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Abstract. In this paper, we prove that the class of all generalized Drazin-Riesz invertible operators forms
a regularity.

1. Preliminary.

For a complex Banach space X, let L(X) be the algebra of all bounded linear operators on X and K (X)
be the ideal of compact operators in L(X). Let π : L(X) −→ L(X)/K (X) be the canonical projection. For
T ∈ L(X), let σ(T), ρ(T),N(T) and R(T) denote the spectrum, the resolvent set, the null space and the range
of T, respectively. An operator T is said to be a Fredholm operator if dim N(T) < ∞ and codimR(T) < ∞,
which is equivalent to say that π(T) is invertible in L(X)/K (X). The index of a Fredholm operator T is
defined by

ind(T) = dim N(T) − codimR(T).

The essential spectrum σe(T) of T is defined as the set of all λ in C for which T−λI is not a Fredholm operator.
T is said to be Riesz if T − λI is Fredholm for every λ ∈ C \ {0}, i.e., σe(T) ⊆ {0} (see [2]).

We say that T admits a complete reduction by the couple (M,N) and we write (M,N) ∈ Red(T), if M and
N are two closed T-invariant subspaces of X such that X = M ⊕N. In this case, T is represented as a direct
sum of the restrictions TM and TN, T = TM ⊕ TN [13].

Recall that the ascent of an operator T is the smallest non-negative integer p such thatN(Tp) = N(Tp+1).
If no such p exists we say that T is of infinite ascent. Analogously, the descent of an operator T is the smallest
non-negative integer q such that R(Tq) = R(Tq+1), and if no such q exists we say that T is of infinite descent.
T ∈ L(X) is said to be a Browder operator if T is Fredholm with finite ascent and descent. The Browder
spectrum σb(T) of T is defined as the set of all λ in C for which T −λI is not a Browder operator (see [2, 11]).

For a subsetΛ ofC, we denote by accΛ, isoΛ and intΛ respectively, the accumulation points, the isolated
points and the interior ofΛ. We denote by D(λ, r) the open disc centered at λ ∈ C and with radius r > 0 and
the corresponding closed disc is denoted by D(λ, r).
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Let T ∈ L(X). A subset σ of σ(T) is called a spectral set of T if it is a clopen set in the topology of σ(T)
induced by the usual topology of C. The spectral projection Pσ corresponding to σ is

Pσ =
1

2πi

∫
Γ

(λI − T)−1dλ,

where Γ is a closed contour surrounding σ and its exterior contains σ(T)\σ. It is easy to see that Pσ commutes
with each element which commutes with T.

Following Drazin [4], a bounded linear operator T ∈ L(X) is said to be Drazin invertible if there exists an
S ∈ L(X) such that

TS = ST, STS = S and T − T2S is nilpotent. (1)

If such S exists then it is unique and it will be denoted by S = TD and it is called the Drazin inverse of T.
In [7] Koliha generalized the concept of the Drazin inverse: T ∈ L(X) is said to be generalized Drazin

invertible (or Koliha-Drazin invertible) if there exists an S ∈ L(X) such that

TS = ST, STS = S and T − T2S is quasinilpotent. (2)

If such S exists then it is unique and it will be denoted by S = T1D and it is called the generalized Drazin
inverse of T.

Recently, Živković-Zlatanović and Cvetković [13] generalized the concept of generalized Drazin invert-
ible operators:

Definition 1.1. [13] An operator T ∈ L(X) is generalized Drazin-Riesz invertible if there exists an S ∈ L(X) such
that

TS = ST, STS = S and T − T2S is Riesz;

and such S is called a generalized Drazin-Riesz inverse of T.

We point out that I−TS is a projection called the projection associated with the generalized Drazin-Riesz
inverse S of T.

We denote by L(X)DR the class of all bounded generalized Drazin-Riesz invertible operators, and by
σDR(T) the generalized Drazin-Riesz spectrum of T defined by

σDR(T) = {λ ∈ C : (λI − T) < L(X)DR
}.

