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Abstract. In this paper, we consider the fourth order p-Laplacian beam equation (9, (1" (£)))” = f(t, u(t), u” (t))

with integral boundary conditions 1" (0) = u” (1) = 0, u(0)~aw’(0) = [ g(s)u(s)ds, u(1)+pu’' (1) = [ ga(s)u(s)ds.
By using the contraction mapping principle, we establish the existence and uniqueness of solutions for the

problem. The monotony of iterations is also considered. At last, some examples are presented to illustrate
the main results.

1. Introduction

In this paper, we consider the fourth order p-Laplacian integral boundary value problem

(D (" (1)) = f(t{ ut),u’(t), te€(0,1),
w(0) - aw'(0) = [, g1(s)u(s)ds, )
u(l) + pu’(1) = fol ga(s)u(s)ds, u”’(0)=u"(1) =0,

where @, (u) = [u]P~2u is called one-dimensional p-Laplacian operator, constants o, f > 0; f € C([0, 1] xIR?, R),
gi € C([0,1],[0,1)) fori =1,2. Herep > 1,%7 + % =1land @;1(1/1) = @,(u) = [u|7~2u.

In beam theory [1], this problem can describe the small deformation of elastic beam. Usually both ends
are simply supported, or one end is simply supported and the other end is clamped by sliding clamps. Also

vanishing moments at the ends of the attached beam motivate the boundary conditions (see [2] for more
details). The special case of equation (1) with p = 2

u®(t) = f(t, ut),u” (t))

has been studied by several authors (see [3]-[7] and the references therein). For example, in 1986,
Aftabizadeh [3] used the Schauder’s fixed point theorem to obtain existence and uniqueness results to
the problem mentioned above under the restriction that f is a bounded function. In 1997, by the monotone
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method in the presence of lower and upper solutions, Ma et al. [4] constructed two monotone sequences
of functions converging to the extremal solutions of the problem under some monotone conditions of f. In
2019, Wei et al. [7] obtained the existence and uniqueness of solution to the problem by using the contraction
mapping principle.

However, we know that p = 2 is the critical value of p-Laplacian operator, and the value of p directly
affects its monotonicity. When p # 2, the operator (®,(1”"))” is nonlinear, the maximum principle and
Fredholm alternative can not be applied. Meanwhile, the construction of upper and lower solutions to
boundary value problems is complex and difficult. We can see some results on the existence of p-Laplacian
boundary value problems, see [8]-[13], [17] and the references therein. In 2007, Zhang and Liu [8] used the
method of upper and lower solutions and fixed point theorem to establish their main results on positive
solutions of the following fourth-order p-Laplacian four-point boundary value problem

(Pp(u” (1) = f(t,u®), te€(01),
u(0) = u(l) —au(é&) = w”’(0) = u”(1) - bu" (n) = 0.

In 2011, Xu and Yang [9] studied the existence, multiplicity and uniqueness of positive solutions for the
two point fourth order p-Laplacian boundary value problem. Based on a priori estimates achieved by
utilizing properties of concave functions, they used the fixed point index theory to establish their main
results. Recently, in 2019, by using a novel efficient iteration method, Bai et al. [13] obtained the existence
and uniqueness of solution for the following boundary value problem

(Dp(u” (1)) = f(tu(t), u”(®), te(0,1),
1(0) = 0,1 (0) = 0,
u(1) = au(&), dy(u" (1)) = bP,(u"(c)),

where they only considered the case 1 < p < 2.

Integral boundary conditions arise in thermal conduction problems [14], semiconductor problems [15],
and hydrodynamic problems [16]. Integral boundary problems include two-point, three-point and multi-
point boundary value problems as special cases. Zhang et al. [17] investigated a class of fourth-order
p-Laplacian differential equations with integral boundary conditions of the following form

(@0 (1) = wBftu(®), te @),
u(0) = u(1) = f y1(Su(s)ds,
@y(u"(0)) = Dy’ (1)) = [ g2(s)u(s)ds.

Their arguments were based upon a specially constructed cone and the fixed point theory for cones.
They obtained the existence and nonexistence of symmetric positive solutions, but did not use numerical
simulation to estimate the approximate value of the real solutions.

