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Abstract. In this paper, we prove that the class of all generalized Drazin-Riesz invertible operators forms
a regularity.

1. Preliminary.

For a complex Banach space X, let £(X) be the algebra of all bounded linear operators on X and K(X)
be the ideal of compact operators in £(X). Let m : L(X) — L(X)/K(X) be the canonical projection. For
T € L(X), let o(T), p(T), N(T) and R(T) denote the spectrum, the resolvent set, the null space and the range
of T, respectively. An operator T is said to be a Fredholm operator if dim N(T) < oo and codim R(T) < oo,
which is equivalent to say that 7(T) is invertible in £(X)/K(X). The index of a Fredholm operator T is
defined by

ind(T) = dim N(T) — codim R(T).

The essential spectrum o.(T) of T is defined as the set of all A in C for which T — Al is not a Fredholm operator.
T is said to be Riesz if T — Al is Fredholm for every A € C\ {0}, i.e., 0.(T) C {0} (see [2]).

We say that T admits a complete reduction by the couple (M, N) and we write (M, N) € Red(T), if M and
N are two closed T-invariant subspaces of X such that X = M @ N. In this case, T is represented as a direct
sum of the restrictions Ty and Ty, T = Ty @ T [13].

Recall that the ascent of an operator T is the smallest non-negative integer p such that N(T?) = N(TP*1).
If no such p exists we say that T is of infinite ascent. Analogously, the descent of an operator T is the smallest
non-negative integer g such that R(T7) = R(T7*!), and if no such g exists we say that T is of infinite descent.
T € L(X) is said to be a Browder operator if T is Fredholm with finite ascent and descent. The Browder
spectrum o,(T) of T is defined as the set of all A in C for which T — Al is not a Browder operator (see [2, 11]).

For a subset A of C, we denote by acc A, iso A and int A respectively, the accumulation points, the isolated
points and the interior of A. We denote by D(A, 1) the open disc centered at A € C and with radius r > 0 and
the corresponding closed disc is denoted by D(A, 7).
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Let T € L(X). A subset ¢ of o(T) is called a spectral set of T if it is a clopen set in the topology of o(T)
induced by the usual topology of C. The spectral projection P, corresponding to o is

1
P, = — I-T)YA,
2nzfr‘(/\ )

where I'is a closed contour surrounding o and its exterior contains o(T) \ 0. Itis easy to see that P, commutes
with each element which commutes with T.

Following Drazin [4], a bounded linear operator T € £(X) is said to be Drazin invertible if there exists an
S € L(X) such that

TS =ST, STS=Sand T — T?S is nilpotent. (1)

If such S exists then it is unique and it will be denoted by S = TP and it is called the Drazin inverse of T.

In [7] Koliha generalized the concept of the Drazin inverse: T € L(X) is said to be generalized Drazin
invertible (or Koliha-Drazin invertible) if there exists an S € £(X) such that

TS = ST, STS = S and T — T2S is quasinilpotent. ()

If such S exists then it is unique and it will be denoted by S = T%" and it is called the generalized Drazin
inverse of T.

Recently, Zivkovié-Zlatanovi¢ and Cvetkovié [13] generalized the concept of generalized Drazin invert-
ible operators:

Definition 1.1. [13] An operator T € L(X) is generalized Drazin-Riesz invertible if there exists an S € L(X) such
that
TS = ST, STS = Sand T — TS is Riesz;

and such S is called a generalized Drazin-Riesz inverse of T.

We point out that I - T'S is a projection called the projection associated with the generalized Drazin-Riesz
inverse S of T.

We denote by L(X)PR the class of all bounded generalized Drazin-Riesz invertible operators, and by
opr(T) the generalized Drazin-Riesz spectrum of T defined by

opr(T) ={A e C : (AI-T) ¢ LX)PR).

Let T € L(X)PR such that 0 € acco(T) (if 0 ¢ acco(T) then T is generalized Drazin invertible). By
Proposition 2.7 and Corollary 2.4 [13], there exists (M, N) € Red(T) such that T = Ty ® T, Ty is invertible
and Ty is Riesz with infinite spectrum. Hence, 6(Txn) = {0, A1, A2, A3, ...} where |A1] > [A] 2 |A3] > ..., and
Ay — 0,as n — oo.