Let T ∈ L(X)DR such that 0 ∈ acc σ(T) (if 0 < acc σ(T) then T is generalized Drazin invertible). By
Proposition 2.7 and Corollary 2.4 [13], there exists (M,N) ∈ Red(T) such that T = TM ⊕ TN, TM is invertible
and TN is Riesz with infinite spectrum. Hence, σ(TN) = {0, λ1, λ2, λ3, ...} where |λ1| ≥ |λ2| ≥ |λ3| ≥ ..., and
λn → 0, as n→∞.
Since 0 ∈ ρ(TM), there exists ε > 0 such that D(0, ε) ⊂ ρ(TM). As (λn) is a sequence which converges to
zero, there exists n0 ∈N such that (λn)n>n0 ⊂ D(0, ε). Consequently, (λn)n≥n0 is a sequence of non-zero Riesz
points of T (see the proof of [13, Proposition 2.7]), and

σ(TM) ∩ σ(TN) ⊆ (C \D(0, ε)) ∩ σ(TN) ⊆ {λ1, λ2, ..., λn0 }.

Now for each n ≥ n0, let σn and σ′n be the closed sets defined by

σn = {0, λn+1, λn+2, ....}

and
σ′n = (σ(TM) \ (σ(TM) ∩ σ(TN))) ∪ {λ1, λ2, ..., λn} = σ(T) \ σn.

Notice that for all n ≥ n0, σn and σ′n are spectral sets and σn ∩ σ(TM) = ∅. Through all this work, we take σn
and σ′n to be of index greater than or equal n0.
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Definition 1.2. [12, Definition 2.2] Let T ∈ L(X) be a non-invertible operator with a bounded spectral set σ
containing 0 and let Pσ be the corresponding spectral projection. The Drazin inverse of T relative to σ is defined by

TD,σ := (T − ξPσ)−1(I − Pσ),

for some ξ ∈ C such that |ξ| > r where r = sup
λ∈σ
| λ |.

The condition |ξ| > r is required to ensure that T − ξPσ is invertible. It is easy to see that Pσ = I − TTD,σ, also
TD,σ is independent of the value of ξ (see [12]).

Theorem 1.3. [1, Theorem 2.2] Let T ∈ L(X) be generalized Drazin-Riesz invertible with 0 ∈ acc σ(T). Let n be
large enough such that rn = sup

λ∈σn

| λ |< 1
2 . Then

TD,σn = (T − Pσn )−1(I − Pσn )

is a generalized Drazin-Riesz inverse for T.

Theorem 1.4. [1, Theorem 2.9] Let T ∈ L(X). Then T is generalized Drazin-Riesz invertible if and only if
0 < acc σb(T).

Definition 1.5. [11] Let R be a non-empty subset of L(X). R is called a regularity if it satisfies the following two
conditions:

1. if n ∈N, then A ∈ R if and only if An
∈ R.

2. if A,B,C and D are mutually commuting operators in L(X) such that AC + BD = I, then AB ∈ R if and only
if A ∈ R and B ∈ R.

A regularity R ⊂ L(X) assigns to each T ∈ L(X) a subset of C defined by

σR(T) = {λ ∈ C : T − λI < R}

and called the spectrum of T corresponding to the regularity R.We notice that every regularity R contains
all invertible operators, so that σR(T) ⊆ σ(T). In general, σR(T) is neither compact nor non-empty. However,

f (σR(T)) = σR( f (T))

for every analytic function f on a neighborhood of σ(T) which is non-constant on each component of its
domain of definition (see [8, 10, 11]).

Let R be a regularity in L(X). We say that R (or σR) satisfies the property:

• (P1): if TS ∈ R ⇔ T ∈ R and S ∈ R whenever T,S ∈ L(X).

• (P2): if Tn, T ∈ L(X), Tn → T, µn ∈ σR(Tn) and µn → µ, then µ ∈ σR(T) (upper semicontinuity of σR(·)).

• (P3): if Tn, T ∈ L(X), Tn → T, TTn = TnT for every n, µn ∈ σR(Tn) and µn → µ, then µ ∈ σR(T) (upper
semicontinuity on commuting elements in L(X)).