Motivated by the mentioned excellent works, in this paper, by using the contraction mapping principle,
we obtain the existence and uniqueness of solutions of the fourth order integral boundary value problem
with p-Laplacian operator. Different from reference [13], we consider the more general integral boundary
conditions and both cases 1 < p <2 and p > 2. Also, we give an iterative method for solving the problem
and prove the convergence of iterations and monotony of the iterative solution.

This paper is organized as follows. In Section 2, we give some notations and the related lemmas. In
Section 3, we present our main results. At last, some examples are presented to illustrate the main results.

2. Preliminaries and lemmas

In this section, we shall present some notations and the related lemmas for later use. We set E :=
C([0, 1], R) with the maximum norm ||u|| = maXg<<1 |[u(f)|.
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Theorem A ([18]) If k(¢, s) is continuous on [a, b] X [a, b], f(t) is continuous on [g, b], and |A] < m, where
My = max;sefqp) |k(t,s)|, then the Fredholm integral equation u(t) = f(t) + A j; ’ k(t,s)u(s)ds has a unique

continuous solution u(t) on [a, b], and u(t) can be represented as the following convergence series

(o] b N
u(t) = fO + Y A" f ku(t, s)f(s)ds,
n=1 a

where ki(t,5) = k(t,s) and ku(t,s) = [ k(t,20ksr(z,8)dz, 1 = 2,3, .
Define the auxiliary function

(1+B=15gi(s) + (@ + 1ga(s)

kit,s) = 1+a+p

/t/s E [O/ 1]/

we can easily deduce

0 < my := min{k(t, s)|t, s € [0, 1]} < max{k(t,s)|t,s € [0,1]} := M < 1.
Lemma 2.1. If function y € C([0, 1], R), then the boundary value problem

u”(t) = y(),t €(0,1),
u(0) — au’(0) = fol g1(s)u(s)ds, ()
(1) +Bu'(1) = [ gals)u(s)ds

has a unique solution of the following form

1 1 1
u(t):f(; Gl(t,s)]/(s)ds+‘f0 R(t,s)fov G1(s, t)y(t)dds, (3)

where ki(t,s) = k(t, s),

(a+s)(t—=1-p)

1+a+fp

(a+t)(s=1-P) <i<g<
Giltys) = | iy Lo ESE Y
,0<s<t<],

and
0 1
R(t,s) = an(t, s), kuy(t,s) = f k(t, 2)ky-1(z,s)dz, n=2,3,---.
n=1 0

Proof: By using the method of constant variation, we see that the solution of (2) is equivalent to the
continuous solution of the following integral equation

1 1
u(t):Af0 Gl(t,s)y(s)ds+£ k(t, s)u(s)ds. 4)

By using the condition of g;(s) and Theorem A, (4) has a unique continuous solution u(t) on [0, 1], which
can be represented as the following convergence series

1 o A 1
u(t) = j(; Gl(t,s)y(s)ds+z j(; ku(t,s) f(; Gi(s, T)y(t)dds.
n=1

The proof is complete. O

Remark 2.1. Since the function g; € C([0,1],[0,1)) for i = 1,2, each k,(t,s) is well defined and continuous
in [0,1] X [0,1], and O < ky,(t,s) < (My)" <1, n =1,2,---. Noting that the geometric series )., ;(M)" is
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convergent, it can be obtained by Weierstraz criterion that the series Y., ku(t, s) is uniformly convergent
with respect to (t,s) € [0,1] x [0, 1]. Hence, for (t,s) € [0,1] X [0, 1], the sum function R(t,s) = Y;; kx(t,s) in
(3) is well defined and continuous, and 1Tfnk < R(ts) < 1ﬁ41\51k'

Lemma 2.2. If n € C%([0, 1], R), then the following fourth order boundary value problem with p-Laplacian
operator

(@, (1)) = f(t,n(t),n"(t), te(0,1), 5)

u”(0)=u"(1) =0, (6)
1 1

u(0) — au’(0) = f g1(s)u(s)ds, u(1) + pu’(1) = f g2(s)u(s)ds ()
0 0

has a unique solution of the form
1 1
u(t) = f Gl(t,s)CDq(f Ga(s, T) f(T,n(7), 1" (7))dT)ds
0 0

1 1 1
+ jo‘ R(t,s) j(; Gi(s, T)Dy( fo‘ Ga(t, x) f(x, n(x), 0"’ (x))dx)dzds,

where Gi(t, s) and R(¢, s) are defined as in Lemma 2.1, and

[ Hs—-1),0<t<s<1,
Gz(t,S)—{ s(t—-1),0<s<t<1.