Since 0 € p(Tu), there exists ¢ > 0 such that D(0,¢) € p(Tm). As (A,) is a sequence which converges to
zero, there exists 1y € IN such that (A,)usn, € D(0, €). Consequently, (A,,)usn, is a sequence of non-zero Riesz
points of T (see the proof of [13, Proposition 2.7]), and

o(Ty) No(Tn) S (C\ D(0,¢€)) No(Tn) € {A1, Az, ey Ay}
Now for each 1 > ny, let 0,, and o7, be the closed sets defined by
Oy = {0/ An+1/ /\n+21 }

and
o, = (@(Tm) \ (0(Tm) N o(Tn))) U {A1, Az, .., A} = o(T) \ 0y

Notice that for all n > ng, 0, and oy, are spectral sets and o, N 0(Tp) = 0. Through all this work, we take o,
and o7, to be of index greater than or equal .
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Definition 1.2. [12, Definition 2.2] Let T € L(X) be a non-invertible operator with a bounded spectral set o
containing 0 and let P, be the corresponding spectral projection. The Drazin inverse of T relative to o is defined by

TP? .= (T - &P,) Y1 - P,),

for some & € C such that |E| > v wherer =sup | A |.
Aec

The condition || > r is required to ensure that T — &P, is invertible. It is easy to see that P, = I — TTP9, also
TP is independent of the value of & (see [12]).

Theorem 1.3. [1, Theorem 2.2] Let T € L(X) be generalized Drazin-Riesz invertible with 0 € acco(T). Let n be
large enough such that r, = sup | A |< 3. Then

A€oy
TP = (T = Py, ) '(I = Py,)

is a generalized Drazin-Riesz inverse for T.

Theorem 1.4. [1, Theorem 2.9] Let T € L(X). Then T is generalized Drazin-Riesz invertible if and only if
0 ¢ acc op(T).

Definition 1.5. [11] Let R be a non-empty subset of L(X). R is called a regularity if it satisfies the following two
conditions:

1. ifn € N, then A € R if and only if A" € R.

2. if A, B,C and D are mutually commuting operators in L(X) such that AC + BD = I, then AB € R if and only
if AcRand B e R.

A regularity R € £(X) assigns to each T € L(X) a subset of C defined by
or(T)={AeC:T-AlI ¢ R}

and called the spectrum of T corresponding to the regularity R. We notice that every regularity R contains
all invertible operators, so that or(T) € o(T). In general, or(T) is neither compact nor non-empty. However,

f(or(T)) = or(f(T))

for every analytic function f on a neighborhood of ¢(T) which is non-constant on each component of its
domain of definition (see [8, 10, 11]).

Let R be a regularity in £(X). We say that R (or o) satisfies the property:
o (P1):ifTSeR & TeRandS € Rwhenever T,S € L(X).
o (P2):ifT,, Te LX), Ty = T, un € 0r(Ty) and u, — p, then p € or(T) (upper semicontinuity of oz()).

o (P3):ifT, Te LX), T, » T, TT, = T,T for every n, u, € or(Ty) and u, — y, then u € or(T) (upper
semicontinuity on commuting elements in £(X)).

o (P4): T, Te LX), T, =T, TT, = T,T for every n, then u € or(T) if and only if there exits a sequence
tn € or(Ty) such that p, — p (continuity on commuting elements in £(X)).
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It is easy to see that (P2) or (P4) implies (P3). If R satisfies (P3) then or(T) is closed for every T € L(X) (see
[11]).
Berkani and Sarih [3, Theorem 2.3] proved that the class of all Drazin invertible operators forms a

regularity. The result was extended to the class of all generalized Drazin invertible operators by Lubansky
[9, Theorem 1.2].

The aim of this paper is to prove that the class £(X)PR of all bounded generalized Drazin-Riesz invertible
operators forms a regularity. Then the spectral mapping theorem for opr(T) holds. Finally, we investigate
L(X)PR under properties (Pi), i € {1,2,3,4}.

2. Main Results.
We begin by stating the main result of the paper.

Theorem 2.1. The set L(X)PR of all bounded generalized Drazin-Riesz invertible operators forms a regularity.
To establish the proof of the theorem, we need the following Lemma.