• (P4): Tn, T ∈ L(X), Tn → T, TTn = TnT for every n, then µ ∈ σR(T) if and only if there exits a sequence
µn ∈ σR(Tn) such that µn → µ (continuity on commuting elements in L(X)).
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It is easy to see that (P2) or (P4) implies (P3). If R satisfies (P3) then σR(T) is closed for every T ∈ L(X) (see
[11]).

Berkani and Sarih [3, Theorem 2.3] proved that the class of all Drazin invertible operators forms a
regularity. The result was extended to the class of all generalized Drazin invertible operators by Lubansky
[9, Theorem 1.2].

The aim of this paper is to prove that the classL(X)DR of all bounded generalized Drazin-Riesz invertible
operators forms a regularity. Then the spectral mapping theorem for σDR(T) holds. Finally, we investigate
L(X)DR under properties (Pi), i ∈ {1, 2, 3, 4}.

2. Main Results.

We begin by stating the main result of the paper.

Theorem 2.1. The set L(X)DR of all bounded generalized Drazin-Riesz invertible operators forms a regularity.

To establish the proof of the theorem, we need the following Lemma.

Lemma 2.2. Let A,B,C and D be mutually commuting operators inL(X) such that AC+BD = I. If AB ∈ L(X)DR,
then A ∈ L(X)DR.

Proof. Suppose that AB is generalized Drazin-Riesz invertible. Then by virtue of Theorem 1.3 there exists
n0 ∈ N such that (AB)D,σn0 is a generalized Drazin-Riesz inverse for AB. We have Pσn0

= I − (AB)(AB)D,σn0

and ABPσn0
is Riesz.

Step 1. We show that A(I − Pσn0
) ∈ L(X)DR.

Set U = B(AB)D,σn0 . Since (AB)D,σn0 Pσn0
= 0 then

U(I − Pσn0
) = U.

We have U commutes with A(I − Pσn0
). Indeed, as Pσn0

is a spectral projection of AB among σn0 and A
commutes with B, then A and B commute with Pσn0

. Hence U commutes with Pσn0
. Therefore U commutes

with A(I − Pσn0
). We have

UA = AU = AB(AB)D,σn0 = I − Pσn0
.

Then
UA(I − Pσn0

)U = (I − Pσn0
)2U = U.

Also,

A(I − Pσn0
) − (A(I − Pσn0

))2U = A(I − Pσn0
) − A2(I − Pσn0

)2U

= A(I − Pσn0
) − A(I − Pσn0

)2AU

= A(I − Pσn0
) − A(I − Pσn0

)3 = 0 is Riesz.

Therefore, A(I−Pσn0
) is generalized Drazin-Riesz invertible and U is a generalized Drazin-Riesz inverse for

A(I − Pσn0
). We notice also that

I −UA(I − Pσn0
) = Pσn0

,

and then the projection associated with the generalized Drazin-Riesz inverse U of A(I−Pσn0
) coincides with

Pσn0
.

Step 2. We show that ACPσn0
∈ L(X)DR.

Since

ACPσn0
− (ACPσn0

)2 = AC(I − AC)Pσn0

= ACBDPσn0

= (ABPσn0
)CD
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and ABPσn0
is a Riesz operator, then by virtue of [2, Theorem 3.112], ACPσn0

− (ACPσn0
)2 is a Riesz operator.

Also, by considering the analytic function f (λ) = λ − λ2, ∀λ ∈ C, we have

f (σ(π(ACPσn0
))) = σ( f (π(ACPσn0

)))

= σ(π(ACPσn0
) − (π(ACPσn0

))2)

= σ(π(ACPσn0
− (ACPσn0

)2)) = {0}.

Hence σ(π(ACPσn0
)) ⊂ {0, 1}. Thus

0 < acc σe(ACPσn0
) and 0 < acc σe(I − ACPσn0

).

