b] there exists
an operator function s→ΨP(s) such that ΨP possesses the values in the set of linear bounded operators
acting in H, ∥ΨP(s)∥=1, and the equality

P(∆) =
∫
∆

ΨP(s)dρP (2)

holds for each Borel set ∆ ⊂ [a, b]. The function ΨP is uniquely determined up to values on a set of zero
ρP-measure. Integral (2) converges with respect to the usual operator norm ([4, ch. 5]).

Further,
∫ t

t0
stands for

∫
[t0t) if t0 < t, for −

∫
[t,t0) if t0 > t, and for 0 if t0 = t. This implies that y(a) = x0 in

equation (1). A function h is integrable with respect to the measure P on a set ∆ if there exists the Bochner
integral

∫
∆
ΨP(t)h(t)dρP =

∫
∆
(dP)h(t). Then the function y(t) =

∫ t

t0
(dP)h(s) is continuous from the left.

By SP denote a set of single-point atoms of the measure P (i.e., a set t ∈ [a, b] such that P({t}) , 0). The
set SP is at most countable. The measure P is continuous if SP = ∅, it is self-adjoint if (P(∆))∗=P(∆) for each
Borel set ∆⊂ [a, b], it is non-negative if (P(∆)x, x) ⩾ 0 for all Borel sets ∆⊂ [a, b] and for all elements x ∈ H.

In following Lemma 2.1, p1, p2, q are operator measures having bounded variations on [a, b] and taking
values in the set of linear bounded operators acting in H. Suppose that the measure q is self-adjoint. We
assume that these measures are extended on the segment [a, b0] ⊃ [a, b0) ⊃ [a, b] in the manner described
above.

Lemma 2.1. [13] Let f , 1 be functions integrable on [a, b0] with respect to the measure q and y0, z0 ∈ H. Then any
functions

y(t)= y0− iJ
∫ t

t0

dp1(s)y(s)− iJ
∫ t

t0

dq(s) f (s), z(t)=z0− iJ
∫ t

t0

dp2(s)z(s)− iJ
∫ t

t0

dq(s)1(s) (a ⩽ t0< b0, t0⩽ t ⩽ b0)
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satisfy the following formula (analogous to the Lagrange one):∫ c2

c1

(dq(t) f (t), z(t)) −
∫ c2

c1

(y(t), dq(t)1(t)) = (iJy(c2), z(c2)) − (iJy(c1), z(c1)) +
∫ c2

c1

(y(t), dp2(t)z(t))−

−

∫ c2

c1

(dp1(t)y(t), z(t)) −
∑

t∈Sp1∩Sp2∩[c1,c2)

(
iJp1({t})y(t),p2({t})z(t)

)
−

∑
t∈Sq∩Sp2∩[c1,c2)

(
iJq({t}) f (t),p2({t})z(t)

)
−

−

∑
t∈Sp1∩Sq∩[c1,c2)

(
iJp1({t})y(t),q({t})1(t)

)
−

∑
t∈Sq∩[c1,c2)

(
iJq({t}) f (t),q({t})1(t)

)
, t0 ⩽ c1 < c2 ⩽ b0. (3)

Further we assume that measures p, m have bounded variations and p is self-adjoint, m is non-negative.
We consider equation (1), where x0 ∈ H, f is integrable with respect to the measure m on [a, b], a ⩽ t ⩽ b0.
We construct a continuous measure p0 from the measure p in the following way. We set p0({tk}) = 0 for
tk ∈ Sp and we set p0(∆) = p(∆) for all Borel sets such that ∆∩Sp = ∅. Similarly, we construct a continuous
measure m0 from the measure m. We denote p̂ = p − p0, m̂ = m −m0. Then p̂({tk}) = p({tk}) for all tk ∈ Sp
and p̂(∆) = 0 for all Borel sets ∆ such that ∆ ∩ Sp = ∅. The similar equalities hold for the measure m̂. The
measures p0, p̂, m0, m̂ are self-adjoint and the measures m0, m̂ are non-negative.

We replace p by p0 and m by m0 in (1). Then we obtain the equation

y(t) = x0 − iJ
∫ t

a
dp0(s)y(s) − iJ

∫ t

a
dm0(s) f (s). (4)

Equations (1), (4) have unique solutions (see [12]).
By W(t, λ) denote an operator solution of the equation

W(t, λ)x0 = x0 − iJ
∫ t

a
dp0(s)W(s, λ)x0 − iJλ

∫ t

a
dm0(s)W(s, λ)x0, (5)

where x0 ∈ H, λ ∈ C (C is the set of complex numbers). It follows from Lemma 2.1 that W∗(t, λ)JW(t, λ) = J.
The functions t→W(t, λ) and t→W−1(t, λ) = JW∗(t, λ)J are continuous with respect to the uniform operator
topology. Consequently there exist constants ε1 > 0, ε2 > 0 such that the inequality ε1 ∥x∥2 ⩽ ∥W(t, λ)x∥2 ⩽
ε2 ∥x∥2 holds for all x ∈ H, t ∈ [a, b0], λ ∈ C ⊂ C (C is a compact set).

Lemma 2.2. [17]. Suppose that a function f is integrable with respect to the measure m. A function y is a solution
of the equation

y(t) = x0 − iJ
∫ t

a
dp0(s)y(s) − iJλ

∫ t

a
dm0(s)y(s) − iJ

∫ t

a
dm(s) f (s), x0 ∈ H, a ⩽ t ⩽ b0, (6)

if and only if y has the form

y(t) =W(t, λ)x0 −W(t, λ)iJ
∫ t

a
W∗(ξ, λ)dm(ξ) f (ξ).

3. Linear relations generated by the integral equation

This article is a continuation of the work [17]. In this section, we provide definitions and statements
from [17] that are used in this article.

Let B be a Hilbert space. A linear relation T is understood as any linear manifold T ⊂ B × B. The
terminology on the linear relations can be found, for example, in [19], [25], [2]. In what follows we make
use of the following notations: {·, ·} is an ordered pair;D(T) is the domain of T; R(T) is the range of T; ker T
is a set of elements x ∈ B such that {x, 0} ∈ T; T−1 is the relation inverse for T, i.e., the relation formed by the
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pairs {x′, x}, where {x, x′} ∈ T. A relation T is called surjective if R(T) = B. A relation T is called invertible or
injective if ker T = {0} (i.e., the relation T−1 is an operator); it is called continuously invertible if it is closed,
invertible, and surjective (i.e., T−1 is a bounded everywhere defined operator). A relation T∗ is called adjoint
for T if T∗ consists of all pairs {y1, y2} such that equality (x2, y1) = (x1, y2) holds for all pairs {x1, x2} ∈ T. A
relation T is called symmetric if T ⊂ T∗ and self-adjoint if T = T∗.

It is known (see, for example, [20, ch.3], [19, ch.1]) that the graph of an operator T :D(T)→B is the set
of pairs {x,Tx} ∈ B × B, where x ∈ D(T) ⊂ B. Consequently, the linear operators can be treated as linear
relations; this is why the notation {x1, x2} ∈T is used also for the operator T. Since all considered relations
are linear, we shall often omit the word ”linear”.

Let m is a non-negative operator measure defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of
linear bounded operators acting in the space H. The measure m is assumed to have a bounded variation

on [a, b]. We introduce the quasi-scalar product (x, y)m =

∫ b0

a
((dm)x(t), y(t)) on a set of step-like functions

with values in H defined on the segment [a, b0]. Identifying with zero functions y obeying (y, y)m = 0 and
making the completion, we arrive at the Hilbert space denoted byL2(H, dm; a, b)=H. The elements of H are
the classes of functions identified with respect to the norm

∥∥∥y
∥∥∥

m
= (y, y)1/2

m . In order not to complicate the
terminology, the class of functions with a representative y is indicated by the same symbol and we write
y ∈ H. The equality of functions in H is understood as the equality for associated equivalence classes.

