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Abstract. We consider the non-linear matrix equation (NME) of the formU = Q +
∑k

i=1A
∗

iℏ(U)Ai, where
Q is an n×n Hermitian positive definite matrix,A1,A2, . . . ,Am are n×n matrices, and ℏ is a non-linear self-
mapping of the set of all Hermitian matrices which are continuous in the trace norm. We discuss sufficient
conditions ensuring the existence of a unique positive definite solution of the given NME. In order to do this,
we introduceΘw-contractive conditions involving modified simulation functions in relational metric spaces
and derive fixed points results based on them, followed by two suitable examples. In order to demonstrate
the obtained conditions, we consider three different sets of matrices. Three different types of examples
(including randomly generated matrix and a complex matrix) are given, together with convergence and
error analysis, as well as average CPU time analysis with different dimensions bar graphs, and visualization
of solutions in surface plot.

1. Introduction and preliminaries

1.1. Positive definite solutions of NMEs

The study of nonlinear matrix equations (NMEs) appeared first in the literature concerned with alge-
braic Riccati equations. These equations occur in large number of problems in control theory, dynamical
programming, ladder network, stochastic filtering, queuing theory, statistics and many other applicable
areas.

Let H(n) (resp. K (n), P(n)) denote the set of all n × n Hermitian (resp. positive semi-definite, positive
definite) matrices over C andM(n) the set of all n× n matrices over C. In [16], Ran and Reurings discussed
the existence of solutions of the equation

U +B∗ℏ(U)B = Q (1)
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in K (n), where B ∈ M(n), Q is positive definite and ℏ is a mapping from K (n) intoM(n). Note thatU is a
solution of (1) if and only if it is a fixed point of the mappingG(U) = Q−B∗ℏ(U)B. In [17], Ran and Reurings
used the notion of partial ordering and established a modification of Banach Contraction Principle, which
they applied for solving a class of NMEs of the form U = Q +

∑k
i=1B

∗

iℏ(U)Bi using the Ky Fan norm in
M(n).

Theorem 1.1. [17] Let ℏ : H(n)→ H(n) be an order-preserving, continuous mapping which maps P(n) into itself
and Q ∈ P(n). If Bi,B∗i ∈ P(n) and

∑k
i=1BiB

∗

i < M · In for some M > 0 (In – the unit matrix in M(n)) and if
| tr(ℏ(V) − ℏ(U))| ≤ 1

M | tr(Y −X)|, for all X,Y ∈ H(n) withU ≤ V, then the equationU = Q +
∑k

i=1B
∗

iℏ(U)Bi
has a unique positive definite solution (PDS).

In [21], Sawangsup and Sintunavarat studied the NME of the form U = Q +
∑k

i=1B
∗

iℏ(U)Bi using the
spectral norm of a matrix, and applied a generalized contraction condition in metric spaces endowed with a
transitive binary relation; they also tested numerically its approximate solutions. In the papers [2, 8, 9], the
authors discussed PDSs of a pair of NMEs. Recently, in [5], Garai and Dey obtained sufficient conditions
for the existence and uniqueness of solution for a system of NMEs, using common fixed point results in
Banach spaces under conditions using a pair of altering distance functions.

1.2. Relational metric spaces
It is well-known that results of metrical fixed point theory can be applied for solving various nonlinear

problems in different areas. These results use various generalized contractive conditions for operators acting
in several kinds of generalized metric spaces. In this paper, we will consider so-called relational metric
spaces with additional w-distance and contractive conditions formulated in terms of so-called simulation
functions.

Throughout this article, the notations Z, N, R, R+ have their usual meanings. We recall the following
notions.

Definition 1.2. Let X be a non-empty set and R be a binary relation defined on X.

1. [14] The relation R is said to be complete if for all x, y ∈ X, [x, y] ∈ R, where [x, y] ∈ R means that either
(x, y) ∈ R or (y, x) ∈ R.

2. [1] The symmetric closure of R is defined by Rs = R ∪ R−1.
3. [1] A sequence {xn} in X is said to be R-preserving if

(xn, xn+1) ∈ R, ∀n ∈N ∪ {0}.

4. [20] A subset E of X is calledR-directed if for each x, y ∈ E, there exists z ∈ E such that (z, x) ∈ R and (z, y) ∈ R.
5. [13] For x, y ∈ X, a path of length k (where k is a natural number) in R from x to y is a finite sequence
{z0, z1, z2, . . . , zk} ⊂ X satisfying the following conditions:

(i) z0 = x and zk = y,

(ii) (zi, zi+1) ∈ R for each i (0 ≤ i ≤ k − 1).

Definition 1.3. Let X be a non-empty set, R be a binary relation defined on X, and let T be a self-map defined on X.

1. [1] The relation R is said to be T -closed if (x, y) ∈ R ⇒ (T x,T y) ∈ R.
2. [10] The relation R is said to be T -orbitally transitive if it is transitive on O(x;T ) for all x ∈ X, where
O(x;T ) = {T nx : n = 0, 1, 2, . . . } is the orbit of T at the point x ∈ X.

Let X be a nonempty set. As has become standard, (X, d,R) will be called a relational metric space if

(i) (X, d) is a metric space and
(ii) R is a binary relation on X.



R. Jain et al. / Filomat 36:14 (2022), 4811–4829 4813

Definition 1.4. Let (X, d,R) be a relational metric space, and let T be a self-map defined on X.

1. [1] The space (X, d) is said to be R-complete if every R-preserving Cauchy sequence converges in X.
2. [1] The relation R is said to be d-self-closed if for every R-preserving sequence {xn} with xn → x, there is a

subsequence {xnk } of {xn}, such that [xnk , x] ∈ R, for all k ∈N ∪ {0}.
3. [1] The mapping T is said to be R-continuous at x ∈ X if for every R-preserving sequence {xn} converging to

x, we have
T xn → T x as n→∞.

4. [10] The mapping T is said to be orbitally R-continuous at a point z in X if for any R-preserving sequence
{xn} ⊂ O(x;T ) (for some x ∈ X), xn → z as n→∞ implies T xn → T z as n→∞.