Proof: Let ®,(u"") = h, then the boundary value problem (5)-(7) can be rewriten as

W'(t) = f(t, (), n" (1), te(O1), (®)
w’(t) = Dy(h(t)), te(0,1), ©)
h(0) = h(1) = 0, (10)
1 1
u(0) — au'(0) = f g1(s)u(s)ds, u(l) + pu’(1) = f g2(s)u(s)ds. (11)
0 0

For the boundary value problem of second order ordinary differential equations (8) and (10), by using the
method of constant variation, we can easily obtain the corresponding Green function G,(t, s). Furthermore,
we can also obtain the unique solution of the boundary value problem (8) and (10) with the following form

1
t) = fo Galt, O f (6, (D), 7 (D). (12)

For the boundary value problem of second order ordinary differential equations (9) and (11), by using
Lemma 2.1, we can obtain the corresponding kernel functions Gi(¢,s) and R(t,s). At the same time, we can
also obtain the unique solution of the boundary value problem (9) and (11) with the following form

1 1 1
u(t) = fo G(t, 5P, (h(s))ds + fo R(t,s) fo G (s, ), (h(1))dds. (13)

Combining (12) and (13), we can obtain the unique solution of the boundary value problem (5)-(7) with the
following form

1 1
ut) = f G1(t,5)q>q(f Ga(s, 1) f (T, n(7), " (v)dT)ds
0 0

1 1 1
+ f R(t,s) f Gi(s, T)Dy( f Ga(t, %) f(x, n(x), n" (x))dx)dtds.
0 0 0
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The proof is complete. O
Lemma 2.3. (Lemma 2.2, [19]) The following relations hold:
(1)If1 <g <2, then
|y (1 +0) = @y(u)] < 2270,

forallu,v e R;
(2)If g > 2, then
Dy (4 + 0) — D () < (g — 1)(Jul + [0)" [0,

forallu,v e R.
Lemma 2.4. Given ¢ € C([0,1], R), let

1
vG)=®Ajﬁbe9¢@Mﬂ,
0

1 1 1
u(t):f Gl(t,'c)v('c))d'c+f R(t,’c)f G (7, s)v(s))dsdr,
0 0 0
then we have

1
1
M; := 52%'[0 Ga(t, s)ds| = 3

G+a)G+pG +a+p)
(1+a+p)? !

1
M, := max| f Gi(t, s)ds| =
0<t<1 Jo

1
lloll < (g)q_llkpllq_l,

1 M
< (2 Yt 222
Il < G g™ =4

Proof: According to Lemma 2.2, we have

1 ¢ 1
trgr}gﬁlfo Ga(t, s)ds| :trerh%{lfos(t—l)ds+ft t(s — 1)ds|}

2 2
= max|(t = 1) 5+ H(-1+ 3) - (5 = O]l

te[0,1]
2ot 1
=maxily 2l =g
Similarly,
1 ¢ 1
_ (a+s)(t—1-p) (@+bH(s—-1-p)
g[lgﬁ | f(; Gi(t, s)ds| = g}gﬁﬂf; wds + I wdsl}
_ 1 l+a+p ) 1 1
= maxlly gl (G P —alg + Pl
GG +pG+a+p
- (1+a+p)>

Considering that @, is increasing, we have

1 1
o(t) = 0, [ Gatt p(s) < 0 [ Gatt Mgl < @l = Gl
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Meanwhile, we have

1 1 1 1 1
u(t) =f0 Gl(t,T)(I)q(‘fO Gz(T,s)(p(s)ds)dT+fO R(t,s)fO Gl(S,T)CDq(](; Ga(t, x)p(x)dx))dds

G+OG+AG+a+p) :
(1+a+p)2 (1+ \fo‘ R(t, 5)ds)
1o, w1 GHAG+PG +a+p) My
< (@ Ml Ararp? L+ M,

1 M
— (2Y et 222
(8) [l T- M

1
< (3" gl

)

The proof is complete. O

3. Main results
For each number M > 0, we denote

By := max{M2. 23079 (g —1). M2 230-0) . 3972,

Dm =t u,0) e R0O<t<1,ul < T3

My M., M,
(= < (=)
R o U}

and B[O, M], a closed ball centred at O with the radius M in the space of continuous functions C([0, 1], R).
Theorem 3.1 Suppose that there exist constants M, L;, L, > 0 such that

@) If(t,u,v) <M, for (t,u,v) € Dys;

(ii) |f(t, u2,v2) = f(t, u1,01)| < Lilup — ua| + Lolop — 01, for (¢, u;,v;) € Dy, i=1,2;

(iii) K := (47 +L2)-Bo < 1.

