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Abstract. In this article, we establish a weak stability theorem for Ishikawa iterations in Hilbert spaces.
Moreover, a strongly demicontractive mapping is presented to illustrate that the Ishikawa iteration of T is
weakly T-stable but not T-stable. Our results are new and extend several known results.

1. Introduction and Preliminaries

Let ∥ · ∥ and ⟨·, ·⟩ be, respectively, the norm and inner product of a real Hilbert space H. C is a nonempty
closed convex subset of H, T : C→ C is a self mapping and Fix(T) = {x ∈ C : Tx = x} denotes the set of fixed
points of T. A sequence {xn}which is generated by the Ishikawa iteration[5] of T if for arbitrary x0 ∈ C,xn+1 = (1 − an)xn + anTyn,

yn = (1 − bn)xn + bnTxn
(1)

for all n ≥ 0, where {an}, {bn} ⊂ [0, 1]. In particular, if bn = 0, then (1) is called the Mann iteration[8].
In general, if a small modification to the initial point will have a small impact (compared to the actual

value) on the calculated value of a fixed point, then the iterative process of the fixed point is said to be
numerically stable. The T−stability (see Definition 1.1) of several iterations for contractive mappings has
been researched by many authors. Harder and Hicks[3] established some T−stability results for Picard
iterations and Mann iterations with respect to some generalized contractions. Rhoades[12,13] obtained some
generalized theorems for other classes of contractive mappings in normed linear spaces. Osilike[11] extended
the results of [13] to complete metric spaces. And then, Osilike[10] estabilished some stability results for
Ishikawa iterations in Banach spaces.

It is obvious that any T−stable iteration is weakly T−stable, but the converse statement is not necessarily
true (see Definition 1.1 and Definition 1.2). Therefore, if an iteration procedure is not T−stable, then it is of
great theoretical significance to study weak T−stability of the iteration procedure. Zhou et al.[17] obtained
weak T−stability of the Ishikawa iteration (1) for Lipschitzian and ϕ−hemicontractive mappings, but it
needs a strictly condition:

lim inf
n→∞

ϕ(t)
t
> 0.
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Without the above condition, Huang[4] proved weak T−stability of the Ishikawa iteration (1) for ϕ−hemi-
contractive mappings. Timis and Berinde[15] studied the problem of weak stability of iteration prodedures
for the common fixed points of some contractive type mappings, and also gave some numerical examples.
Furthermore, Timis [14] considered a more weaker concept of stability which is called the weak ω2

−stable
and studied some results of Picard iterations for the mappings which satisfy some contraction conditions.

Very recently, L. Maruster and St. Maruster[9] defined the concept of strongly demicontractive mappings
(see Definition 1.3) and provided a T− stability theorem of the Mann iteration. Wang et al. [16] obtained
some formulas of error estimation of the Ishikawa iteration (1) and some T− stability theorems are also
proved. To the best of our knowledge, the weak stability of some iterations for strongly demicontractive
mappings has not been studied. Moreover, Berinde [1] proposed an open problem: ”It remains the task to
identify, amongst the classes of operators for which a certain iteration is not T-stable, the ones for which the
iteration is weakly T-stable.” (see [1], page 165).

In this paper, motivated by [1,2,4,6-7,9,16-17], we consider weak T−stability of the Ishikawa iteration
(1) for strongly demicontractive mappings. And an example is given to illustrate that a weakly T−stable
iteration procedure is not always T−stable. Our results improve and generalize the corresponding theorems
in [2,4,9,16-17] and the problem raised by [1] is partly solved.

Next, we recall some known definitions and results.

Definition 1.1. [1] Let (X, d) be a metric space and T : X→ X be a mapping. For arbitrary x0 ∈ X, the sequence {xn}

produced by

xn+1 = f (T, an, xn) (2)

for all n ≥ 0. Assume that {xn} converges to a fixed point p of T. For any sequence {yn} ⊂ X, set

εn = d(yn+1, f (T, an, yn)) (3)

for all n ≥ 0. We say that the iteration procedure (2) is T−stable (or stable with respect to T) if and only if

lim
n→∞
εn = 0⇐⇒ lim

n→∞
yn = p.

Definition 1.2. [17] Let (X, d) be a metric space and T : X → X be a mapping. For arbitrary x0 ∈ X, the sequence
{xn} is defined by (2). Assume that {xn} converges to a fixed point p of T. Let {yn} be any sequence in X and {εn} be
defined by (3) with εn = ε′n + ε

′′
n . Suppose

∑
∞

n=0 ε
′
n < ∞ and ε′′n = o(an) implies that

lim
n→∞

yn = p.

Then we say that the iteration procedure (2) is weakly T−stable (or weakly stable with respect to T).

Definition 1.3. [9] The mapping T : C→ C is said to be strongly demicontractive if Fix(T) , ∅ and

∥Tx − p∥2 ≤ α∥x − p∥2 + K∥Tx − x∥2 (4)

for all x ∈ C, where p ∈ Fix(T), α ∈ (0, 1) and K ≥ 0.