5. [22] The mapping f : X → R ∪ {−∞,+∞} is said to be R-lower semicontinuous (R-LSC, for short) at x if for
every R-preserving sequence {xn} converging to x, we have

lim inf
n→∞

f (xn) ≥ f (x).

Remark 1.5. 1. [10] Transitivity⇒T -orbital transitivity; the converse is not true.
2. A path of length k involves k + 1 elements of X, although they are not necessarily distinct.
3. [10] The following implications are obvious:

Continuity =⇒ orbital continuity
⇓ ⇓

R-continuity =⇒ orbital R-continuity.

4. [22] Every lower semi-continuous function is R-LSC, but the converse is not true. If R is the universal
relation, then these two notions coincide.

We shall also need the following notions.

Definition 1.6. Let (X, d,R) be a relational metric space, and let T be a self-map defined on X.

1. The relation R is said to be T -orbitally closed at z ∈ X if (x, y) ∈ R ⇒ (T x,T y) ∈ R, for all x, y ∈ O(z;T ).
2. The space (X, d,R) is said to be T -orbitally R-complete at x ∈ X if every R-preserving Cauchy sequence

contained in O(x;T ) converges in X.

Remark 1.7. 1. Every T -closed relation is T -orbitally closed at each point, but the converse is not true.
2. Every complete relational metric space is T -orbitally complete for any T , and every T -orbitally

complete space is T -orbitally R-complete, but the converses are not true.

Example 1.8. Let X = [0, 1] be equipped with the standard metric d and let the relation R be defined on X
by

(x, y) ∈ R ⇐⇒ x, y > 0 ∨ (x, y) ∈
{
(0, 0), (0,

1
5

)
}
∪

{
(0,

1
5n ) | n ≥ 3

}
.

Consider the self-mapping T on X be given by T x = x
5 . Take x0 =

1
5 . Then

O(x0;T ) =
{ 1
5n | n ∈N

}
, O(x0;T ) = O(x0;T ) ∪ {0} ⊂ [0,

1
5

].

Then R is T -orbitally closed, and R is T -orbitally transitive but it is neither T -closed nor transitive. To see
this, observe that

(x, y) = (0,
1
5

) ∈ R but (T x,T y) = (0,
1
25

) < R

and

(0,
1
5

), (
1
5
,

1
25

) ∈ R but (0,
1

25
) < R.

Also, (X, d,R) is T -orbitally R-complete at x0.
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We are going to use the following notations:

(i) F(T ) := the set of all fixed points of T ,
(ii) R(T ) := {x ∈ X : (x,T x) ∈ R and (T x, x) ∈ R},

(iii) Y(x, y,E,R) := the class of all R-paths in E from x to y, where E ⊆ X.

A new type of control functions, named as simulation functions has been designed by Khojasteh et al.
[12] and later slightly modified and enlarged by Roldán-Lopez-de-Hierro et al. [19]. Very recently, Hazarika
et al. [7] modified this notion introducing the notion of modified simulation function.

Definition 1.9. [7] The set of modified simulation functions Θ is a class of functions θ : R+ ×R+ −→ R satisfying
the following conditions:

(θ1) θ(ξ, ζ) < ζ − ξ, for all ζ, ξ > 0;

(θ2) if {ξn}, {ζn} are sequences in (0,+∞) such that limn→∞ ξn = α > 0 and limn→∞ ζn = β > 0, then
lim supn→∞ θ(ξn, ζn) < β − α.

In Section 2 of this paper, we consider relational metric spaces endowed with additional w-distance.
Θw-contractive conditions involving modified simulation functions in these spaces are introduced and fixed
points results, based on them, are obtained. Several special cases are considered in Section 3, together with
suitable examples, illustrating the obtained results.

Applications of the obtained results to non-linear matrix equations are considered in Section 4. We
discuss sufficient conditions ensuring the existence of a unique positive definite solution of the NMEs of the
formU = Q +

∑k
i=1A

∗

iℏ(U)Ai, where Q is an n × n Hermitian positive definite matrix,A1,A2, . . . ,Am are
n× n matrices, and ℏ is a non-linear self-mapping of the set of all Hermitian matrices which are continuous
in the trace norm.

In order to demonstrate the obtained results, we consider three different types of matrices in Section
5. This includes convergence and error analysis, as well as average CPU time analysis with different
dimensions bar graphs, and visualization of solutions in surface plot.

2. Relational metric spaces with w-distance

In 1996, Kada et al. [11] introduced the concept of w-distance on a metric space and proved a generalized
Caristi fixed point theorem, Ekeland’s ϵ-variational principle and the non-convex minimization theorem,
according to Mizoguchi and Takahashi [15]. Senapati and Dey [22] presented a modified version of w-
distance function. The corresponding definitions and lemmas, in the setting of metric spaces endowed with
an arbitrary binary relation R, are as follows:

Definition 2.1. [22] Let (X, d,R) be a relational metric space. A function w : X×X→ [0,+∞) is called a w-distance
on X if it satisfies the following properties:

(W1) w(x, z) ≤ w(x, y) + w(y, z) for any x, y, z ∈ X;
(W2′) w is R-LSC in its second variable; i.e., if x ∈ X and yn → y ∈ X such that ynRyn+1, then w(x, y) ≤

lim infn→∞ w(x, yn);
(W3) for each ϵ > 0, there exists a δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ imply d(x, y) ≤ ϵ.

The following lemma is a modified version of Kada et al. [11], due to Senapati and Dey [22].

Lemma 2.2. [22] Let (X, d,R) be a relational metric space and let w be a w-distance on X. Suppose that {xn} and {yn}

are R-preserving sequences in X, {αn} and {βn} are sequences in [0,+∞) converging to 0, and let x, y, z ∈ X. Then
the following assertions hold:

(i) if w(xn, y) ≤ αn and w(xn, z) ≤ βn for all n ∈N, then y = z, particularly, if w(x, y) = w(x, z) = 0, then y = z,
(ii) if w(xn, yn) ≤ αn and w(xn, y) ≤ βn for all n ∈N, then {yn} converges to y,
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(iii) if w(xn, xm) ≤ αn for all n,m ∈N with m > n, then {xn} is a Cauchy sequence,
(iv) if w(y, xn) ≤ αn for all n ∈N, then {xn} is a Cauchy sequence.