Let us define a minimal relation L0 in the following way. The relation L0 consists of all pairs {ỹ, f̃0} ∈ H×H
satisfying the condition: for each pair {ỹ, f̃0} there exists a pair {y, f0} such that the pairs {ỹ, f̃0}, {y, f0} are
identical in H × H and {y, f0} satisfies equation (1) and the equalities

y(a) = y(b0) = y(α) = 0, α ∈ Sp; m({β}) f0(β) = 0, β ∈ Sm. (7)

Further, without loss of generality it can be assumed that if {y, f0} ∈ L0, then equalities (1), (7) hold for this
pair. In general, the relation L0 is not an operator since a function y can happen to be identified with zero
in H, while f is non-zero. The relation L0 is symmetric and closed. We note that if y ∈ D(L0), then y is
continuous and y(b) = 0 (see[16], [17]).

By XA = XA(t) denote an operator characteristic function of a set A, i.e., XA(t) = E if t ∈ A and XA(t) = 0
if t < A. We shall often omit the argument t in the notation XA. By Sp denote the closure of the set Sp. Let
S0 be the set t∈ [a, b] such that y(t)=0 for all y∈D(L0). The set S0 is closed and Sp ∪ {a} ∪ {b} ⊂ S0 (see[17]).

Lemma 3.1. [17]. Suppose {y, f } ∈ L0. Then f (t) = 0 for m-almost all t ∈ S0.

By H0 (by H1) denote a subspace of functions that vanish on [a, b] \ S0 (on S0, respectively) with respect
to the norm in H. The subspaces H0, H1 are orthogonal and H = H0 ⊕H1. We note that H0 = {0} if and only if
m(S0) = 0. We denote L10 = L0 ∩ (H1 × H1). ThenD(L10) ⊂ H1, R(L10) ⊂ H1. It follows from Lemma 3.1 that

L∗0 = (H0 × H0) ⊕ L∗10, (8)

i.e., the relation L∗0 consists of all pairs {y, f } ∈ H of the form {y, f } = {u, v} + {z, 1} = {u + z, v + 1}, where
u, v ∈ H0, {z, 1} ∈ L∗10.

The setTp = (a, b)\S0 is open and it is the union of at most a countable number of disjoint open intervals
Jk, i.e., Tp =

⋃k1
k=1Jk and Jk ∩ J j = ∅ for k , j, where k1 is a natural number (equal to the number of

intervals if this number is finite) or the symbol∞ (if the number of intervals is infinite). By J denote the set
of these intervals Jk. We note that the boundaries αk, βk of any interval Jk = (αk, βk) ∈ J belong to S0.

We denote

wk(t, λ) = X[αk ,βk)W(t, λ)W−1(αk, λ), (9)

where (αk, βk) = Jk ∈ J. Then (see[17])

w∗k(t, λ)Jwk(t, λ) = J, αk ⩽ t < βk. (10)
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By H10 (by H11) denote a subspace of functions that belong to H1 and vanish on Sm (on [a, b] \ Sm,
respectively) with respect to the norm in H. So, H10 (H11) consists of functions of the form X[a,b]\(S0∪Sm)h (of
the form XSm\S0 h, respectively), where h ∈ H is an arbitrary function. Therefore,

H1 = H10 ⊕ H11, H = H0 ⊕ H10 ⊕ H11.

Obviously, the space H11 is the closure in H of the linear span of functions that have the form X{τ}(·)x, where
x ∈ H, τ ∈ Sm \ S0. By (7), it follows that H11 ⊂ ker L∗10.

Let uk(t, λ, τ) :H→H1 be an operator acting by the formula

uk(t, λ, τ)x = −X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)λX{τ}(s)x, (11)

where x ∈ H, τ ∈ (αk, βk) ∩ Sm, (αk, βk) = Jk ∈ J. Then (see[17]) for any x ∈ H the function

uk(·, λ, τ)x + X{τ}(·)x ∈ ker(L∗10 − λE).

Lemma 3.2. [17]. The linear span of functions of the form X[a,b]\Sm wk(·, λ)x0 and uk(·, λ, τ)Bkx j+X{τ}(·)Bkx j is dense
in ker(L∗10 − λE). Here x j, x0 ∈ H; τ ∈ (αk, βk) ∩ Sm; Bk : H→H is a bounded continuously invertible operator;
k = 1, ...,k1 if k1 is finite and k is any natural number if k1 is infinite.

LetM be a set consisting of intervals J ∈ J and single-point sets {τ}, where τ ∈ Sm \ S0. The setM is
at most countable. Let k be the number of elements inM. We arrange the elements ofM in the form of a
finite or infinite sequence and denote these elements by Ek, where k is any natural number if the number of
elements inM is infinite, and 1 ⩽ k ⩽ k if the number of elements inM is finite.

To each element Ek ∈ M assign an operator function vk in the following way. If Ek is the interval,
Ek = Jk = (αk, βk) ∈ J, then

vk(t, λ) = X[αk,βk)\Sm wk(t, λ). (12)

If Ek is a single-point set, Ek= {τk}, τk∈Sm \ S0, and τk ∈ Jn= (αn, βn)∈J, then

vk(t, λ) = un(t, λ, τk)wn(τk, λ) + X{τk}(t)wn(τk, λ). (13)

Further, we denote vk(t, 0) = vk(t). We note that uk(t, 0, τ)=0 (see equality (11)).
Let Qk,0 be a set x ∈ H such that the functions t→ vk(t)x are identical with zero inH. We put Qk = H⊖Qk,0.

On the linear space Qk we introduce a norm ∥·∥− by the equality

∥ξk∥− = ∥vk(·)ξk∥H , ξk ∈ Qk. (14)

By Q−k denote the completion of Qk with respect to norm (14). The space Q−k can be treated as a space with
a negative norm with respect to Qk ([4, ch. 1], [19, ch.2]). By Q+k denote the associated space with a positive
norm. The definition of spaces with positive and negative norms implies that Q+k ⊂ Qk ⊂ Q−k . By (·, ·)+ and
∥·∥+ we denote the scalar product and the norm in Q+k , respectively.

Remark 3.3. The set Qk,0 will not change if the function vk(·) = vk(·, 0) is replaced by vk(·, λ) in the definition of Qk,0.
Moreover, with such replacement, the space Q−k will not change in the following sense: the set Q−k will not change,
and the norm in it will be replaced by the equivalent one. The similar statement holds for the space Q+k (see [17]).

Suppose that a sequence {xkn}, xkn ∈ Qk, converges in the space Q−k to x0 ∈ Q−k as n→∞. Then the
sequence {vk(·, λ)xkn} is fundamental in H. Therefore this sequence converges to some element in H. By
vk(·, λ)x0 we denote this element.

Let Q̃−N=Q−1× ...×Q−N (Q̃+N=Q+1× ...×Q+N) be the Cartesian product of the first N sets Q−k (Q+k , respectively)
and let VN(t, λ) = (v1(t, λ), ..., vN(t, λ)) be the operator one-row matrix. It is convenient to treat elements
from Q̃−N as one-column matrices, and to assume that VN(t, λ)ξ̃N =

∑N
k=1 vk(t, λ)ξk, where we denote ξ̃N =
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col(ξ1, ..., ξN) ∈ Q̃−N, ξk ∈ Q−k . Let kerk(λ) be a linear space of functions t→ vk(t, λ)ξk, ξk ∈ Q−k . The space
kerk(λ) is closed in H. We denote KN(λ) = ker1(λ)+̇...+̇kerN(λ). Obviously, KN1 (λ) ⊂ KN2 (λ) for N1 < N2.
By VN(λ) denote the operator ξ̃N→VN(·, λ)ξ̃N, where ξ̃N ∈ Q̃−N. The operator VN(λ) maps continuously
and one-to-one Q̃−N ontoKN(λ) ⊂ H1 ⊂ H.

Let Q−, Q+, Q be linear spaces of sequences, respectively, η̃ = {ηk}, φ̃ = {φk}, ξ̃ = {ξk}, where ηk ∈ Q−k ,
φk ∈ Q+k , ξk ∈ Qk; k ∈N if k = ∞, and 1 ⩽ k ⩽ k if k is finite; k is the number of elements inM. We assume

that the series
∑
∞

k=1

∥∥∥ηk

∥∥∥2

−
,
∑
∞

k=1

∥∥∥φk

∥∥∥2

+
,
∑
∞

k=1 ∥ξk∥
2 converge if k = ∞. These spaces become Hilbert spaces if

we introduce scalar products by the formulas

(η̃, ζ̃)−=
k∑

k=1

(ηk, ζk)−, η̃, ζ̃ ∈ Q−; (φ̃, ψ̃)+=
k∑

k=1

(φk, ψk)+, φ̃, ψ̃ ∈ Q+; (ξ̃, σ̃) =
k∑

k=1

(ξk, σk), ξ̃, σ̃ ∈ Q .