Then the boundary value problem (1) has a unique solution u(t) € C([0, 1], R) such that

M, M., M, _
< 2 (ZZy 1 ” < (22y1 1‘
) < 755 (I W01 ()

Proof: Firstly, for any function ¢(t) € C([0, 1], R), we consider the nonlinear operator A : C([0, 1], R) —

C([0, 1], R) defined by

1 1 1
(Ap)(t) = f(t, fo R(t,s) jo‘ Gi(s, T)Dy( j(: Goa(7, x)p(x)dx))dtds

1 1 1
+f Gi(t, T)CI)q(f Gz(T,S)(p(S)dS)dT,CDq(f Ga(t, s)p(s)ds).
0 0 0

By the continuity of Gi(t, s), Ga(t, s), R(t, s) and f(t, u,v), it is easy to verify that the operator A is well defined
and continuous. By using Lemma 2.2, we can prove that if ¢(t) is a fixed point of the operator A, then

1 1 1 1 1
u(t)=](; Gl(t,r)q)q(f(; GZ(T,S)(p(s)ds)d7:+fO R(t’S)L Gl(s,'()q)q(j(; Go(1, x)p(x)dx))dtds

is a solution of the problem (1). On the contrary, if problem (1) has a solution u(t), then ¢(t) = (P, (u"(t)))”
is a fixed point of the operator A.
Secondly, we shall prove that the operator A maps B[O, M] into itself. For any ¢(t) € B[O, M], by Lemma

2.4, we have
M M M
< ()1 < (=—=y1-1. 2
IIUII_(S) ,IIMII_(S) (l—Mk

)-
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For any t € [0, 1], we have (t, u(t), v(t)) € Dy Then, from the assumption (i) of Theorem 3.1, it follows that

[Ap(t)| = |f(t, u(t), v(t))| < M, ie., Ap € B[O, M].

So the operator A maps B[O, M] into itself.
Next, we have the following assertion:

For any ¢1(t), p2(t) € B[O, M], we have

1 1
@, fo Galt, $)pa(s)ds) — fo Galt, )1 (5)ds)

< By - llop2 — @ull. (14)

In fact, by using Lemma 2.3, we can prove it as follows:

For1 < g <2, wehave

1 1
@, fo Galt, $)pas)ds) — fo Galt, 1 (5)ds)

1 1
o, fo Galt, )(@1(5) + 2(6) — P1())ds) — Dy fo Galt, $)p1(£)ds)

1
<27 [ Galt pte) - pr (o)™
0

1 -1
<2 q(g L 2M)I72 3 lp2 — @1l
= 2%070 . MI2|lgp, — |
< By - llp2 = ¢1ll.

For q > 2, we have

1 1
@, f Galx, S)pa(s)ds) — @, f Galx, $)r (5)ds)
0 0

1
fo Galx, $)(@2(6) — P1()ds

1 1 q-2
s(q—l)(l fo Galx, )1 (s)ds| + fo Gz<x,s><<p2<s>—<p1<s)>ds|)

1\ 1
<@-D(R-g) 3-le2-el

1
<@-1- (g)q_l “BRY"2 - |lpz — @1l
< By - llpz2 — ¢ill.

Thirdly, according to (14), we shall prove that A is a contraction operator in B[O, M]. Indeed, for any
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@1(t), p2(t) € B[O, M], we have

|[A@a(t) — Ap1(t)]
= |f(t/ Mz(t), Z)2('1:)) - f(t/ u (t)/ (4] (t))|
< Lilua(t) — ua(B) + Laloa(t) — 01(H)|

1 1 1 1 1
=L1|f(; Gl(t,T)CDq(fo GZ(T,s)(pz(s)ds)dT+f0 R(t,s)](; Gl(s,T)fl)q(fO Ga(1, x)p2(x)dx))dtds
1 1 1 1 1
—f(; Gl(t,T)CDq(j; Gz(’c,s)(pl(s)ds)d’[—j; R(if,s)‘[0 Gl(s,’c)d)q(j(; Ga(7, x)p1(x)dx))dtds|
1 1