Lemma 2.3. [11, 23]. Let w be a w-distance on a metric space (X, d) and {xn} be a sequence in X such that for each
ϵ > 0 there exists Nϵ ∈ N such that m > n > Nϵ implies w(xn, xm) < ϵ, i.e., limm,n→∞ w(xn, xm) = 0. Then {xn} is a
Cauchy sequence.

Definition 2.4. Let (X, d,R) be a relational metric space with w-distance w and T : X→ X be a given mapping. We
say that T is a Θw-contractive mapping, if there exists a function θ ∈ Θ such that

θ(w(T x,T y),max{w(x, y),w(x,T x),w(y,T y)}) ≥ 0, (2)

for all (x, y) ∈ R.
If (2) is satisfied for x, y ∈ O(x0;T ) (for some x0 ∈ X), we say that T is an orbitally Θw-contractive mapping

(at x0).

Now, we are equipped to state and prove our first main result as follows:

Theorem 2.5. Let (X, d,R) be a relational metric space with w-distance w and T : X → X. Suppose that the
following conditions hold:

(i) there exists an x0 ∈ R(T );
(ii) R is T -orbitally closed and T -orbitally transitive;

(iii) (X, d,R) is T -orbitally R-complete at x0;
(iv) T is an orbitally Θw-contractive mapping;
(v) T is orbitally R-continuous.

Then there exists a point u ∈ F(T ). In addition, w(u,u) = 0.

Proof. Let x0 ∈ R(T ) be a point as given in (i). If T nx0 = T
n+1x0 for some n ∈ N ∪ {0}, then there is nothing

to prove. Construct the sequence {xn} of Picard iterates xn = T
n(x0) for all n ∈N ∪ {0}.

Using (i)-(ii), we have that (T x0,T 2x0) ∈ R. Continuing this process inductively, we obtain

(T nx0,T
n+1x0) ∈ R (3)

for any n ∈N ∪ {0}. Hence, {xn} is an R-preserving sequence.
Next, we show that

lim
n→∞

w
(
T

nx0,T
n+1x0

)
= 0. (4)

Denote Λn = w
(
T

nx0,T n+1x0

)
for all n ∈N ∪ {0}. Now, observe that

0 ≤ θ(w(T nx0,T
n+1x0),

max{w(T n−1x0,T
nx0),w(T n−1x0,T

nx0),w(T nx0,T
n+1x0)})

= θ(Λn,max{Λn−1,Λn}). (5)

We shall show that {Λn} is a nonincreasing sequence. Indeed, if Λn−1 < Λn for some n ∈ N, then (5) would
imply that

0 ≤ θ(Λn,Λn) < Λn −Λn = 0,

a contradiction. Therefore, {Λn} is a nonincreasing sequence of positive real numbers. Hence there exists
an r ≥ 0 such that

lim
n→∞
Λn = lim

n→∞
w(T nx0,T

n+1x0) = r.
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If r > 0, then, using the condition (θ2), we would have

0 ≤ lim sup
n→∞

θ(Λn,Λn−1) < r − r = 0,

a contradiction. Thus, we conclude that limn→∞Λn = 0, which establishes (4).
Similarly, from (T x0, x0) ∈ R and using condition (ii), we get (xn+1, xn) ∈ R for all n ∈ N∗. Using this

conclusion and the above arguments, it can be shown that

lim
n→∞

w(T n+1x0,T
nx0) = 0. (6)

Next, we show that {T nx0} is a Cauchy sequence in O(x0;T ). Suppose that this is not the case – then, by
Lemma 2.3, the relation

lim
m,n→∞

w(T nx0,T
mx0) = 0 (7)

does not hold. It follows that we can find a δ > 0 and increasing sequences {mk}
∞

k=1, {nk}
∞

k=1 of positive
integers with mk > nk such that

w(T nk x0,T
mk x0) ≥ δ, for all k ∈ {1, 2, 3, · · · }. (8)

By (4), there exists a k0 ∈N, such that nk > k0 implies that

w(T nk x0,T
nk+1x0) < δ.

In view of the two last inequalities, we observe that mk , nk+1. We may assume that mk is the minimal index
such that (8) holds, so that

w(T nk x0,T
rx0) < δ, for r ∈ {nk+1,nk+2, . . . ,mk − 1}.

Now, making use of (8), we get

0 < δ ≤ w(T nk x0,T
mk x0) ≤ w(T nk x0,T

mk−1x0) + w(Tmk−1x0,T
mk x0)

< δ + w(Tmk−1x0,T
mk x0).

Thus,

lim
k→∞

w(T nk x0,T
mk x0) = δ. (9)

Using the triangle inequality, we have

w(T nk x0,T
mk x0) ≤ w(T nk x0,T

mk+1x0) + w(Tmk+1x0,T
mk x0)

≤ w(T nk x0,T
nk+1x0) + w(T nk+1x0,T

mk+1x0) + w(Tmk+1x0,T
mk x0).

Taking the limit on both sides and making use of (4), (6) and (9), we obtain

lim
k→∞

w(T nk+1x0,T
mk+1x0) ≥ δ. (10)

Again, using the triangle inequality, we have

w(T nk+1x0,T
mk+1x0) ≤ w(T nk+1x0,T

nk x0) + w(T nk x0,T
mk+1x0)

≤ w(T nk+1x0,T
nk x0) + w(T nk x0,T

mk x0) + w(Tmk x0,T
mk+1x0).

Taking the limit on both sides and making use of (4), (6) and (9), we obtain

lim
k→∞

w(T nk+1x0,T
mk+1x0) ≤ δ. (11)
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Combining (10) and (11), we have

lim
k→∞

w(T nk+1x0,T
mk+1x0) = δ. (12)

Now, since R is T -orbitally transitive and since {xn} ⊆ O(x0;T ), therefore we must have (T nk x0,Tmk x0) ∈ R,
for all r ∈N. Denote ξk = w(T nk+1x0,Tmk+1x0) and ζk = max{w(T nk x0,Tmk x0),w(T nk x0,T nk+1x0),
w(Tmk x0,Tmk+1x0)}. Applying condition (2), we get

0 ≤ θ
(
w(T nk+1x0,T

mk+1x0),max{w(T nk x0,T
mk x0),w(T nk x0,T

nk+1x0),w(Tmk x0,T
mk+1x0)

)
.