We set W = ACPσn0
. Since always σb(W) = σe(W) ∪ acc σ(W), and in order to find that 0 < acc σb(W), for the

sake of contradiction we suppose that 0 ∈ acc (acc σ(W)). Consequently, there exists (λp)p ⊂ acc σ(W) such that
λp → 0, as p −→ ∞. Thus for all p ∈N there exists a sequence (spk )k ⊂ σ(W) such that spk −→ λp, as k −→ ∞.
Hence f (spk ) −→ f (λp), as k −→ ∞, and using spectral mapping theorem, we get ( f (λp))p ⊂ acc σ( f (W)). Thus
f (λp) −→ 0, as p −→ ∞ and so 0 ∈ acc (acc σ( f (W))) ⊂ acc σb(W −W2), which is a contradiction. Therefore,
we obtain that

0 < acc σb(ACPσn0
).

Consequently, ACPσn0
is generalized Drazin-Riesz invertible by Theorem 1.4.

Step 3. We show that APσn0
∈ L(X)DR.

Let Λk0 be the spectral set associated to the generalized Drazin-Riesz invertible operator ACPσn0
(as

defined after Definition 1.1). Let us show that V = CPσn0
(ACPσn0

)D,Λk0 is a generalized Drazin-Riesz inverse
of APσn0

.
We have V commutes with APσn0

, and

V(APσn0
)V = CPσn0

(ACPσn0
)D,Λk0 APσn0

CPσn0
(ACPσn0

)D,Λk0

= CPσn0
(ACPσn0

)D,Λk0 = V.

Also

APσn0
− (APσn0

)2V = APσn0

(
I − APσn0

CPσn0
(ACPσn0

)D,Λk0

)
= APσn0

(
I − ACPσn0

(ACPσn0
)D,Λk0

)
= A(AC + BD)Pσn0

(
I − ACPσn0

(ACPσn0
)D,Λk0

)
= A(ACPσn0

)
(
I − ACPσn0

(ACPσn0
)D,Λk0 )

)
+ ABPσn0

(
D(I − ACPσn0

(ACPσn0
)D,Λk0 )

)
.

Since ABPσn0
is Riesz then ABPσn0

(
D(I − ACPσn0

(ACPσn0
)D,Λk0 )

)
is Riesz by [2, Theorem 3.112]. Also,

ACPσn0

(
I − ACPσn0

(ACPσn0
)D,Λk0 )

)
is Riesz since I − ACPσn0

(ACPσn0
)D,Λk0 is a spectral projection of ACPσn0

among Λk0 . Now again by [2, Theorem 3.112], we get

A(ACPσn0
)
(
I − ACPσn0

(ACPσn0
)D,Λk0 )

)
+ ABPσn0

(
D(I − ACPσn0

(ACPσn0
)D,Λk0 )

)
is Riesz. Hence, APσn0

− APσn0
VAPσn0

is Riesz. Therefore APσn0
is generalized Drazin-Riesz invertible and

V is a generalized Drazin-Riesz inverse for APσn0
.

Step 4. We show that A ∈ L(X)DR.
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We have A(I − Pσn0
) and APσn0

are generalized Drazin-Riesz invertible, and

(A(I − Pσn0
))(APσn0

) = (APσn0
)(A(I − Pσn0

)) = 0,

by [6, Proposition 2.8], we obtain that A(I − Pσn0
) + APσn0

= A is generalized Drazin-Riesz invertible.

We are now in a position to prove our main result.

Proof. of Theorem 2.1. Let A ∈ L(X). If A is generalized Drazin-Riesz invertible, then An is also generalized
Drazin-Riesz invertible. Conversely, assume that An is generalized Drazin-Riesz invertible. Then 0 <
accσb(An). As σe(An) = {λn : λ ∈ σe(A)}, and σ(An) = {λn : λ ∈ σ(A)}, we conclude immediately that
0 < acc σb(A). Finally A is generalized Drazin-Riesz invertible by Theorem 1.4.