The spaces Q+,Q−can be treated as spaces with positive and negative norms with respect to Q ([4, ch. 1],
[19, ch.2]). So Q+ ⊂ Q ⊂ Q− and γ1

∥∥∥φ̃∥∥∥
−
⩽

∥∥∥φ̃∥∥∥⩽ γ2

∥∥∥φ̃∥∥∥
+

, where φ̃ ∈ Q+, γ1, γ2 > 0. The ”scalar product”
(η̃, φ̃) is defined for all φ̃ ∈ Q+, η̃ ∈ Q−. If η̃ ∈ Q, then (η̃, φ̃) coincides with the scalar product in Q.

LetM ⊂ Q− be a set of sequences vanishing starting from a certain number (its own for each sequence).
The set M is dense in the space Q−. The operator VN(λ) is the restriction of VN+1(λ) to Q̃−N. By V′(λ)
denote an operator inM such that V′(λ)η̃ = VN(λ)η̃N for all N ∈ N, where η̃ = (η̃N, 0, ...), η̃N ∈ Q̃−N. The
operatorV′(λ) admits an extension by continuity to the space Q−. ByV(λ) denote the extended operator.
This operator maps continuously and one-to-one Q− onto ker(L∗10 − λE) ⊂ H1 ⊂ H. Moreover, we denote
Ṽ(t, λ)η̃ = (V(λ)η̃)(t), where η̃ = {ηk} ∈ Q−.

The adjoint operatorV∗(λ) maps continuously H onto Q+ and

V
∗(λ) f =

∫ b0

a
Ṽ∗(t, λ)dm(t) f (t). (15)

Lemma 3.4. [17]. The operatorV(λ) mapsQ− onto ker(L∗10−λE) continuously and one to one. A function z belongs
to ker(L∗10−λE) if and only if there exists an element η̃= {ηk}∈Q− such that z(t)= (V(λ)η̃)(t)= Ṽ(t, λ)η̃. The operator
V
∗(λ) maps H ontoQ+ continuously, and acts by formula (15), and kerV∗(λ)=H0⊕R(L10−λE). Moreover,V∗(λ)

maps ker(L∗10 − λE) onto Q+ one to one.

The following theorem is proved in [17]. We have changed some designations from [17] to shorten the
record.

Theorem 3.5. A pair {ỹ, f̃ } ∈ H × H belongs to L∗0 − λE if and only if there exist a pair {ŷ, f̂ } ∈ H × H, functions
y0, y′0 ∈ H0, y, f ∈ H1, and an element η̃ ∈ Q− such that the pairs {ỹ, f̃ }, {ŷ, f̂ } are identical inH×H and the equalities

ŷ = y0 + y, f̂ = y′0 + f ,

y(t)= Ṽ(t, λ)η̃ −
k1∑

k=1

X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s) f (s) (16)

hold, where the series in (16) converges in H, k1 is the number of intervals Jk ∈ J.

4. The description of generalized resolvents

Let T be a symmetric relation, T ⊂ B × B (B is a Hilbert space), and let T̃ be a self-adjoint extension of T
to B̃, where B̃ is a Hilbert space, B̃ ⊃ B, and scalar products coincide in B and B̃. By P denote an orthogonal
projection of B̃ onto B. The function λ→Rλ defined by the formula Rλ = P(T̃ − λE)−1

|B, Imλ , 0, is called
the generalized resolvent of the relation T (see, for example, [1, ch.9]).
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A.V. Straus (see [26]) obtained a formula for all generalized resolvents of a symmetric operator. It is
shown in [18] that this formula remains true for symmetric relations also. By Nλ denote a defect subspace
of the symmetric relation T, i.e., the orthogonal complement in B of the range of the relation T − λE. We fix
some number λ0 (Imλ0 , 0). Let λ→F (λ) be a holomorphic operator function, where F (λ) :Nλ0→Nλ0

is a
bounded operator, ∥F (λ)∥ ⩽ 1, Imλ · Imλ0 > 0. Let TF (λ) be the relation consisting of all pairs of the form
{y0 +F (λ)z − z, y1 + λ0F (λ)z − λ0z}, where {y0, y1} ∈ T, z ∈ Nλ0 . Then (see [26], [18]) the family of operators
Rλ is a generalized resolvent of T if and only if Rλ can be represented in the form

Rλ = (TF (λ) − λE)−1, Imλ · Imλ0 > 0. (17)

Theorem 4.1. Let Rλ (Imλ , 0) be a generalized resolvent of the relation L10 and y = Rλ f . Then

y(t) =
∫ b

a
Ṽ(t, λ)M(λ)Ṽ∗(s, λ)dm(s) f (s)+

+ 2−1
k1∑

n=1

∫ b

a
X[αn,βn)\Sm (t)wn(t, λ)sgn(s − t)iJw∗n(s, λ)dm(s)X[a,b]\Sm (s) f (s) − λ−1

k1∑
n=1

XSm∩(αn,βn)(t) f (t), (18)

where M(λ) : Q+→Q− is the bounded operator such that M(λ) =M∗(λ), Imλ , 0. The function λ→M(λ)x̃ is
holomorphic for every x̃ ∈ Q+ in the half-planes Imλ , 0. If Sm = ∅, then

(Imλ)−1Im(M(λ)x̃, x̃) ⩾ 0 (19)

for every λ (Imλ , 0) and for every x̃ ∈ Q+.

Proof. Suppose y = Rλ f . By (17), it follows that the pair {y, f } ∈ L∗10 − λE. Equality (18) follows from (17)
and [17, Theorem 4.3]. Using (18), we get

y(t)= Ṽ(t, λ)M(λ)
∫ b

a
Ṽ∗(s, λ)dm(s) f (s)+

k1∑
n=1

(
−2−1X[αn,βn)\Sm (t)wn(t, λ)iJ

∫ t

αn

w∗n(s, λ)dm(s)X[a,b]\Sm (s) f (s) +

+ 2−1X[αn,βn)\Sm (t)wn(t, λ)iJ
∫ βn

t
w∗n(s, λ)dm(s)X[a,b]\Sm (s) f (s)

)
− λ−1

k1∑
n=1

XSm∩(αn,βn)(t) f (t). (20)

Let us prove that the function λ→M(λ)x̃ is holomorphic for every x̃ ∈ Q+ (Imλ , 0). We denote S(λ) =
M(λ)V∗(λ). It follows from (18) and the holomorphicity of the function λ→ Rλ that the function λ→
V(λ)S(λ) f is holomorphic. Using (10), we obtain that the function λ→ S(λ) f is holomorphic. Now the
holomorphicity of the function λ→M(λ) follows from Lemma 4.2. This Lemma is formulated after the
proof of the Theorem. In Lemma 4.2 it should be taken that B1 = H1, B2 = Q+, B3 = Q−, T1(λ) = V∗(λ),
T2(λ) =M(λ), T3(λ) = S(λ).