Taking the limit on both sides and using (9), (12) and (θ2), we have

0 ≤ lim sup
k→∞

θ
(
w(T nk+1x0,T

mk+1x0),max{w(T nk x0,T
mk x0),w(T nk x0,T

nk+1x0),w(Tmk x0,T
mk+1x0)

)
< δ − δ = 0,

a contradiction. Hence, {T nx0}must be a Cauchy sequence in O(x0;T ).
Since (X, d,R) is T -orbitally R-complete, there exists a point u ∈ X such that limn→∞ T

nx0 = u. We shall
show that u is a fixed point of T .

Using the orbital R-continuity of T (due to the condition (v)), we have limn→∞ TT
nx0 = Tu. Owing to

the uniqueness of the limit, we obtain Tu = u.
Finally, assume that w(u,u) > 0. Then, putting x = y = u in (2), we have

0 ≤ θ(w(u,u),max{w(u,u),w(u,u),w(u,u)})
= θ(w(u,u),w(u,u)) < w(u,u) − w(u,u) = 0,

a contradiction. Therefore, w(u,u) = 0.

Next, we have the following result.

Theorem 2.6. The conclusion of Theorem 2.5 remains true if the condition (v) is replaced by the following one:

(v’) for every y ∈ X with y , T y, inf{w(x, y) + w(x,T x) | x ∈ X} > 0.

Proof. Following the proof of Theorem 2.5, we observe that the sequence {T nx0} is a Cauchy sequence, and
so there exists a point u in X such that limn→∞ T

nx0 = u. Since limm,n→∞ w(T nx0,Tmx0) = 0, for each ϵ > 0,
there exists an Nϵ ∈ N such that n > Nϵ implies w(TNϵx0,T nx0) < ϵ. Since limn→∞ T

nx0 = u and w(x, ·) is
lower semi-continuous,

w(TNϵx0,u) ≤ lim inf
n→∞

w(TNϵx0,T
nx0) < ϵ.

Therefore, w(TNϵx0,u) ≤ ϵ. Set ϵ = 1/k, Nϵ = nk so that

lim
k→∞

w(T nk x0,u) = 0.

Assume that Tu , u. Then, by the hypothesis (v’), we have

0 < inf{w(x,u) + w(x,T x) | x ∈ X}

≤ inf{w(T nk x0,u) + w(T nk x0,T
nk+1x0) | n ∈N} → 0,

which contradicts our assumption. Therefore, Tu = u.
The last conclusion is derived as in the proof of Theorem 2.5.

In what follows, we give various sufficient conditions for the uniqueness of the fixed point in Theorems
2.5 and 2.6.
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Theorem 2.7. In addition to the hypotheses of Theorem 2.5 (or Theorem 2.6), if any of the following conditions is
fulfilled:

(I) for all u, v ∈ X, there exists a z ∈ X such that,

{(z,T z), (z,u), (z, v)} ⊆ R; (13)

(II) the set T (X) is R-directed;
(III) R|TX is complete;
(IV) Y(u, v,F(T ),Rs) is nonempty, for each u, v ∈ F(T ),

then T has a unique fixed point.

Proof. In view of Theorem 2.5 (or Theorem 2.6), F(T ) , ∅ and w(u,u) = 0 for each u ∈ F(T ).

• Assume (I). Suppose there exist distinct fixed points u and v of T . We will consider the following two
cases.

♣ Case (A): u and v are R-comparable. Then T nu = u and T nv = v are comparable for n = 0, 1, . . ..
Therefore, using condition (2),

0 ≤ θ(w(T nu,T nv),max
{
w(T n−1u,T n−1v),w(T n−1u,T nu),w(T n−1v,T nv)

}
)

= θ(w(u, v),w(u, v)),

since u and v are fixed points of T . This implies that

0 ≤ θ(w(u, v),w(u, v))

which is possible only if w(u, v) = 0. Since w(u,u) = 0, by using Lemma 2.2, we have u = v; i.e., the
fixed point of T is unique.

♣ Case (B): By the assumption (I), there exists a z ∈ X, satisfying condition (13). Due to T -closedness
of R, we get

(T n−1z,u) ∈ R, (T n−1z, v) ∈ R,

and, using (2), it follows that

0 ≤ θ(w(T nz,u),max{w(T n−1z,u),w(T n−1z,T nz),w(u,Tu)}). (14)

Using (z,T z) ∈ R, similarly as in the proof of Theorem 2.5, it can be shown that w(T n−1z,T nz)→ 0 as
n→∞. Therefore, for n sufficiently large,

max{w(T n−1z,u),w(T n−1z,T nz),w(u,Tu)} = w(T n−1z,u)

and, from (14), we have

0 ≤ θ(w(T nz,u),w(T n−1z,u)).

As in the proof of Theorem 2.5, it can be shown that w(T nz,u) ≤ w(T n−1z,u). It follows that the
sequence {w(T nz,u)} is nonincreasing. As earlier, we have

lim
n→∞

w(T nz,u) = 0.

Also, since (z, v) ∈ R, proceeding as earlier, we can prove that

lim
n→∞

w(T nz, v) = 0,

and by using Lemma 2.2 we infer that u = v; i.e., the fixed point of T is unique.
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• Assume (II). For any two fixed points u, v of T , there must be an element z ∈ T (X), such that

(z,u) ∈ R and (z, v) ∈ R.

As R is T -closed, so for all n ∈N ∪ {0},

(T nz,u) ∈ R and (T nz, v) ∈ R.

In the line of proof of Case(B) (I), we obtain u = v, i.e., T has a unique fixed point.