Lemma 2.2. Let A, B, C and D be mutually commuting operators in L(X) such that AC+BD = I. If AB € L(X)PX,
then A € L(X)PR,

Proof. Suppose that AB is generalized Drazin-Riesz invertible. Then by virtue of Theorem 1.3 there exists
ny € N such that (AB)P“" is a generalized Drazin-Riesz inverse for AB. We have Pg,, =1- (AB)(AB)Pm
and ABP;, is Riesz.

Step 1. We show that A(I - P,, ) € L(X)PX.

Set U = B(AB)”“. Since (AB)”"P,, =0 then
Ui -P,,)=U

We have U commutes with A(I — P%). Indeed, as Ps, is a spectral projection of AB among ¢, and A
commutes with B, then A and B commute with P,, . Hence U commutes with P, . Therefore U commutes
with A(I - Pg, ). We have
UA = AU = AB(AB)"%0 =1 -P,, .
Then
UA(I - P, )U = (I-P,, )*U = UL
Also,
A(I = Py,) = (A~ Py, )?U = A(I = Py, ) — AX(I - Py, U

= A(I-P,, ) - A(I - P,, AU

= A(I - P,,)) = A(I - P,, )> = 0 is Riesz.
Therefore, A(I - P, ) is generalized Drazin-Riesz invertible and U is a generalized Drazin-Riesz inverse for
A(I = P;, ). We notice also that

I-UA(I-P,,) = Pq,,

and then the projection associated with the generalized Drazin-Riesz inverse U of A(I - P, ) coincides with
P

Ong *

Step 2. We show that ACP,, € L(X)P.
Since

ACP, AC(I - AC)P
ACBDP,,

(ABP,, )CD

Ongy - (ACPUWU )2 Ongy
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and ABPG,,O is a Riesz operator, then by virtue of [2, Theorem 3.112], ACP% - (ACP% )? is a Riesz operator.
Also, by considering the analytic function f(1) = A — A2, YA € C, we have

F(O(R(ACP,,,))) = o(f(R(ACP,,)))
= o(r(ACP,, ) ~ (R(ACP,,, ))?)
= o(r(ACP,,, — (ACP,, ) = {0}.

Hence o(n(ACPg, )) € {0,1}. Thus
0 ¢ acc UE(ACP%) and 0 ¢ acco.(I — ACP%).

We set W = ACP%. Since always o,(W) = 0,(W) U acc 6(W), and in order to find that 0 ¢ acc o,(W), for the
sake of contradiction we suppose that 0 € acc (acc 5(W)). Consequently, there exists (1), C acc 6(W) such that
Ap = 0,asp — oo. Thus for all p € N there exists a sequence (s, )y C o(W) such thats, — A,, ask — co.
Hence f(sp,) — f(A;), ask — oo, and using spectral mapping theorem, we get (f(A,)), C acco(f(W)). Thus
f(Ap) — 0, as p — oo and so 0 € acc (acc o(f(W))) C accop(W — W2), which is a contradiction. Therefore,
we obtain that

0 ¢ acc op(ACPy,, ).

Consequently, ACP,, is generalized Drazin-Riesz invertible by Theorem 1.4.
Step 3. We show that AP, € L(X)"*.

Let Ay, be the spectral set associated to the generalized Drazin-Riesz invertible operator ACP;, (as
defined after Definition 1.1). Let us show that V = CP,, (ACP,, )PMo is a generalized Drazin-Riesz inverse

of AP, .
We have V commutes with AP% , and
V(AP% W= CP% (ACP% )P APC,nO CP% (ACP%0 )Pk
= CP% (ACPgnO )P0 =V,

Also
APUH - (AP,, )2V = AP, (I - AP, CPG,, (ACP(;,, )D'Ako)
0 0 0 0 0 0
= AP, (I - ACP,, (ACP,, )P)
= A(AC + BD)P,, (I - ACP,, (ACP,, ")
= A(ACP,,,) (I - ACP,, (ACP,, )P))
+ ABP,, (D(I - ACP,, (ACP,, )PM0)).