We note that the equality R∗λ = Rλ implies M(λ) =M∗(λ).
Let us prove that (19) holds under the condition Sm = ∅. Then m = m0. It follows from Lemma 3.4 that

there exists a function f ∈ H such that x̃ = V∗(λ) f . Let pn :Q−→Q−n be the operator defined by the formula
pnξ̃ = ξn, where ξ̃= {ξn} ∈Q−. We denote Mn(λ) = pnM(λ), xn = pnx̃. Since Sm = ∅, we obtain from (20)

y(t) =
k1∑

n=1

X[αn,βn)(t)wn(t, λ)Mn(λ)x̃ + 2−1
k1∑

n=1

(
−X[αn,βn)(t)wn(t, λ)iJ

∫ t

αn

w∗n(s, λ)dm(s) f (s)+

+ X[αn,βn)(t)wn(t, λ)iJ
∫ βn

t
w∗n(s, λ)dm(s) f (s)

)
. (21)
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We denote

z(t) = Ṽ(t, λ)(M(λ)x̃ − 2−1 ĩJ x̃ ) =
k1∑

n=1

zn(t), zn(t) = X[αn,βn)z = wn(t, λ)(Mn(λ)x̃ − 2−1iJxn),

where J̃ is the operator in Q acting as J̃ ξ̃= {Jξk}, ξ̃= {ξk}∈Q. Using (9), (10), (21), we get

y(αn) =Mn(λ)x̃ + 2−1iJxn, zn(αn) =Mn(λ)x̃ − 2−1iJxn, (22)

lim
t→βn−0

y(t) = lim
t→βn−0

zn(t) =W(βn, λ)W−1(αn, λ)(Mn(λ)x̃ − 2−1iJxn). (23)

It follows from Lemmas 3.2, 3.4 that z∈ ker L∗10−λE. Consequently, {y−z, f }∈ L∗10−λE, {y+z, f }∈ L∗10−λE.
Then the pairs {y − z, 11} ∈ L∗10, {y + z, 12} ∈ L∗10, where

11 = f + λ(y − z), 12 = f + λ(y + z). (24)

We denote yn = X[αn,βn)y, 11n = X[αn,βn)11, 12n = X[αn,βn)12, fn = X[αn,βn) f . Then {yn− zn, 11n} ∈ L∗10, {yn+ zn, 12n} ∈

L∗10. Taking into account Theorem 3.5 (for λ = 0) and (22), we obtain

yn(t) − zn(t) = wn(t, 0)iJxn − wn(t, 0)iJ
∫ t

αn

w∗n(s, λ)dm(s)11n(s),

yn(t) + zn(t) = 2wn(t, 0)Mn(λ)x̃ − wn(t, 0)iJ
∫ t

αn

w∗n(s, λ)dm(s)12n(s).

It follows from Lemma 2.2 that formula (3) can be applied to the functions yn − zn, yn + zn on the interval
[αn, β] (αn < β < βn). Using (3), we get∫ β

αn

(dm(t)11n(t), yn(t) + zn(t)) −
∫ β

αn

(yn(t) − zn(t), dm(t)12n) =

= (iJ(yn(β) − zn(β)), yn(β) + zn(β)) − (iJ(yn(αn) − zn(αn)), yn(αn) + zn(αn)). (25)

Passing to the limit as β→βn − 0 in (25) and taking into account (22), (23), we obtain∫ βn

αn

(dm(t)11n(t), yn(t) + zn(t)) −
∫ βn

αn

(yn(t) − zn(t), dm(t)12n) = 2(xn,Mn(λ)x̃). (26)

On the other hand, using (24), we get

( fn, yn + zn)H − (yn − zn, fn)H = (11n − λ(yn − zn), yn + zn)H − (yn − zn, 12n − λ(yn + zn))H =

= (11n, yn + zn)H − (yn − zn, 12n)H − (λ − λ)(yn − zn, yn + zn)H. (27)

Combining (26) and (27), we obtain

( fn, yn + zn)H − (yn − zn, fn)H = 2(xn,Mn(λ)x̃) − (λ − λ)(yn − zn, yn + zn)H.

Therefore,

( f , y + z)H − (y − z, f )H = 2(x̃,M(λ)x̃) − (λ − λ)(y − z, y + z)H. (28)

Equation (28) implies that

Im[( f , y + z)H − (y − z, f )H] = 2Im(x̃,M(λ)x̃) − Im[(λ − λ)((y, y)H − (z, y)H + (y, z)H − (z, z)H)].



V.M. Bruk / Filomat 36:14 (2022), 4793–4810 4801

Therefore,

Im[( f , y)H − (y, f )H] = 2Im(x̃,M(λ)x̃) − Im[(λ − λ)((y, y)H − (z, z)H)].

Consequently,

(Imλ)−1Im(M(λ)x̃, x̃ ) = ∥z∥2H + (Imλ)−1Im(Rλ f , f )H − (Rλ f ,Rλ f )H.

Since (Imλ)−1Im(Rλ f , f )H − (Rλ f ,Rλ f )H ⩾ 0, we see that (19) holds. The theorem is proved.

Lemma 4.2. [10]. Let B1, B2, B3 be Banach spaces. Suppose bounded operators T3(λ) :B1→B3, T1(λ) :B1→B2,
T2(λ) :B2→B3 satisfy the equality T3(λ) = T2(λ)T1(λ) for every fixed λ belonging to some neighborhood of a point
λ1 and suppose the range of operator T1(λ1) coincides with B2. If functions T1(λ), T3(λ) are strongly differentiable
at the point λ1, then function T2(λ) is strongly differentiable at λ1.

Remark 4.3. It follows from Lemma 3.1 and (8) that L0 ∩ H0 × H0 = {0, 0}. Therefore any generalized resolvent R̃λ
of the relation L0 has the form R̃λ = R0λ ⊕ Rλ, where Rλ is some generalized resolvent of L10 and R0λ is a generalized
resolvent of the relation {0, 0}, i.e., R0λ = (TF (λ) −λE)−1 (see (17)), TF (λ) is the relation consisting of pairs of the form
{F (λ)z − z, λ0F (λ)z − λ0z} (here F (λ) :H0→H0 is a bounded operator, ∥F (λ)∥ ⩽ 1, z ∈ H0, the operator function
λ→F (λ) is holomorphic, Imλ · Imλ0 > 0).

Remark 4.4. In general, if Sm , ∅, then the inequality (Imλ)−1Im(M(λ)x̃, x̃) < 0 is possible (see Remark 6.1).

5. Boundary value problems connected with generalized resolvents

To shorten the notation, we denote wk(t, 0) = wk(t), Ṽ(t, 0) = Ṽ(t),V(0) = V. It follows from Lemma 3.4
(for λ = 0) thatV∗ f ( f ∈H) is an element of the space Q+⊂Q, i.e., a sequence with elements of the form

X[αn,βn)\Sm

∫ βn

αn

w∗n(t)dm(t) f (t), (29)

w∗n(τnk)m({τnk}) f (τnk) (30)

(and possibly with zeros), where τnk ∈ (Sm \ S0)∩Jn; (αn, βn)=Jn; Jn ∈ J; 1 ⩽ n ⩽ k1 if the number k1 of
intervals Jn∈ J is finite, and n is any natural number if k1 = ∞. We replace elements (29) by zeros inV∗ f .
ByV∗0 f denote the resulting sequence. So,V∗0 f is a sequence with elements of form (30) (and possibly with
zeros). Further, we replace each element (29) and (30) inV∗ f by the element

σn =

∫ βn

αn

w∗n(t)dm(t) f (t) =
∫ βn

αn

X[αn,βn)\Sm w∗n(t)dm(t) f (t) +
∑

τnk∈Sm∩(αn,βn)

w∗n(τnk)m({τnk}) f (τnk). (31)

ByV∗ f denote the resulting sequence. We claim thatV∗ f ∈ Q−. Indeed, letV∗ f = σ̃ = {σn}. It follows from
(9), (10), (31) that ∥σn∥ < ε1

∥∥∥ f
∥∥∥
H
= ε2, where ε1 > 0, ε1 is independent of n. Then

Vσ̃ =V(0)̃σ =
k1∑

n=1

X[αn,βn)\Sm wn(t)σn +
∑

τnk∈Sm∩(αn,βn)

X{τnk}wn(τnk)σn

 ,
and

∥∥∥V σ̃
∥∥∥2

H
=

k1∑
n=1

∥∥∥X[αn,βn)\Sm wn(t)σn

∥∥∥2

H
+

∑
τnk∈Sm∩(αn,βn)

∥∥∥X{τnk}wn(τnk)σn

∥∥∥2

H

 = k1∑
n=1

∥wn(t)σn∥
2
H ⩽ ε3, ε3 > 0. (32)
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By (14), (15), (32), and the definition of Q−, it follows that σ̃ ∈ Q−. We note that this proof uses only the
boundedness of the sequence {σn} in H.