• Assume (III). Suppose u, v are two fixed points of T with u , v. Then, we must have (u, v) ∈ R or
(v,u) ∈ R. For (u, v) ∈ R, since Tu = u, T v = v, w(u,u) = 0 and w(v, v) = 0, we obtain

0 ≤ θ(w(Tu,T v),max{w(u, v),w(u,Tu),w(v,T v)})
= θ(w(u, v),w(u, v)) < 0,

a contradiction. Hence, we must have u = v.

In a similar way, if (v,u) ∈ R, we have u = v.

• Assume (IV). Suppose u, v are two fixed points ofT . Let {z0, z1, . . . , zk}be anRs-path in F(T ) connecting
u and v. As in Case (I,A), It must be zi−1 = zi for each i = 1, 2, . . . , k, and it follows that u = v.

3. Some consequences and examples

Some fixed point results can be derived using the condition (2) of Theorems 2.5–2.7, with various forms
of function θ ∈ Θ. We state just a few examples as corollaries out of which some of them are new and the
rest include existing results in the literature.

To simplify the notation, in this section we denote

M(x, y) = max{w(x, y),w(x,T x),w(y,T y)}.

Corollary 3.1. [Generalization of [4]]. Under the conditions of Theorem 2.7, except that (iv) is replaced by

w(T x,T y) ≤ λM(x, y), for all x, y ∈ X, (15)

where λ ∈ (0, 1), similar conclusions hold for the mapping T .

Proof. Taking θ : R+ ×R+ → R as θ(ξ, ζ) = λζ − ξ for all ξ, ζ ∈ R+ in (2), we obtain the conclusion.

Corollary 3.2. [Generalization of [18, 24]] Under the conditions of Theorem 2.7, except that (iv) is replaced by

w(T x,T y) ≤M(x, y) − φ(M(x, y)), for all x, y ∈ X,

where φ : R+ → R+ is a lower semi-continuous function such that φ(ξ) = 0 if and only if ξ = 0, similar conclusions
hold for the mapping T .

Proof. Takingθ : R+×R+ → R asθ(ξ, s) = ζ−φ(ζ)−ξ for all ξ, ζ ∈ R+, we obtain the desired conclusions.

Corollary 3.3. Let all conditions of Theorem 2.7 be satisfied, except that (iv) is replaced by

ψ(w(T x,T y)) ≤ φ(M(x, y)), for all x, y ∈ X,

whereψ,φ : R+ → R+ are two continuous functions such thatψ(t) = φ(t) = 0 if and only if t = 0 andφ(t) < t ≤ ψ(t)
for all t > 0. Then the same conclusions hold for the mapping T .
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Proof. If in equation (2), we define θ : R+ ×R+ → R by θ(ξ, ζ) = φ(ζ) − ψ(ξ) for all ξ, ζ ∈ R+, we obtain the
conclusions.

Corollary 3.4. [Generalization of [3]] Let all conditions of Theorem 2.7 be satisfied, except that (iv) is replaced by

w(T x,T y) ≤ φ(M(x, y)), for all x, y ∈ X, (16)

where φ : R+ → R+ is an upper semi-continuous function with φ(s) < s for all s > 0 and φ(s) = 0 if and only if
s = 0. Then the same conclusions hold for the mapping T .

Proof. If we define θ : R+ ×R+ → R by θ(ξ, ζ) = φ(ζ) − ξ for all ξ, ζ ∈ R+, then (2) is converted to (16), and
the result follows from Theorem 2.7.

Corollary 3.5. [Generalization of [6]] Let all conditions of Theorem 2.7 be satisfied, except that (iv) is replaced by

w(T x,T y) ≤M(x, y)φ(M(x, y)), for all x, y ∈ X, (17)

where φ : R+ → [0, 1) is a function with lim supt→τ+ φ(t) < 1 for all τ > 0. Then the same conclusions hold for the
mapping T .

Proof. If we define θ : R+ × R+ → R by θ(ξ, ζ) = ζφ(ζ) − ξ for all ξ, ζ ∈ R+, then (2) becomes (17), and we
reach the conclusion.

Example 3.6. Let X, d, R, T and x0 be as in Example 1.8, and let a w-distance on X be given by w(x, y) = y
for all x, y ∈ X. In order to show that all conditions of Corollary 3.1 are satisfied, just the condition (15) has
to be checked.

Take x, y ∈ O(x0;T ) with (x, y) ∈ R, and so 0 ≤ x, y ≤ 1
5 . Consider two cases:

Case 1. If x = 0 and y = 1/5n, n ∈N, then (15) reduces to 1/5n+1
≤ λ · 1/5n and is fulfilled for λ = 1/5. If

y = 0 and x = 1/5n, n ∈N or x = 0, then (15) holds trivially.
Case 2. Let x, y ∈ {1/5n

| n ∈N}with 0 < y < x, i.e., y ≤ x/5. Then we have

w(T x,T y) = w
(x

5
,

y
5

)
=

y
5

and

M(x, y) = max
{

y,
x
5
,

y
5

}
=

x
5
.

Thus, (15) reduces to

y
5
≤ λ

x
5

i.e., to y ≤ λ x. If we take λ = 1
5 < 1, then in all cases the contractive condition (15) holds true. Hence, T is

an orbitally R-contractive mapping.
Therefore, all the conditions of Corollary 3.1 are fulfilled and x = 0 is the unique fixed point of T in

O(x0; T).

Example 3.7. Consider the set X = [0,+∞) with the usual metric d. Define a w-distance w : X × X→ [0,∞)
by w(x, y) = x2 + y2 for all x, y ∈ X and the binary relation R by

(x, y) ∈ R ⇔ x, y > 0 or (x, y) ∈
{
(0, 0), (0,

1
7

)
}
∪

{
(0,

1
72n+1 ) : n ≥ 2

}
.
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Consider the self-mapping T on X given by

T x =


x2

7
, x ∈ [0, 1]

x − 2
7 , x > 1.