+Lo|Dy( fo Ga(t, 8)pa(s)ds) — Dy( fo Ga(t, s)p1(s)ds)|

1 1 1
SLl'j[; Gl(t,T)(CDq(fO Gz(T,s)(pz(s)ds)—CDq(jO‘ Ga(t, 8)p1(s)ds))dr|

1 1 1 1
+L4] fo R(t,s) fo G1(s, T)(Dy( fo Ga(T, X)Pa(x)dx) — Dy( fo Ga (7, x)1(x)dx))dds|

1 1
Lol fo Galt, s)pa(s)ds) — @, fo Galt, )1 (5)ds)

M
< LiBog— ]2\/1k||(P2 — @1l + LaBollp2 — all
LM
= (T + Bolle2 — il
< Kllpz = @ill.

Hence, |Ap;(t) — Api(t)] < Kllpz — @1, 0 < K < 1. Thus, the operator A : B[O, M] — B[O, M] is a contraction
mapping and it has a unique fixed point in B[O, M].

The proof is complete. O

Now we consider the following iterative process:

(1) We choose ¢o(t) = f(t,0,0),t € [0,1];

(2) Fork=0,1,---,let

() = By([) Calt, $)pi(s)ds),

1 1 1

w(t) = [, Gi(t, Dor()d + [ R(t, 1) [; Ga(T, s)ve(s)dsd,

Pre1(t) = f(t, ug, vg).

From condition (i) of Theorem 3.1, we can easily know ¢y (t) € B[O, M],k =0,1,---. By using the Banach

contracting mapping principle, the sequence ¢,(f) converges with the rate of geometric progression to the
fixed point of the operator A, denote it as ¢*(t). Also, we have the estimation

KVI
s =91l < = llp1 = goll

Then, we can obtain an iterative sequence solution {u,(t)} of the boundary value problem (1)

1 1 1 1 1
u®= [ Git90, [ Gas,pu@uois + [ ka9 [ i 00, [ Gamnpacotos,
0 0 0 0 0

which converges to the unique solution u*(t) of the boundary value problem (1).

Finally, we present some examples to illustrate the feasibility of our results. Our first example is for the
case p > 2 and we choose p = 3.
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Example 3.1. Consider the following boundary value problem

(@, (1) = Lu(Bu’(8) + Lu(t) — L (92 + 20t +1, te (0,1),
w(0) — 3/(0) = 1 ) u(s)ds, (15)
u(l) + %u’(l) = }Ifol u(s)ds,u”(0) =u”(1) =0,

where

1 1
f(t,u,0) = Fuo+ —u? - sz +20t + 1.

We can see that p = = % B =131 91(t) = 1, 92(t) = 1. After a simple calculation, we can obtain
q= Mk = 16 <1,M; = % =

\/SM 4

b = T2 k9 = ) () Ri ) = ana,s):—
=1

1 _3
GH672) o cp<s<,
Gi(t,s) = 1,2, 5
RN L+s)(t-2)
27 0<s<t<1.

7 /o= =t=

Clearly, for (t,u,v) € Dy, there is

f(t,u,0) < %g(()z (\/7 —(\/7)2+21<M

as soon as M > 22.48. Thus, we choose M = 23 and the condition (i) of Theorem 3.1 is satisfied in D).
On the other hand, for (t,u,v) € Dy,

e hos by oL M 12 M M 1M
f‘“s 473NV 8 4 3 8’

ol = e Lol <12 /A_4+1.z. M _13 M
ol = - 3 3 §'"18Vs8

So, we can choose L = % %’1 [, = 13 ,/ , and the condition (ii) of Theorem 3.1 is satisfied. Moreover,