Further, we replace each element (30) in V∗0 f by the element
∫ τnk

αn
w∗(s)dm(s) f (s). By V∗τ f denote the

resulting sequence. ThenV∗τ f ∈ Q− (the proof is the same as forV∗ f ). It follows from the definitionV∗ f ,
V
∗

0 f ,V∗ f V∗τ f that the equalities

(V∗ f ,V∗01) = (V∗0 f ,V1) = (V∗0 f ,V∗01), (V∗τ f ,V∗1) = (V∗τ f ,V∗01), f , 1 ∈ H, (33)

k1∑
n=1

(
iJ
∫ βn

αn

w∗n(s)dm(s) f (s),
∫ βn

αn

w∗n(s)dm(s)1(s)
)
= (ĩJV∗ f ,V∗1) = (ĩJV∗ f ,V∗1), f , 1 ∈ H (34)

hold. Using (10), we obtain

(iJw∗n(τnk)m({τnk}) f (τnk),w∗n(τnk)m({τnk})1(τnk)) = (iJm({τnk}) f (τnk),m({τnk})1(τnk)), f , 1 ∈ H.

Therefore,

k1∑
n=1

(iJw∗n(τnk)m({τnk}) f (τnk),w∗n(τnk)m({τnk})1(τnk)) =
k1∑

n=1

(iJm({τnk}) f (τnk),m({τnk})1(τnk)) = (ĩJV∗0 f ,V∗01). (35)

We denote H− = H0 × Q−, H+ = H0 × Q+. Suppose a pair {ỹ, f̃ } ∈ L∗0. By Theorem 3.5 (for λ = 0), there

exists a pair {ŷ, f̂ } such that the pairs {ỹ, f̃ }, {ŷ, f̂ } are identical in H × H and equalities

ŷ= y0 + y, f̂ = y′0 + f , y(t) = Ṽ(t)η̃ −
k1∑

n=1

X[a,b]\Sm (t)wn(t)iJ
∫ t

a
w∗n(s)dm(s) f (s) (36)

hold, where y0, y′0 ∈ H0, {y, f } ∈ L∗10, η̃ ∈ Q−, the series in (36) converges inH, k1 is the number of intervals

Jn∈J. With each such pair {ŷ, f̂ }we associate a pair of boundary values {Y,Y′} ∈ H− ×H+ by formulas

Y= {y0,Y10} ∈ H−=H0×Q−, Y′= {y′0,Y
′

10}∈ H+=H0×Q+, (37)

where

Y10= η̃ − 2−1 ĩJV∗ f + 2−1 ĩJV∗0 f + ĩJV∗τ f , Y′10=V
∗ f . (38)

Let Γ denote the operator that takes each pair {ŷ, f̂ } ∈L∗0 to the ordered pair {Y,Y′} of boundary values

Y, Y′, i.e., Γ{ŷ, f̂ }= {Y,Y′}. We put Γ1{ŷ, f̂ }=Y, Γ2{ŷ, f̂ } = Y′. It follows from Lemma 3.4 that if pairs {ŷ1, f̂1},
{ŷ, f̂ } are identical in H × H, then their boundary values coincide.

Theorem 5.1. The range R(Γ) of the operator Γ coincides with H− ×H+ and ”the Green formula”

( f̂ , ẑ )H − (ŷ, 1̂ )H = (Y′,Z) − (Y,Z′) (39)

holds, where {ŷ, f̂ }, {̂z, 1̂ } ∈ L∗0, Γ{ŷ, f̂ } = {Y,Y′}, Γ{̂z, 1̂ } = {Z,Z′}.

Proof. The equality R(Γ) = H− ×H+ follows from Lemma 3.4 and formulas (8), (36)-(38). Let us prove (39).
Suppose that a pair {y, f } has form (36) and a pair {̂z, 1̂ } has the form ẑ = z0 + z, 1̂ = z′0 + 1, where {z, 1} ∈ L∗10,
z0, z′0 ∈ H0, and

z(t)= Ṽ(t)ζ̃ −
k1∑

n=1

X[a,b]\Sm (t)wn(t)iJ
∫ βn

αn

w∗n(s)dm(s)1(s), ζ̃ ∈ Q−. (40)
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Then

( f̂ , ẑ )H− (ŷ, 1̂ )H = (y′0, z0)H− (y0, z′0)H + ( f , z )H− (y, 1 )H.

Thus, it is enough to prove the equality

( f , z )H − (y, 1 )H = (Y′10,Z10) − (Y10,Z′10).

We define the functions Fn, Gn, F̃, G̃ by the equalities

Fn(t)=−wn(t)iJ
∫ t

αn

w∗n(s)dm(s) f (s), Gn(t)=−wn(t)iJ
∫ t

αn

w∗n(s)dm(s)1(s), F̃(t) =
k1∑

n=1

Fn(t), G̃(t) =
k1∑

n=1

Gn(t). (41)

It follows from Lemma 2.2 that the functions Fn, Gn are solutions of equation (6) on [αn, βn) for x0 = 0 (Gn
is the solution if f , y are replaced by 1, z, respectively, in (6)). Using (10) and Lemma 2.1 for p1 = p2 = p0,
q = m, c1 = αn, c2 = β < βn, we obtain∫ β

αn

( f (s), dm(s)Gn(s)) −
∫ β

αn

(Fn(s), dm(s)1(s)) =
(
iJwn(β)iJ

∫ β

αn

w∗n(s)dm(s) f (s),wn(β)iJ
∫ β

αn

w∗n(s)dm(s)1(s)
)
−

−

∑
τ∈Sm∩[αn,β)

(iJm({τ}) f (τ),m({τ})1(τ)) =
(
iJ
∫ β

αn

w∗n(s)dm(s) f (s),
∫ β

αn

w∗n(s)dm(s)1(s)
)
−

−

∑
τ∈Sm∩[αn,β)

(iJm({τ}) f (τ),m({τ})1(τ)). (42)

Passing to the limit as β→βn− 0 in (42), we obtain that (42) will remain true if β is replaced by βn. Therefore,∫ βn

αn

( f (s), dm(s)Gn(s)) −
∫ βn

αn

(Fn(s), dm(s)1(s)) =
(
iJ
∫ βn

αn

w∗n(s)dm(s) f (s),
∫ βn

αn

w∗n(s)dm(s)1(s)
)
−

−

∑
τ∈Sm∩[αn,βn)

(iJm({τ}) f (τ),m({τ})1(τ)). (43)

Taking into account (41), (43), and (35), we obtain

( f ,G)H − (F, 1)H =
k1∑

n=1

(
iJ
∫ βn

αn

w∗n(s)dm(s) f (s),
∫ βn

αn

w∗n(s)dm(s)1(s)
)
− (i J̃V∗0 f ,V∗01 ). (44)

Further, we define the functions Fn0, Gn0, F̃0, G̃0 by the equalities

Fn0(t)= X[αn,βn)\Sm Fn(t), Gn0(t)= X[αn,βn)\Sm Gn(t), F̃0 =

k1∑
n=1

Fn0, G̃0 =

k1∑
n=1

Gn0. (45)

Using (43), we get

( f ,Gn0)H − (Fn0, 1)H = ( f ,Gn)H − (Fn, 1)H+

+ ( f ,XSm wn(t)iJ
∫ t

αn

w∗n(s)dm(s)1(s))H − (XSm wn(t)iJ
∫ t

αn

w∗n(s)dm(s) f (s), 1(s))H =

=

(
iJ
∫ βn

αn

w∗n(s)dm(s) f (s),
∫ βn

αn

w∗n(s)dm(s)1(s)
)
−

∑
τ∈Sm∩[αn,βn)

(iJm({τ}) f (τ),m({τ})1(τ))−

−

∑
τ∈Sm∩[αn,βn)

(iJw∗n(τ) f (τ),
∫ τ

αn

w∗n(s)dm(s)1(s)) −
∑

τ∈Sm∩[αn,βn)

(iJ
∫ τ

αn

w∗n(s)dm(s) f (s),w∗n(τ)1(τ)). (46)
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By (35), (45), (46), we obtain

( f ,G0)H − (F0, 1)H =
k1∑

n=1

(
iJ
∫ βn

αn

w∗n(s)dm(s) f (s),
∫ βn

αn

w∗n(s)dm(s)1(s)
)
−

− (i J̃V∗0 f ,V∗01) − (i J̃V∗0 f ,V∗τ1) − (i J̃V∗τ f ,V∗01). (47)

It follows from (38), (40) that the equalities

( f ,Vζ̃)H = (V∗ f , ζ̃) = (V∗ f ,Z10 + 2−1 ĩJV∗1 − 2−1 ĩJV∗01 − ĩJV∗τ1 ), (48)