Now let A,B,C and D be mutually commuting operators in L(X) such that AC + BD = I. If A and B are
generalized Drazin-Riesz invertible. Then AB is also generalized Drazin-Riesz invertible.
Indeed, for

Q = I − (I − Pσn0 ,B
)(I − Pσn0 ,A

)

let us show that Q is a projection satisfying

QAB = ABQ, AB +Q is Browder and ABQ is Riesz.

By Theorem 2.1 [12], A + Pσn0 ,A
and B + Pσn0 ,B

are invertible and so Browder operators. Also APσn0 ,A
and

BPσn0 ,B
are Riesz operators. Since A + Pσn0 ,A

and B + Pσn0 ,B
commute, we conclude by [5, Theorem 7.9.2] that

(A + Pσn0 ,A
)(B + Pn0,B) is a Browder operator.

Now we show that ABQ is Riesz. Since Q = Pσn0 ,A
+ Pσn0 ,B

− Pσn0 ,A
Pσn0 ,B

, we have

ABQ = APσn0 ,A
B + ABPσn0 ,B

− APσn0 ,A
BPσn0 ,B

.

APσn0 ,A
and BPσn0 ,B

are Riesz operators and commute respectively with B and A, then by [2, Theorem 3.112]
APσn0 ,A

B, ABPσn0 ,B
and APσn0 ,A

BPσn0 ,B
are Riesz operators. Thus, ABQ is a Riesz operator, again by [2, Theorem

3.112]. Therefore, I + ABQ is a Browder operator by [2, Theorem 3.111].
Since I +ABQ is Browder and (R(Q),N(Q)) ∈ Red(I +AB), we deduce by [13, Lemma 2.1] that (I +ABQ)R(Q)
is a Browder operator. We have

(I + ABQ)Q = 0N(Q) ⊕ (I + AB)R(Q).

Also

AB(I −Q) = (A + Pσn0 ,A
)(B + Pσn0 ,B

)(I −Q)

= ((A + Pσn0 ,A
)(B + Pσn0 ,B

))N(Q) ⊕ 0R(Q),

Now we get

AB +Q = ABQ +Q + AB(I −Q)
= (I + ABQ)Q + AB(I −Q)

= (0N(Q) ⊕ (I + ABQ)R(Q)) +
(
((A + Pσn0 ,A

)(B + Pσn0 ,B
))N(Q) ⊕ 0R(Q)

)
= ((A + Pσn0 ,A

)(B + Pσn0 ,B
))N(Q) ⊕ (I + ABQ)R(Q).

As ((A + Pσn0 ,A
)(B + Pσn0 ,B

))N(Q) and (I + ABQ)R(Q) are Browder, we conclude by [13, Lemma 2.1] that AB +Q
is a Browder operator. Finally, [13, Theorem 2.3] leads to conclude that AB is generalized Drazin-Riesz
invertible.

Conversely, if AB is generalized Drazin-Riesz invertible, then by Lemma 2.2, we conclude that A and B
are generalized Drazin-Riesz invertible.

Combining Theorem 2.1 and [11, Theorem I.6.7], the spectral mapping theorem holds for σDR(T)
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Theorem 2.3. Let X be a Banach space and T ∈ L(X). If f is any function holomorphic in an open neighborhood of
σ(T) and non-constant on any component of σ(T), then

f (σDR(T)) = σDR( f (T)).

We investigate some topological properties of σDR(T).

Proposition 2.4. Let X be a Banach space and T ∈ L(X). We have :
1) σDR(T) = acc σb(T) and σDR(T) is closed.
2) σDR(T) ⊂ σKD(T) ⊂ σD(T) ⊂ σ(T).
3) σDR(T) = ∅ if and only if σb(T) is a finite set.

Proof. 1) By Theorem 1.4, σDR(T) = acc σb(T). The closure of σDR(T) is assured by σDR(T) = acc σb(T), σb(T)
being closed, we have acc σb(T) = σDR(T) is closed.
2) The inclusions are obvious.
3) If σb(T) is finite, its every point is isolated in σb(T), therefore not in acc σb(T).