Take x0 = 1. It is simple to show that

O(x0;T ) ⊂
{ 1

7k
| k ∈N ∪ {0}

}
and O(x0;T ) = O(x0;T ) ∪ {0},

and that (X,w) is T -orbitally complete at x0.
Then R is T -orbitally closed, and R is T -orbitally transitive (which is not T -closed and transitive –

similarly as in Example 1.8). Also (X,w) is T -orbitally R-complete at x0.
Take x, y ∈ O(x0;T ) with (x, y) ∈ R, and so 0 ≤ x, y ≤ 1. Consider two cases:
Case 1. If x = 0 and y = 1/72k+1, k ∈N, then (15) reduces to

1
78k+6

≤ λ
( 1
74k+2

+
1

78k+6

)
,

and is fulfilled, e.g., for λ = 1/7. If y = 0 and x = 1/72k+1, k ∈N or x = 0, then (15) holds trivially.
Case 2. Let x, y ∈ {1/7k

| k ∈N ∪ {0}}with 0 < y < x ≤ 1. Then

w(T x,T y) = w
(

x2

7
,

y2

7

)
=

x4

49
+

y4

49

and

M(x, y) = max
{

x2 + y2, x2 +
x4

49
, y2 +

y4

49

}
.

Case 2a. Let y ≥ x2/7. Then x2 + y2
≥ x2 + (x4/49) and M(x, y) = x2 + y2. Therefore, the condition (15)

reduces to

x4

49
+

y4

49
≤ λ(x2 + y2).

Case 2b. If y ≤ x2/7, then x2 + y2
≤ x2 + (x4/49) and M(x, y) = x2 + (x4/49). Therefore, (15) reduces to

x4

49
+

y4

49
≤ λ

(
x2 +

x4

49

)
,

It can be easily checked that the above cases hold true for λ = 4/7.
Thus T is orbitally R-contractive mapping.
Finally, we will show that the condition (v’) of Theorem 2.6 holds true. Indeed, for any n ∈Nwe have

1
7n , T

( 1
7n

)
,

and for arbitrary n ∈Nwe get

inf
{
w

( 1
7m ,

1
7n

)
+ w

( 1
7m ,

1
7m+1

)
| m ∈N

}
=

1
72n > 0.

Therefore, all the conditions of Theorem 2.6 (with the condition (13) of Theorem 2.7) are satisfied (with
θ(ξ, ζ) = λζ − ξ) and x = 0 is the unique fixed point of T in O(x0;T ).
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4. Application to nonlinear matrix equations

Denote by s(U) any singular value of a matrixU, and its trace norm by s+(U) = ∥U∥. For C,D ∈ H(n),
C ⪰ D (resp. C ≻ D) will mean that the matrix C −D is positive semi-definite (resp. positive definite).

Theorem 4.1. Consider the equation

U = Q +

k∑
i=1

A
∗

iℏ(U)Ai, (18)

where Q ∈ P(n),Ai ∈M(n), i = 1, . . . , k, and the operator ℏ : P(n)→ P(n) is continuous in the trace norm. Let, for
some M,N1 ∈ R, and for anyU ∈ P(n) with ∥U∥ ≤M, s(ℏ(U)) ≤ N1 hold for all singular values of ℏ(U). Assume
that:

(I) ∥Q∥ ≤M −NN1n, where
∑k

i=1 ∥A
∗

i ∥ ∥Ai∥ = N;
(II) for anyW ∈ P(n) with ∥W∥ ≤M,

∑k
i=1A

∗

iℏ(W)Ai ⪰ O holds;
(III) for anyW ∈ P(n) with ∥W∥ ≤M,W ⪯ Q +

∑k
i=1A

∗

iℏ(W)Ai holds.
(IV) there exists λ ∈ (0, 1), such that for any s(Q),

2NN1 + 2s(Q) ≤ λΥ(U,V) (19)

holds for allU,V ∈ P(n) with ∥U∥, ∥V∥ ≤M,U ⪯ V and∑k
i=1A

∗

iℏ(U)Ai ,
∑k

i=1A
∗

iℏ(V)Ai, where

Υ(U,V) = max

|s+(U)| + |s+(V)|, |s+(U)| + |s+(Q +
∑k

i=1A
∗

iℏ(U)Ai)|
|s+(V)| + |s+(Q +

∑k
i=1A

∗

iℏ(V)Ai)|

 . (20)

Then the NME (18) has a unique solution Û ∈ P(n) with ∥Û∥ ≤M. Further, the solution can be obtained as the
limit of the iterative sequence {Un}, where for j ≥ 0,

U j+1 = Q +

k∑
i=1

A
∗

iℏ(U j)Ai (21)

andU0 is an arbitrary element of P(n) satisfying ∥U0∥ ≤M.

Proof. Denote Λ := {U ∈ P(n) : ∥U∥ ≤ M}, being a closed subset of P(n). According to (II), any solution of
(18) in Λ has to be positive definite. We have, for anyU ∈ Λ,

∥Q +

k∑
i=1

A
∗

iℏ(U)Ai∥ ≤ ∥Q∥ + ∥

k∑
i=1

A
∗

iℏ(U)Ai∥

≤ ∥Q∥ +

k∑
i=1

∥A
∗

i ∥ ∥Ai∥ ∥ℏ(U)∥ = ∥Q∥ +N∥ℏ(U)∥. (22)

Since all singular values ofU satisfy s(ℏ(U)) ≤ N1, it follows that ∥ℏ(U)∥ ≤ N1n. Thus, (22) implies

∥Q +

k∑
i=1

A
∗

iℏ(U)Ai∥ ≤ ∥Q∥ +NN1n ≤M −NN1n +NN1n =M.

Define now an operator ℑ : Λ→ Λ by

ℑ(U) = Q +
k∑

i=1

A
∗

iℏ(U)Ai, for allU ∈ Λ.
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Also, define a binary relation
R = {(U, V) ∈ Λ ×Λ :U ⪯ V}.