(Vη̃, 1)H = (η̃,V∗1) = (Y10 + 2−1 ĩJV∗ f − 2−1 ĩJV∗0 f − ĩJV∗τ f ,V∗1) (49)

hold. Using (33), (34), (47), (48), (49), we get

( f , z)H − (y, 1)H = ( f ,Vζ + G0)H − (Vη + F0, 1)H = (V∗ f , ζ) − (η,V∗1) + ( f ,G0)H − (F0, 1)H =

= (V∗f ,Z10+2−1i J̃V∗1−2−1i J̃V∗01−i J̃V∗τ1)−(Y10+2−1i J̃V∗ f−2−1i J̃V∗0 f−i J̃V∗τ1,V∗1)+( f ,G0)H−(F0,1)H=

= (Y′10,Z10) − 2−1(i J̃V∗ f ,V∗1) + 2−1(i J̃V∗ f ,V∗01) + (i J̃V∗ f ,V∗τ1)−

− (Y10,Z′10) − 2−1(i J̃V∗ f ,V∗1) + 2−1(i J̃V∗0 f ,V∗1) + (i J̃V∗τ f ,V∗1)+

+ (i J̃V∗,V∗1) − (i J̃V∗0 f ,V∗01) − (i J̃V∗0 f ,V∗τ1) − (i J̃V∗τ f ,V∗01) = (Y′10,Z10) − (Y10,Z′10).

The theorem is proved.

By Lemma 3.2 (forλ = 0), it follows that functionsX{τ}(·)x (x ∈ H, τ ∈ Sm) belong to ker L∗10. Consequently
equality (36) is reduced to the form

ŷ = y0 + y, f̂ = y′0 + f , y(t) = Ṽ(t)ξ̃ −
k1∑

n=1

wn(t)iJ
∫ t

a
w∗n(s)dm(s) f (s), (50)

where ξ̃ = {ξk} ∈ Q−, ξk = ηk (see (36)) if vk has form (12) and

ξk = ηk + iJ
∫ τk

αn

w∗n(s)dm(s) f (s) (51)

if vk has form (13) for λ = 0.

Corollary 5.2. If the pair {y, f } has form (50), then

Y10= ξ̃ − 2−1 ĩJV∗ f + 2−1 ĩJV∗0 f , Y′10=V
∗ f . (52)

Proof. Equality (52) follows from (38) and (51).

We note that the case where functions y, f have form (50) was considered in [16]. Equality (44) is proved in
[16]; however, in [16], there is a mistake in formula (52): V∗ is written in the first equality instead ofV∗.

From the theory of spaces with positive and negative norms (see [4, ch. 1], [19, ch.2]), it follows that
there exist isometric operators δ− :Q−→Q, δ+ :Q+→Q such that the equality (η̃, φ̃) = (δ−η̃, δ+φ̃) holds for all
η̃ ∈ Q−, φ̃ ∈ Q+. We denote H = H0 × Q. Suppose {ỹ, f̃ } ∈ L∗0. According to Theorem 3.5 (for λ = 0), there

exists a pair {ŷ, f̂ } such that the pairs {ỹ, f̃ }, {ŷ, f̂ } are identical in H × H and equalities (36) hold. To each
such pair {ŷ, f̂ } assign a pair of boundary values γ{ŷ, f̂ } = {Y,Y′} ∈ H ×H by the formulas

Y = γ1{ŷ, f̂ } = {y0, δ−Y10}, Y
′ = γ2{ŷ, f̂ } = {y′0, δ+Y′10}.
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By Theorem 5.1, it follows that the operator γ maps L∗0 ontoH ×H and equality

( f̂ , ẑ )H − (ŷ, 1̂ )H = (Y′,Z) − (Y,Z′) (53)

holds, where {ŷ, f̂ }, {̂z, 1̂ } ∈ L∗0, γ{ŷ, f̂ } = {Y,Y′}, γ{̂z, 1̂ } = {Z,Z′}. This implies that the ordered triple
(H , γ1, γ2) is the space of boundary values (a boundary triplet in another terminology) for L0 in the sense
of papers [22], [7], [8] (see also [19, ch. 3]). It was established in the articles [22], [7], [8] that for the space of
boundary values, formula (53) implies the following statement.

Corollary 5.3. If U is a unitary operator onH , then the restriction of the relation L∗0 to the set of pairs {ŷ, f̂ } ∈ L∗0
satisfying the condition

(U − E)Y′ − (U + E)Y = 0 (54)

is a self-adjoint extension of L0. Conversely, any self-adjoint extension of L0 is the restriction of L∗0 to the set of pairs
{ŷ, f̂ } ∈ L∗0 satisfying (54), where a unitary operator U is uniquely determined by an extension.

This statement is proved in [16] for the boundary values (52). It is established in [15] provided that m
is the usual Lebesque measure on [a, b] (i.e., m([α, β)) = β − α, where a ⩽ α < β ⩽ b). We note that F.S. Rofe-
Beketov [24] first applied linear relations to describe self-adjoint extensions of differential operators.

We consider boundary value problem

f̂ = λŷ + h, (K(λ) − E)Y′ − i(K(λ) + E)Y = 0, (55)

where {Y,Y′} = γ{ŷ, f̂ }; h ∈ H; λ→ K(λ) is a holomorphic operator function in H such that ∥K(λ)∥ ⩽ 1;
Imλ > 0.

From (53) and [7], [8] we obtain the following statement.

Theorem 5.4. There exists a one-to-one mapping between boundary problems (55) and generalized resolvents of the
operator L0. Every solution y of problem (55) determines a generalized resolvent R̃λ by the formula y = R̃λh and,
conversely, for any generalized resolvent R̃λ there exists a function K(λ) such that the function y = R̃λh is the solution
of (55).

6. The example

We consider equation (1) on a segment [0, b] and assume that H = C, J = E = 1, p = 0, m = m0 + m̂,
where m0 is the usual Lebesque measure (we write ds instead of dm0(s) ), 0 < τ < b, m̂({τ}) = 1 and m̂(∆) = 0
for all Borel sets such that τ < ∆. So, Sm = {τ}. Thus, equation (1) has the form

y(t) = x0 − i
∫ t

0
dm(s) f (s). (56)

It follows from the definition of L0 and (7), (56) that L0 is an operator and if y = L0 f , then

y(t) = −i
∫ t

0
f (s)ds, y(b) = 0, f (τ) = 0 ⇔ y′(t) = −i f (t), y(0) = y(b) = 0, f (τ) = 0.

Since S0 = {0, b} and m(S0) = 0, we have H0 = {0} and L∗10 = L∗0 in equality (8).
Equation (5) (for x0 = 1) takes the form

W(t, λ) = 1 − iλ
∫ t

0
W(s, λ)ds, λ ∈ C.
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Therefore, W(t, λ) = e−iλt. Obviously, if λ = 0, then W(t, 0) = 1. The number of intervals Jk ∈ J is k1 = 1.
We write w(t, λ) instead of w1(t, λ). Then w(t, λ) = X[0,b)W(t, λ). Without loss of generality it can be assumed
that w(t, λ) =W(t, λ) = e−iλt.

The setM consists of the interval (0, b) and the single-point set {τ}. Hence the number of elements ofM
is k = 2. Using (12), (13), and the equality m({τ}) = 1, we get

v1(t, λ) = X[0,b]\{τ}w(t, λ) = X[0,b]\{τ}e−iλt =

e−iλt for t , τ,
0 for t = τ

; (57)

v2(t, λ)=u1(t, λ, τ)e−iλτ+X{τ}(t)e−iλτ=−X[0,b]\{τ}e−iλti
∫ t

0
eiλsdm(s)λX{τ}(s)e−iλτ+X{τ}(t)e−iλτ=


0 for t < τ,
e−iλτ for t = τ,
−λie−iλt for t >τ.

(58)

Therefore,

v∗1(t, λ) = X[0,b]\{τ}eiλt =

eiλt for t , τ,
0 for t = τ

; v∗2(t, λ) =


0 for t < τ,
eiλτ for t = τ,
λieiλt for t > τ.

(59)

If λ = 0, then equalities (58), (59) imply that

v1(t) = v1(t, 0) = X[0,b]\{τ}(t) =

1 for t , τ,
0 for t = τ

; v2(t) = v2(t, 0) = X{τ}(t) =

0 for t , τ,
1 for t = τ.