Conversely, suppose that σDR(T) = ∅. By way of contradiction, suppose that σb(T) is infinite. As σb(T) is
a compact set ( closed in the compact set σ(T)), it has an accumulation point µ, so µ ∈ acc σb(T) = σDR(T),
which is a contradiction.

In general the class of generalized Drazin-Riesz invertible operators does not satisfy the property (P1).

Example 2.5. Let S be the right shift operator defined on ℓ2(N) by

S(x0, x1, ...) = (0, x0, x1, ...), ∀(x0, x1, ...).

Set T1 = S ⊕ 0 and T2 = 0 ⊕ S on X = ℓ2(N) ⊕ ℓ2(N). Since

σ(S) = σb(S) = {λ ∈ C : |λ| ≤ 1},

then
σ(Ti) = σb(Ti) = {λ ∈ C : |λ| ≤ 1}, for i = 1, 2.

We have T1T2 = 0 ∈ L(X)DR. But 0 ∈ acc σb(Ti), i = 1, 2. Thus T1 and T2 do not belong to L(X)DR.

However, the class of generalized Drazin-Riesz invertible operators satisfies property (P1) in a very
special case.

Theorem 2.6. Let X be a Banach space. Then the following conditions are equivalent:

i) L(X)DR has property (P1);
ii) L(X)DR = L(X);

iii) σDR(T) = ∅ for all T ∈ L(X);
iv) Each bounded operator has a finite Browder spectrum.

Proof. i)⇒ ii): Suppose thatL(X)DR satisfies (P1). As 0 belongs toL(X)DR and commutes with all elements,
for any A ∈ L(X) the product 0 = 0A ∈ L(X)DR; and so A ∈ L(X)DR for all A ∈ L(X), hence L(X) = L(X)DR.
ii)⇒ iii): It is obvious.
iii)⇒ iv): follows at once from Proposition 2.4.
iv)⇒ i): If each element T of L(X) has a finite Browder spectrum, then all elements of σb(T) are isolated for
all T ∈ L(X). Hence by Theorem 1.4, T is generalized Drazin-Riesz invertible. Trivially we have L(X)DR

satisfies property (P1).

The class L(X)DR is not necessarily open in L(X) as shown by the following example.
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Example 2.7. For a nonzero positive integer n, let Sn be the weighted right shift operator defined on ℓ2(N)
by

Snx = (x1, x2, ...) = (0,
1
n

x1,
1
n

x2, ....).

Then ∥Sn∥ =
1
n . Let V(0, η) be the open disk in L(ℓ2(N)) centered at 0 and with radius η > 0. Then for n

large enough we have Sn ∈ D(0, η). Since

σ(Sn) = σb(Sn) = {λ ∈ C : |λ| ≤
1
n
},

then for each n, Sn is not generalized Drazin-Riesz invertible and the sequence (Sn) converges to 0 which is
generalized Drazin-invertible operator with a generalized Drazin-Riesz inverse 0. Therefore,L(ℓ2(N))DR is
not open in L(ℓ2(N)).

By virtue of [11, Proposition I.6.9], a regularity R is an open set of L(X) if and only if R satisfies (P2).
The previous example shows that L(X)DR does not satisfy (P2) in general. The special case when L(X)DR

satisfies (P2) is the following

Theorem 2.8. L(X)DR satisfies properties (P2), (P3), and (P4) if and only if L(X)DR = L(X).

Proof. If L(X)DR = L(X), then properties (P2), (P3), and (P4) are obviously satisfied. Conversely, suppose
that there exists T ∈ L(X) \ L(X)DR. Then 0 ∈ σDR(T) = acc σb(T), set Tn =

1
n T for all n ∈ N. Thus

0 ∈ acc σb(Tn) = σDR(Tn), and Tn −→ 0, as n −→ ∞. However, 0 < σDR(0), then property (P3) does not hold,
and therefore neither (P2) nor (P4).

Acknowledgments. The authors are grateful to the referee for her/his constructive comments and
remarks, especially her/his detailed suggestion on the proof of Theorem 2.1.
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