It is clear that finding positive definite solution(s) of the equation (18) is equivalent to finding fixed point(s)
of ℑ. Notice that ℑ is well defined, R-continuous and R is ℑ-closed. Since

k∑
i=1

A
∗

iℏ j(K )Ai ≻ 0,

for someK ∈ Λ, we have (K ,ℑ(K )) ∈ R and hence Λ(ℑ;R) , ∅.
Now, let (U, V) ∈ R∗ = {(U, V) ∈ R : ℑ(U) , ℑ(V)}. Then we have

∥ℑ(U)∥ + ∥ℑ(V)∥ = ∥Q +
k∑

i=1

A
∗

iℏ(U)Ai∥ + ∥Q +

k∑
i=1

A
∗

iℏ(V)Ai∥

≤ 2∥Q∥ + ∥
k∑

i=1

A
∗

iℏ(U)Ai∥ + ∥

k∑
i=1

A
∗

iℏ(V)Ai∥

≤ 2∥Q∥ +
k∑

i=1

[
∥A
∗

iℏ(U)Ai∥ + ∥A
∗

iℏ(V)Ai∥
]

≤ 2∥Q∥ +
k∑

i=1

∥A
∗

i ∥ ∥Ai∥
[
∥ℏ(U)∥ + ∥ℏ(V)∥

]
≤ 2∥Q∥ +N(∥ℏ(U)∥ + ∥ℏ(V)∥)
≤ 2∥Q∥ +N(N1n +N1n)
= 2∥Q∥ + 2NN1n.

Thus, for anyU, V ∈ ΛwithU ⪯ V, we have

∥ℑ(U)∥ + ∥ℑ(V)∥ ≤ 2∥Q∥ + 2NN1n. (23)

For some fixedU,V ∈ ΛwithU ⪯ V, from (19) and (20), we have

2NN1 + 2s(Q) ≤ λmax


|s+(U)| + |s+(V)|,
|s+(U)| + |s+(Q +

∑k
i=1A

∗

iℏ(U)Ai)|
|s+(V)| + |s+(Q +

∑k
i=1A

∗

iℏ(V)Ai)|


= λmax

∥U∥ + ∥V∥, ∥U∥ + ∥Q +
∑k

i=1A
∗

iℏ(U)Ai∥

∥V∥ + ∥Q +
∑k

i=1A
∗

iℏ(V)Ai∥

 .
The above relation holds for every singular value of Q, so adding up, we obtain

2NN1n + 2∥Q∥ ≤ λmax{∥U∥ + ∥V∥, ∥U∥ + ∥ℑ(U)∥, ∥V∥ + ∥ℑ(V)∥}.

Therefore, from (23) we get

∥ℑ(U)∥ + ∥ℑ(V)∥ ≤ λmax{∥U∥ + ∥V∥, ∥U∥ + ∥ℑ(U)∥, ∥V∥ + ∥ℑ(V)∥}. (24)

Let w : Λ ×Λ→ R+ be defined by

w(U,V) = ∥U∥ + ∥V∥ for allU,V ∈ Λ.

Then (Λ, ∥.∥,w) is a complete relational metric space with the above w-distance. It follows from (24) that

w(ℑ(U),ℑ(V)) ≤ λmax{w(U,V),w(U,ℑ(U)),w(V,ℑ(V))}. (25)
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Taking θ : R+ ×R+ → R as θ(ξ, ζ) = λζ − ξ for all ξ, ζ ∈ R+, (25) can be rewritten as

θ(w(ℑ(U),ℑ(V)),max{w(U,V),w(U,ℑ(U)),w(V,ℑ(V))}) ≥ 0.

Now, all the hypotheses of Theorem 2.5 are satisfied, and therefore there exists X̂ ∈ P(n) such thatℑ(X̂) = X̂.
Hence, the matrix equation (18) has a solution in P(n). Furthermore, due to the existence of the least upper
bound and the greatest lower bound for each pair U,V ∈ ℑ(P(n)), we have Y(U,V;R|ℑ(P(n))) , ∅ for all
U,V ∈ ℑ(P(n)). Hence, using Theorem 2.7, ℑ has a unique fixed point, and hence we conclude that the
matrix equation (18) has a unique solution in P(n).

5. Numerical experiments

In this section, we consider some numerical results. All experiments were run on a macOS Mojave
version 10.14.6 CPU @1.6 GHz intel core i5 8GB with MATLAB R2020b as the programming language
(Online). The number of necessary iterations is denoted by Iter. No., initial matrix is denoted by Int. Mat.,
Dimension is denoted by Dim., Minimum eigenvalue of a matrix is denoted by Min(Eng) and the trace
norm of the residual is denoted by Res (Res(X) = ∥Xn+1 −Xn∥tr). We have assigned tol = 10−10 in all studies.

Three examples of key variables, as well as tables and graphs displaying various input-data, such as
solutions, iteration number, error, CPU time, computing time, are shown here. We use line graphs, bar
graphs, and surface plotting to obtain a clearer understanding.

Example 5.1. Consider matricesA1,A2,Q ∈ C3×3 given as

A1 =

0.036664411116369 0.089269870544203 0.066952402908152
0.057387773921273 0.135498910647450 0.071734717401591
0.153034063790062 0.133904805816304 0.103616814024521

 ,
A2 =

0.105210918855667 0.017535153142611 0.086081660881910
0.074922927063884 0.133904805816304 0.151439958958915
0.103616814024521 0.065358298077005 0.036664411116369

 ,
Q =

 1.0609 −0.0011 0.0017
−0.0011 1.0572 −0.0014
0.0017 −0.0014 1.1389

 .
To see the convergence of the sequence {Un} defined in (21), we start with three different initializations:

U0 =

0.0014 0.0019 0.0025
0.0019 0.0027 0.0034
0.0025 0.0034 0.0052

 , V0 =

1 0 0
0 1 0
0 0 1

 ,
W0 =

 1.1255 −0.0023 0.0037
−0.0023 1.1177 −0.0030
0.0037 −0.0030 1.2970

 ,
whereU0,V0,W0 ∈ P(3).