(60)

By (14), (60), it follows that Q10 = Q20 = {0} and Q1 = Q−1 = Q+1 = Q2 = Q−2 = Q+2 = H = C. Therefore,
Q = Q− = Q+ = C2.

The domain D(L0) of L0 is dense in H = L2(C, dm; 0, b). This yields that L∗0 is an operator. Using
Theorem 3.5, we obtain

y(t) = v1(t, λ)η1 + v2(t, λ)η2 − X[0,b]\{τ}(t)e−iλti
∫ t

0
eiλsdm(s) f (s) (61)

for all y ∈ D(L∗0 − λE), where η1, η2 ∈ C, f = (L∗0 − λE)y. For λ = 0, it follows from (61) that

y(t) = X[0,b]\{τ}(t)η1 + X{τ}(t)η2 − X[0,b]\{τ}(t)i
∫ t

0
dm(s)u(s), (62)

where u = L∗0y. Since X{τ}ξ ∈ ker L∗0 for all ξ ∈ C, we obtain

y(t) = ξ1 + X{τ}(t)ξ2 − i
∫ t

0
dm(s)u(s), ξ1, ξ2 ∈ C.

Taking into account (37), (38), (62), and the equality m({τ}) = 1, we see that the boundary values Y = Y,
Y′ = Y′ are calculated by the formulas

Y =
(
η1
η2

)
− 2−1i


∫ b

0 dm(s)u(s)∫ b

0 dm(s)u(s)

 + 2−1i
(

0
u(τ)

)
+ i

(
0∫ τ

0 dm(s)u(s)

)
, Y′ =

(∫ b

0 u(s)ds
u(τ)

)
, (63)

where y has form (62), u = L∗0y.
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Let L be an operator such that L0 ⊂ L ⊂ L∗0. Suppose that L is the restriction of L∗0 to a set of functions
satisfying the condition Y = 0. It follows from Corollary 5.3 that L is the self-adjoint operator. Let us find
the function

M(λ) =
(
M11(λ) M12(λ)
M21(λ) M22(λ)

)
: C2
→ C2 (64)

that corresponds to the resolvent Rλ = (L − λE)−1. We denote

x1 = x1( f , λ) =
∫ b

0
v∗1(s, λ)dm(s) f (s) =

∫ b

0
eiλs f (s)ds, (65)

x2= x2( f , λ) =
∫ b

0
v∗2(s, λ)dm(s) f (s)= eiλτ f (τ) +

∫ b

τ
iλeiλs f (s)ds. (66)

Then equality (20) takes the form

y(t) = v1(t, λ)(M11(λ)x1 +M12(λ)x2) + v2(t, λ)(M21(λ)x1 +M22(λ)x2)−

− 2−1X[0,b]\{τ}e−iλti
∫ t

0
eiλs f (s)ds + 2−1X[0,b]\{τ}e−iλti

∫ b

t
eiλs f (s)ds − λ−1X{τ}(t) f (τ). (67)

By elementary transformations, equality (67) is converted to the following form

y(t) = v1(t, λ)(M11(λ)x1 +M12(λ)x2) + v2(t, λ)(M21(λ)x1 +M22(λ)x2)−

− X[0,b]\{τ}e−iλti
∫ t

0
eiλs f (s)ds + 2−1X[0,b]\{τ}e−iλti

∫ b

0
eiλs f (s)ds − λ−1X{τ}(t) f (τ). (68)

Using (57), (58), we obtain that in equality (68)

v1(t, λ)(M11(λ)x1 +M12(λ)x2) = X[0,b]\{τ}e−iλt(M11(λ)x1 +M12(λ)x2),

v2(t, λ)(M21(λ)x1 +M22(λ)x2) =


0 for t < τ,
e−iλτ(M21(λ)x1 +M22(λ)x2) for t = τ,
−λie−iλt(M21(λ)x1 +M22(λ)x2) for t > τ.

To find M12(λ), M22(λ), we take the function f1(t) = X{τ}(t), i.e., f1(t) = 1 if t = τ and f1(t) = 0 if t , τ
(by {Y1,Y′1} denote the corresponding pair of boundary values). It follows from (59), (65), (66) that x1 = 0,
x2 = eiλτ. We denote y1 = Rλ f1. Using (68), we obtain

y1(t) = v1(t, λ)M12(λ)eiλτ + v2(t, λ)M22(λ)eiλτ
− λ−1X{τ}(t). (69)

We denote u1 = L∗0y1 = λy1 + f1. Then using (69), we get

u1(t) = λv1(t, λ)M12(λ)eiλτ + λv2(t, λ)M22(λ)eiλτ. (70)

By (60), (62), (69), it follows that

y1(t) = X[0,b]\{τ}(t)M12(λ)eiλτ + X{τ}(t)(M22(λ) − λ−1) − X[0,b]\{τ}(t)i
∫ t

0
dm(s)u1(s). (71)

Using (70) by direct calculations, we obtain∫ b

0
dm(s)u1(s) = i(e−iλb

− 1)M12(λ)eiλτ + λe−iλbM22(λ)eiλτ;
∫ τ

0
dm(s)u1(s) = i(1 − eiλτ)M12(λ). (72)
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By (63), (71), (72), so that

Y1 =

(
M12(λ)eiλτ

M22(λ) − λ−1

)
−2−1i

(
i(e−iλb

− 1)M12(λ)eiλτ+λe−iλbM22(λ)eiλτ

i(e−iλb
− 1)M12(λ)eiλτ+λe−iλbM22(λ)eiλτ

)
+2−1i

(
0

λM22(λ)

)
+ i

(
0

i(1 − eiλτ)M12(λ)

)
.

The equality Y1 = 0 is equivalent to two equalitiesM12(λ)eiλτ + 2−1(e−iλb
− 1)M12(λ)eiλτ

− 2−1λie−iλbM22(λ)eiλτ = 0,
M22(λ) − λ−1 + 2−1(e−iλb

− 1)M12(λ)eiλτ
− 2−1λie−iλbM22(λ)eiλτ + 2−1λiM22(λ) − (1 − eiλτ)M12(λ) = 0.

(73)

Solving the system of equations (73), we get

M12(λ) =
2ie−iλb

2(e−iλb + 1) − iλ(e−iλb − 1)
; M22(λ) =

2(e−iλb + 1)
λ(2(e−iλb + 1) − iλ(e−iλb − 1))

. (74)

To find M11(λ), M21(λ), we take the function f2(t) = X[0,τ)(t), i.e., f2(t) = 1 if t < τ and f2(t) = 0 if t ⩾ τ
(by {Y2,Y′2} denote the corresponding pair of boundary values). It follows from (65) that x1 = iλ−1(1 − eiλτ),
x2 = 0. We denote y2 = Rλ f2. Using (68), we obtain

y2(t) = v1(t, λ)M11(λ)x1 + v2(t, λ)M21(λ)x1 −X[0,b]\{τ}e−iλti
∫ t

0
eiλs f2(s)ds+ 2−1X[0,b]\{τ}e−iλti

∫ b

0
eiλs f2(s)ds. (75)

The equality f2(t) = X[0,τ)(t) implies

−X[0,b]\{τ}e−iλti
∫ t

0
eiλs f2(s)ds =


λ−1(e−iλt

− 1) for t < τ,
0 for t = τ,
λ−1e−iλt(1 − eiλτ) for t > τ;

(76)

2−1X[0,b]\{τ}e−iλti
∫ b

0
eiλs f2(s)ds =

2−1ie−iλtx1 for t , τ,
0 for t = τ.

(77)

By (62), (75)-(77), it follows that

y2(t) = X[0,b]\{τ}(M11(λ)x1 + 2−1ix1) + X{τ}(t)e−iλτM21(λ)x1 − X[0,b]\{τ}(t)i
∫ t

0
dm(s)u2(s), (78)

where u2 = L∗0y2 =λy2 + f2. Equalities (57), (58), (75)-(77) imply that u2(t) = u21(t) + u22(t) + u23(t) + u24(t),
where

u21(t) = X[0,b]\{τ}λe−iλtM11(λ)x1; u22(t) =


0 for t < τ,
λe−iλτM21(λ)x1 for t = τ,
−λ2ie−iλtM21(λ)x1 for t > τ;

(79)

u23(t) =


e−iλt for t < τ,
0 for t = τ,
e−iλt(1 − eiλτ) for t > τ;

u24(t) =

2−1λie−iλtx1 for t , τ,
0 for t = τ.