LiM,
1-M,

21
= ( +L2)'Bo—(§ 5

so the condition (iii) of Theorem 3.1 is satisfied. By Theorem 3.1, boundary value problem (15) has a unique
solution. Let @o(t) = 20t + 1, see Figure 1 and Table 1 for the iterative process and we can find that the
iterative method is very effective.
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Figure 1: The approximation of the solution (15) for p = 3.
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Table 1 The approximation of the solution (15) for p = 3.
t 0| 0.1010101] 0.2020202] 0.3030303] 0.4040404] 0.5050505| 0.6060606| 0.7070707] 0.8080808] 0.9090909 1

ul| 0.4458064| 0.4832388| 0.5145593| 0.537246| 0.5496579] 0.5507146| 0.5398311] 0.5169339| 0.482547| 0.4379967| 0.3914417
u2|0.4370199| 0.4737051| 0.5044146| 0.5266806| 0.5388937] 0.5399895| 0.5293848] 0.5069951| 0.4733202] 0.4296486| 0.3839808
u3] 0.4373658| 0.4740806| 0.504814| 0.5270963| 0.5393168| 0.5404104| 0.5297942| 0.5073842| 0.4736811| 0.4299749] 0.3842725
u4|0.4373524| 0.474066| 0.5047985| 0.5270801| 0.5393003| 0.5403941| 0.5297783] 0.5073691| 0.4736671| 0.4299622| 0.3842612
u5| 0.4373529| 0.4740666| 0.5047991| 0.5270808| 0.5393009] 0.5403947| 0.529779] 0.5073697| 0.4736676| 0.4299627| 0.3842616

Next, we consider the case 1 < p < 2 and we choose p =
Example 3.2. Consider the following boundary value probl

(Dp(u” (1) = %u(t) +u”(t) - sin(u(t) + u” (@) +t+1, te(,1),
w(0) — 2/ (0) = L [ u(s)sds, (16)
u(l) + %u’(l) = }Ifol u(s)(1 = s)ds, u”(0) =u”(1) =0,

m

@ NIw

where
3 .
ft,u,0) = zu +ousin(u+v)+t+1.

We can see that p = %,a = %,ﬁ = %,gl(s) = i,gz(s) = % After a simple calculation, we can obtain

q=3 M=% <1,M =% Bo=3,

5+ 2t
10 7

5+ 2t 3,1 5+2t .
kl(tls) = T/kn(trs) = (g)n ! : (T)/R(trs) = kn(tls) =
n=1

G+h6-3)

,0<t<s<],
Gi(t,s) = (%+s)2(t—

D g<s<t<1.
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Clearly, for (t,u,v) € Dy, there is

32 M

£ <Z2.2.(Z

as soon as 2.144 < M < 29.856. Thus, we choose M = 4 and the condition (i) of Theorem 3.1 is satisfied.
On the other hand, for (¢, 1, v) € Dy,

)2+(A§/I)2+2<M.

3 3 M, 7
= |[= < — — < —
Iful |2+vcos(u+v)l_ 2+(8) <7

M 5
|fol = |sin(u + v) + vcos(u +v) < 1+ (5)2 <7
So we can choose L, = %, L, = %, and the condition (ii) of Theorem 3.1 is satisfied. Moreover,
LiM, 2 7 5 3M
K= L) Bp=(5-2+3)- == <1.
Gt Bo=G g+ 35 <

So the condition (iii) of Theorem 3.1 is satisfied. By Theorem 3.1, boundary value problem (16) has a unique
solution. Let @o(t) = t + 1, see Figure 2 and Table 2 for the iterative process. Obviously, in this case, the
iterative method is also effective.

Figure 2: The approximation of the solution (16) for p = 3.
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Table 2 The approximation of the solution (16) for p =

t 0] 0.1010101] 0.2020202] 0.3030303| 0.40404| 0.505051| 0.606061| 0.707071| 0.808081| 0.909091 1
ul | 0.072112] 0.0817731] 0.0909937| 0.0989252| 0.104639| 0.107438| 0.107049| 0.103709| 0.098108| 0.091204| 0.084614
u2 | 0.078172| 0.0886447| 0.098642| 0.1072443| 0.113443| 0.116476| 0.116049| 0.11242] 0.106343| 0.098857| 0.091715
u3 | 0.078797| 0.0893541] 0.0994317| 0.1081035| 0.114352| 0.11741] 0.116979| 0.11332] 0.107193| 0.099647| 0.092448
u4 | 0.078863| 0.0894288| 0.0995148| 0.1081939| 0.114448| 0.117508| 0.117077| 0.113414| 0.107283| 0.09973| 0.092526
u5 0.07887] 0.0894366] 0.0995236] 0.1082034| 0.114458| 0.117519] 0.117087| 0.113424| 0.107292]| 0.099739| 0.092534
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