Since ABP,, is Riesz then ABP,, (D(I — ACP,,, (ACPU"O)D’Ako)) is Riesz by [2, Theorem 3.112]. Also,

ACP,, (1 — ACP,, (ACP,, )P™o )) is Riesz since I — ACP,, (ACP,, )™ is a spectral projection of ACP,,
among Ay,. Now again by [2, Theorem 3.112], we get

A(ACP,,,) (I = ACPy, (ACPs, YP)) + ABPy,, (DU = ACPs, (ACPs, )0))

is Riesz. Hence, APC,nO - APJW0 VAP% is Riesz. Therefore AP% is generalized Drazin-Riesz invertible and
V'is a generalized Drazin-Riesz inverse for AP, .

Step 4. We show that A € £(X)PR.
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We have A(I - P;, ) and AP;, are generalized Drazin-Riesz invertible, and
(A = Pg, (AP, ) = (AP, J(A(I = Py, ) = 0,
by [6, Proposition 2.8], we obtain that A(I — P%) + APU”O = A is generalized Drazin-Riesz invertible. [J
We are now in a position to prove our main result.

Proof. of Theorem 2.1. Let A € L(X). If A is generalized Drazin-Riesz invertible, then A" is also generalized
Drazin-Riesz invertible. Conversely, assume that A" is generalized Drazin-Riesz invertible. Then 0 ¢
accop(A"). As 0,(A") = {A" : A € 0,(A)}, and o(A") = (A" : A € g(A)}, we conclude immediately that
0 ¢ acc 0p(A). Finally A is generalized Drazin-Riesz invertible by Theorem 1.4.

Now let A, B, C and D be mutually commuting operators in £(X) such that AC + BD = 1. If A and B are
generalized Drazin-Riesz invertible. Then AB is also generalized Drazin-Riesz invertible.
Indeed, for

Q =I- (I - Pono,z;)(l - Pono,A)

let us show that Q is a projection satisfying
QAB = ABQ, AB + Q is Browder and ABQ is Riesz.

By Theorem 2.1 [12], A + P%, ,and B + P%,E are invertible and so Browder operators. Also AP, , and
BP;, , are Riesz operators. Since A + Pg, , and B + P,, , commute, we conclude by [5, Theorem 7.9.2] that
(A +Pg, ,)(B+ Py, p) is a Browder operator.

Now we show that ABQ is Riesz. Since Q = P, , + Ps, , = Py, 4Ps,,,, We have

B+ ABP

Ong,B Ongy,A

— AP, ,BP

Ong,B Onp,A Ong,B*

ABQ = AP,

Ong,A

AP, , and BP;, , are Riesz operators and commute respectively with B and A, then by [2, Theorem 3.112]
AP, B, ABP;, ,and AP,, ,BP;, ,are Riesz operators. Thus, ABQ is a Riesz operator, again by [2, Theorem
3.112]. Therefore, I + ABQ is a Browder operator by [2, Theorem 3.111].

Since I + ABQ is Browder and (R(Q), N(Q)) € Red(I + AB), we deduce by [13, Lemma 2.1] that (I + ABQ)x(0)
is a Browder operator. We have

(I +ABQ)Q = On(q & (I + AB)gr(q)-
Also
AB(I-Q)=(A+P,, ,)B+Ps, ,)I-Q)
=((A+ Py, . )(B+Ps, ;)N © Orq),

Now we get
AB+Q=ABQ+Q+AB(I-Q)
= (I +ABQ)Q+AB(I-Q)
= (Onv @ (I + ABQ)gr()) + (((A +Ps, B+ Po, )N ® O‘R(Q))
=((A+ PU»:M)(B + PGIIO,B))N(Q) eI+ ABQ)R(Q).

As ((A+P,, ,)B+Ps, )N and (I + ABQ)g(q) are Browder, we conclude by [13, Lemma 2.1] that AB + Q
is a Browder operator. Finally, [13, Theorem 2.3] leads to conclude that AB is generalized Drazin-Riesz
invertible.

Conversely, if AB is generalized Drazin-Riesz invertible, then by Lemma 2.2, we conclude that A and B
are generalized Drazin-Riesz invertible. [J

Combining Theorem 2.1 and [11, Theorem 1.6.7], the spectral mapping theorem holds for opr(T)
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Theorem 2.3. Let X be a Banach space and T € L(X). If f is any function holomorphic in an open neighborhood of
o(T) and non-constant on any component of o(T), then

flopr(T)) = opr(f(T)).
We investigate some topological properties of opr(T).