. (80)

Using (79), (80), and equality x1 = iλ−1(1 − eiλτ), by direct calculations, we obtain∫ b

0
dm(s)u2(s)= i(e−iλb

−1)M11(λ)x1+λe−iλbM21(λ)x1+ iλ−1(e−iλτ
−1)+ (e−iλb

− e−iλτ)x1−2−1(e−iλb
−1)x1, (81)
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0
dm(s)u2(s) = i(e−iλτ

− 1)M11x1 + iλ−1(e−iλτ
− 1) − 2−1(e−iλτ

− 1)x1. (82)

By (63), (78), so that

Y2 =

(
M11(λ)x1 + 2−1ix1

e−iλτM21(λ)x1

)
− 2−1i


∫ b

0 dm(s)u2(s)∫ b

0 dm(s)u2(s)

 + 2−1i
(

0
λe−iλτM21(λ)x1

)
+ i

(
0∫ τ

0 dm(s)u2(s)

)
,

where the integrals
∫ b

0 dm(s)u2(s),
∫ τ

0 dm(s)u2(s) are calculated by formulas (81), (82), respectively.
The equality Y2 = 0 is equivalent to two equalitiesM11(λ)x1 + 2−1ix1 − 2−1i

∫ b

0 dm(s)u2(s) = 0,

e−iλτM21(λ)x1 − 2−1i
∫ b

0 dm(s)u2(s) +2−1λie−iλτM21(λ)x1 + i
∫ τ

0 dm(s)u2(s) = 0.
(83)

Solving the system of equations (83), we obtain

M11(λ) = i
(2 − iλ)e−iλb

− (2 + iλ)
2((2 − iλ)e−iλb + (2 + iλ))

; M21(λ) = i
−2

(2 − iλ)e−iλb + (2 + iλ)
. (84)

Thus the matrix M(λ) (64) is calculated by equalities (84), (74).

Remark 6.1. It follows from (84), (74) that

M11(i) =
3eb
− 1

2(3eb + 1)
i; M21(i) =

−2
3eb + 1

i; M12(i) =
2eb

3eb + 1
i; M22(i) =

−2(eb + 1)
3eb + 1

i.

Suppose that f1(t) = X{τ}(t). Then x1 = x1( f1, i) = 0, x2 = x2( f1, i) = e−τ (see (59), (65), (66)). We denote x̃ =
col(x1, x2). Therefore, (M(i)x̃, x̃ ) =M22(i)e−2τ. Thus, Im(M(i)x̃, x̃ ) = ImM22(i)e−2τ=−2(eb + 1)e−2τ/(3eb + 1) < 0.

References

[1] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space. New York: Dover Publications Inc., 2013. [Russian
edition: Vishcha Shkola, Kharkiv, 1978.]

[2] A. G. Baskakov, Analysis of Linear Differential Equations by Methods of the Spectral Theory of Difference Operators and Linear
Relations, Uspekhi Mat. Nauk 68 (2013), No.1, 77–128; Engl. transl.: Russian Mathematical Surveys 68 (2013), No.1, 69–116.

[3] J.Behrndt, S.Hassi, H.Snoo, R.Wietsma, Square-Integrable Solutions and Weil functions for Singular Canonical Systems, Math.
Nachr. 284 (2011), No.11–12, 1334–1384.

[4] Yu. M. Berezanski, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965; Engl. transl.: Amer.
Math. Soc., Providence, RI, 1968.

[5] V. M. Bruk, On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order in a Space of Vector
Functions, Mat. Zametki 15 (1974), No.6, 945-954; Engl. transl.: Mathematical Notes 15 (1974), No.6, 563–568.

[6] V. M. Bruk, On a Number of Linearly Independent Square-Integrable Solutions of Systems of Differential Equations, Functional
Analysis 5 (1975), Uljanovsk, 25–33.

[7] V. M. Bruk, On a Class of Boundary Value Problems with Spectral Parameter in the Boundary Condition, Mat. Sbornik 100 (1976),
No.2, 210–216; Engl. transl.: Math. USSR-Sbornik 29 (1976), No.2, 186–192.

[8] V. M. Bruk, Extensions of Symmetric Relations, Mat. Zametki 22 (1977), No. 6, 825–834; Engl. transl.: Mathematical Notes 22
(1977), No. 6, 953–958.

[9] V. M. Bruk, Linear Relations in a Space of Vector Functions, Mat. Zametki 24 (1978), No.4, 499–511; Engl. transl.: Mathematical
Notes 24 (1978), No.4, 767–773.

[10] V. M. Bruk, On Boundary Value Problems Associated with Holomorphic Families of Operators. Functional Analysis 29 (1989),
Uljanovsk, 32–42.

[11] V. M. Bruk, On the Characteristic Operator of an Integral Equation with a Nevanlinna Measure in the Infinite-Dimensional Case,
Journal of Math. Physics, Analysis, Geometry 10 (2014), No.2, 163–188.

[12] V. M. Bruk, Boundary Value Problems for Integral Equations with Operator Measures, Probl. Anal. Issues Anal. 6(24) (2017),
No.1, 19–40.

[13] V. M. Bruk, On Self-adjoint Extensions of Operators Generated by Integral Equations, Taurida Journal of Computer Science
Theory and Mathematics (2017), No.1(34), 17–31.



V.M. Bruk / Filomat 36:14 (2022), 4793–4810 4810

[14] V. M. Bruk, Generalized Resolvents of Operators Generated by Integral Equations, Probl. Anal. Issues Anal 7(25) (2018), No. 2,
20–38.

[15] V. M. Bruk, On Self-adjoint and Invertible Linear Relations Generated by Integral Equations, Buletinul Academiei de Stiinte a
Republicii Moldova. Matematica (2020), No.1 (92), 106–121.

[16] V. M. Bruk, Dissipative Extensions of Linear Relations Generated by Integral Equations with Operator Measures, Journal of Math.
Physics, Analysis, Geometry 16 (2020), No.4, 281–401.

[17] V. M. Bruk, Invertible Linear Relations Generated by Integral Equations with Operator Measures, Filomat, 35 (2021), No. 5,
1589–1607.

[18] A. Dijksma, H. S. V. de Snoo, Self-adjoint Extensions of Symmetric Subspaces, Pac. J. Math., 54 (1974), No.1, 71–100.
[19] V. I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Differential-Operator Equations, Naukova Dumka, Kiev, 1984;

Engl. transl.: Kluver Acad. Publ., Dordrecht-Boston-London, 1991.
[20] T.Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
[21] V. Khrabustovskyi, Analogs of Generalized Resolvents for Relations Generated by a Pair of Differential Operator Expressions

One of which Depends on Spectral Parameter in Nonlinear Manner, Journal of Math. Physics, Analysis, Geometry 9 (2013), No.4,
496–535.

[22] A. N. Kochubei, Extensions of Symmetric Operators and Symmetric Binary Relations, Mat. Zametki 17 (1975), No.1, 41–48; Engl.
transl.: Mathematical Notes 17 (1975), No.1, 25–28.

[23] B. C. Orcutt, Canonical Differential Equations, Dissertation, University of Virginia, 1969.
[24] F. S. Rofe-Beketov, Selfadjoint Extensions of Differential Operators in a Space of Vector Functions. Dokl. Akad. Nauk USSR 184

(1969), No.5, 1034–1037; Engl. transl.: Soviet Math. Dokl. 10 (1969), No.1, 188–192.
[25] F. S. Rofe-Beketov, A.M. Kholkin, Spectral Analysis of Differential Operators. World Scientific Monograph Series in Mathematics,

vol. 7, Singapure, 2005.
[26] A. V. Straus, Generalized Resolvents of Symmetric Operators, Izv. Akad. Nauk SSSR, Ser, Mat., 18 (1954), No.1, 51–86.
[27] A. V. Straus, On Generalized Resolvents and Spectral Functions of Differential Operators of Even Order, Izv. Akad. Nauk SSSR,

Ser. Mat., 21 (1957), No.6, 785–808.