Table 1
Int. Mat. ℏ(U) λ Dim. Iter No. CPU Error Min(Eig)
U0 U

2 0.83 3 26 0.012246 0.7923 × 10−10 1.0745
V0 U

2 0.83 3 25 0.012068 0.9888 × 10−10 1.0745
W0 U

2 0.83 3 25 0.012444 0.5412 × 10−10 1.0745

We get the positive definite solution

X̂ =

1.1634 0.0968 0.0911
0.0968 1.1799 0.0983
0.0911 0.0983 1.2328

 .
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Fig.1 : Iteration vs Error graph

Fig.2 : Solution’s surface plot

Example 5.2. Consider the following matricesA1,A2,Q ∈ C4×4:

A1 =


0.0024 + 0.0194i 0.0022 − 0.0067i 0.0046 − 0.0037i 0.0058 + 0.0157i
0.0084 − 0.0062i 0.0023 + 0.0022i 0.0064 + 0.0032i 0.0043 − 0.0087i
0.0086 − 0.0030i 0.0054 + 0.0165i 0.0092 + 0.0187i 0.0088 + 0.0108i
0.0096 − 0.0093i 0.0076 + 0.0064i 0.0016 − 0.0063i 0.0039 + 0.0194i

 ,

A2 =


0.0194 + 0.0020i −0.0067 + 0.0019i −0.0037 + 0.0013i 0.0157 + 0.0087i
−0.0062 + 0.0035i 0.0022 + 0.0045i 0.0032 + 0.0080i −0.0087 + 0.0069i
−0.0030 + 0.0022i 0.0165 + 0.0068i 0.0187 + 0.0008i 0.0108 + 0.0051i
−0.0093 + 0.0000i 0.0064 + 0.0047i −0.0063 + 0.0012i 0.0194 + 0.0062i

 ,

Q =


1.0008 + 0.0000i −0.0002 − 0.0002i −0.0000 + 0.0001i 0.0002 + 0.0001i
−0.0002 + 0.0002i 1.0003 + 0.0000i 0.0001 + 0.0003i −0.0000 + 0.0001i
−0.0000 − 0.0001i 0.0001 − 0.0003i 1.0008 + 0.0000i 0.0003 − 0.0000i
0.0002 − 0.0001i −0.0000 − 0.0001i 0.0003 + 0.0000i 1.0006 + 0.0000i

 .
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To see the convergence of the sequence {Un} defined in (21), we start with the following initializations:

U0 =


0.0748 + 0.0000i −0.0204 + 0.0238i 0.0055 + 0.0058i 0.0175 + 0.0117i
−0.0204 − 0.0238i 0.0265 − 0.0000i 0.0203 − 0.0266i 0.0009 − 0.0052i
0.0055 − 0.0058i 0.0203 + 0.0266i 0.1011 + 0.0000i 0.0399 + 0.0101i
0.0175 − 0.0117i 0.0009 + 0.0052i 0.0399 − 0.0101i 0.0711 − 0.0000i

 ,

V0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

W0 =


1.0015 + 0.0000i −0.0004 − 0.0004i −0.0000 + 0.0001i 0.0003 + 0.0002i
−0.0004 + 0.0004i 1.0005 + 0.0000i 0.0002 + 0.0007i −0.0001 + 0.0002i
−0.0000 − 0.0001i 0.0002 − 0.0007i 1.0017 + 0.0000i 0.0006 − 0.0001i
0.0003 − 0.0002i −0.0001 − 0.0002i 0.0006 + 0.0001i 1.0012 + 0.0000i

 ,
whereU0,V0,W0 ∈ P(n). We obtain

Table 2
Int. Mat. ℏ(U) λ Dim. Iter No. CPU Error Min(Eig)
U0 U

3 0.9 4 6 0.008690 0.2387 × 10−11 1.0004
V0 U

3 0.9 4 5 0.008575 0.3721 × 10−11 1.0004
W0 U

3 0.9 4 5 0.008223 0.1050 × 10−11 1.0004

The PDS is given by

X̂ =


1.0021 + 0.0000i −0.0005 − 0.0000i 0.0000 + 0.0001i 0.0007 + 0.0003i
−0.0005 + 0.0000i 1.0012 + 0.0000i 0.0008 + 0.0002i 0.0005 + 0.0001i
0.0000 − 0.0001i 0.0008 − 0.0002i 1.0019 + 0.0000i 0.0005 + 0.0000i
0.0007 − 0.0003i 0.0005 − 0.0001i 0.0005 − 0.0000i 1.0026 − 0.0000i

 .
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Fig.3 : Iteration vs Error graph

Example 5.3. In this example, we consider matrices with randomly generated coefficients by

A1 = (1/2n) × rand(n); A2 = (1/2n) × rand(n);
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whereA1,A2 ∈ C
n×n. For n = 4, we obtain

A1 =


0.0108 0.0038 0.0411 0.0010
0.0244 0.0250 0.0392 0.0615
0.0520 0.0329 0.0182 0.0104
0.0502 0.0260 0.0270 0.0066

 ,

A2 =


0.0233 0.0595 0.0168 0.0261
0.0124 0.0575 0.0264 0.0614
0.0306 0.0033 0.0342 0.0188
0.0212 0.0461 0.0589 0.0438

 ,

Q =


1.0073 0.0048 0.0066 0.0035
0.0048 1.0045 0.0040 0.0019
0.0066 0.0040 1.0068 0.0043
0.0035 0.0019 0.0043 1.0036

 .
We use the initial values

U0 = 10−5 ×


0.1818 0.2030 0.1447 0.1757
0.2030 0.6543 0.3450 0.3344
0.1447 0.3450 0.4227 0.4028
0.1757 0.3344 0.4028 0.3972

 , V0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

W0 =


1.0147 0.0096 0.0133 0.0070
0.0096 1.0090 0.0081 0.0039
0.0133 0.0081 1.0137 0.0086
0.0070 0.0039 0.0086 1.0073

 ,
whereU0,V0,W0 ∈ P(n).

Table 3
Int. Mat. ℏ(U) λ Dim. Iter No. CPU Error Min(Eig)
U0 U

2 0.95 4 10 0.008158 0.0933 × 10−10 1.0013
V0 U

2 0.95 4 9 0.0080555 0.1341 × 10−10 1.0013
W0 U

2 0.95 4 8 0.008241 0.8007 × 10−10 1.0013

The PDS is

X̂ =


1.0161 0.0123 0.0141 0.0094
0.0123 1.0168 0.0127 0.0120
0.0141 0.0127 1.0176 0.0132
0.0094 0.0120 0.0132 1.0151


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Fig.4 : Iteration vs Error graph

Fig.5 : Solution’s surface plot
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