Proposition 2.4. Let X be a Banach space and T € L(X). We have :
1) opr(T) = acc o,(T) and opr(T) is closed.

2) opr(T) € okp(T) € op(T) € o(T).

3) opr(T) = 0 if and only if o,(T) is a finite set.

Proof. 1) By Theorem 1.4, opr(T) = acc o5(T). The closure of opr(T) is assured by opr(T) = acc 05(T), op(T)
being closed, we have acc 0,(T) = opr(T) is closed.

2) The inclusions are obvious.

3) If 04(T) is finite, its every point is isolated in 04(T), therefore not in acc o}(T).

Conversely, suppose that opr(T) = 0. By way of contradiction, suppose that 0,(T) is infinite. As 0,(T) is
a compact set ( closed in the compact set (7)), it has an accumulation point p, so p € acc op(T) = opr(T),
which is a contradiction. [

In general the class of generalized Drazin-Riesz invertible operators does not satisfy the property (P1).
Example 2.5. Let S be the right shift operator defined on £,(IN) by
S(xo,x1,...) = (0,x0,x1,...), Y(x0,x1,...).
SetT1 =S@®0and T, = 0@ S on X = £,(IN) @ £,(IN). Since
a(S)=ap(S)={AeC: A <1,
then
o(T)=0(T) ={AeC : |A|<1}, fori=1,2.
We have T1 T, = 0 € £(X)PR. But 0 € acc 04(T;), i = 1,2. Thus T; and T, do not belong to £(X)PR.

However, the class of generalized Drazin-Riesz invertible operators satisfies property (P1) in a very
special case.

Theorem 2.6. Let X be a Banach space. Then the following conditions are equivalent:

i) L(X)PR has property (P1);
i) LOOPR = LX);
iii) opr(T) =0 for all T € L(X);
iv) Each bounded operator has a finite Browder spectrum.

Proof. i) = ii): Suppose that L(X)PR satisfies (P1). As 0 belongs to £(X)PR and commutes with all elements,
for any A € £(X) the product 0 = 0A € L(X)PR; and so A € L(X)PR for all A € £L(X), hence £(X) = L(X)PR.

ii) = iii): It is obvious.

iii) = iv): follows at once from Proposition 2.4.

iv) = i): If each element T of £(X) has a finite Browder spectrum, then all elements of ¢;(T) are isolated for
all T € £L(X). Hence by Theorem 1.4, T is generalized Drazin-Riesz invertible. Trivially we have £(X)PR
satisfies property (P1). O

The class £L(X)PR is not necessarily open in £(X) as shown by the following example.
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Example 2.7. For a nonzero positive integer 7, let S, be the weighted right shift operator defined on ¢*(IN)
by

1 1
S,x = ,) =0, —x1, —x7,....).
nX = (x1,x2,...) = ( nxl nxz )

Then ISl = 1. Let V(0,7) be the open disk in L(¢*(N)) centered at 0 and with radius > 0. Then for n
large enough we have S, € D(0, 7). Since

1

0(Su) = 0p(Sn) =1 €C + Al < -},

then for each n, S,, is not generalized Drazin-Riesz invertible and the sequence (S,) converges to 0 which is
generalized Drazin-invertible operator with a generalized Drazin-Riesz inverse 0. Therefore, £(£2(IN))"R is
not open in £(£2(IN)).

By virtue of [11, Proposition 1.6.9], a regularity R is an open set of £(X) if and only if R satisfies (P2).
The previous example shows that £(X)PR does not satisfy (P2) in general. The special case when £(X)PR
satisfies (P2) is the following

Theorem 2.8. L(X)PR satisfies properties (P2), (P3), and (P4) if and only if L(X)PR = L(X).

Proof. 1f L(X)PR = £(X), then properties (P2), (P3), and (P4) are obviously satisfied. Conversely, suppose
that there exists T € £L(X) \ L(X)PX. Then 0 € opr(T) = accoy(T), set T, = 1T for all n € N. Thus
0 € accop(T,) = opr(Ty), and T, — 0, as n — oco. However, 0 ¢ opr(0), then property (P3) does not hold,
and therefore neither (P2) nor (P4). O

Acknowledgments. The authors are grateful to the referee for her/his constructive comments and
remarks, especially her/his detailed suggestion on the proof of Theorem 2.1.
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