Remark 1.4. It is obviously that if T is a strongly demicontractive mapping, then Fix(T) is a singleton. And (4) is
equivalent to the following inequality:

⟨x − Tx, x − p⟩ ≥
1 − α

2
∥x − p∥2 +

1 − K
2
∥Tx − x∥2. (5)

Lemma 1.5. [1] Let {αn}, {βn} be nonnegative real sequences satisfying

αn+1 ≤ θαn + βn

for all n ≥ 0, where θ ∈ [0, 1). If lim
n→∞
βn = 0, then lim

n→∞
αn = 0.
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Lemma 1.6. [1] Let {αn}, {βn}, {cn}, {λn} be nonnegative real sequences such that

αn+1 ≤ (1 − λn)αn + βnλn + γn,

where

λn ∈ [0, 1],
∞∑

n=0

λn = ∞, lim
n→∞
βn = 0 and

∞∑
n=0

γn < ∞.

Then
lim
n→∞
αn = 0.

2. Main results

In order to give a weak T−stability theorem of the Ishikawa iteration (1) for strongly demicontractive
mappings, we first consider the following two lemmas.

Lemma 2.1. Let T : C→ C be L-Lipschitzian (i.e., for any x, y ∈ C, there exits L > 0, such that ∥Tx−Ty∥ ≤ L∥x−y∥
) and strongly demicontractive with α ∈ (0, 1) and K ≥ 0. Assume that p ∈ Fix(T) and {xn} is the sequence generated
by the Ishikawa iteration (1).
(i) If K ≤ 1, then

∥xn+1 − p∥ ≤
1 + anLQ − an

1 − 1+α
2 an

∥xn − p∥

for all n ≥ 0, where Q = (an + bn)(1 + L) + anbnL(L − 1).
(ii) If K > 1 and (K − 1)(1 + L)2 + α < 1, then

∥xn+1 − p∥ ≤
1 + anLQ − an

1 −Man
∥xn − p∥

for all n ≥ 0, where M = 1+(K−1)(1+L)2+α
2 .

Proof. Since

xn+1 − p = an(Txn+1 − xn+1) + an(Tyn − Txn+1) + (1 − an)(xn − p) + an(xn+1 − p).

We obtain

∥xn+1 − p∥2 = ⟨xn+1 − p, xn+1 − p⟩
≤ an⟨Txn+1 − xn+1, xn+1 − p⟩ + anL∥yn − xn+1∥ · ∥xn+1 − p∥ + (1 − an)∥xn − p∥ · ∥xn+1 − p∥

+ an∥xn+1 − p∥2, (6)

and

∥yn − xn+1∥ = ∥[(1 − bn)xn + bnTxn] − [(1 − an)xn + anTyn]∥
= ∥bn(Txn − xn) + an(xn − Tyn)∥
≤ bn(1 + L)∥xn − p∥ + an(∥xn − p∥ + L∥yn − p∥)
≤ [bn(1 + L) + an]∥xn − p∥ + anL∥(1 − bn)xn + bnTxn − p∥
≤ [an + bn(1 + L) + anL(1 − bn + bnL)]∥xn − p∥
= Q∥xn − p∥, (7)
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where Q = an + bn(1 + L) + anL(1 − bn + bnL) = (an + bn)(1 + L) + anbnL(L − 1). From (5), we have

⟨Txn+1 − xn+1, xn+1 − p⟩ ≤
K − 1

2
∥Txn+1 − xn+1∥

2
−

1 − α
2
∥xn+1 − p∥2. (8)

(i) Let K ≤ 1. From (8), we have

⟨Txn+1 − xn+1, xn+1 − p⟩ ≤ −
1 − α

2
∥xn+1 − p∥2. (9)

Plugging (7) and (9) into (6) results in

∥xn+1 − p∥2 ≤ −
an(1 − α)

2
∥xn+1 − p∥2 + anLQ∥xn − p∥ · ∥xn+1 − p∥ + (1 − an)∥xn − p∥ · ∥xn+1 − p∥

+ an∥xn+1 − p∥2.

Without loss of generality, we may assume that ∥xn+1 − p∥ > 0 for all n ≥ 0. Cancelling ∥xn+1 − p∥ > 0 on the
both sides of the above inequality, we obtain

∥xn+1 − p∥ ≤ [−
an(1 − α)

2
+ an]∥xn+1 − p∥ + [anLQ + (1 − an)]∥xn − p∥,

which implies

∥xn+1 − p∥ ≤
1 + anLQ − an

1 − 1+α
2 an

∥xn − p∥.

(ii) Let K > 1. Since ∥Txn+1 − xn+1∥ ≤ (1 + L)∥xn+1 − p∥, from (8), we have

⟨Txn+1 − xn+1, xn+1 − p⟩ ≤
(K − 1)(1 + L)2

− (1 − α)
2

∥xn+1 − p∥2. (10)

Inserting (7) and (10) into (6) leads to

∥xn+1 − p∥2 ≤
an(K − 1)(1 + L)2

− an(1 − α)
2

∥xn+1 − p∥2 + anLQ∥xn − p∥ · ∥xn+1 − p∥

+ (1 − an)∥xn − p∥ · ∥xn+1 − p∥ + an∥xn+1 − p∥2.

Without loss of generality, we may assume that ∥xn+1 − p∥ > 0 for all n ≥ 0. Similarly, we have

∥xn+1 − p∥ ≤
1 + (K − 1)(1 + L)2 + α

2
· an∥xn+1 − p∥ + (1 + anLQ − an)∥xn − p∥,

which implies

∥xn+1 − p∥ ≤
1 + anLQ − an

1 −Man
∥xn − p∥,

where M = 1+(K−1)(1+L)2+α
2 .

Remark 2.2. If K ≤ 1, then we do not need the condition ”(K − 1)(1 + L)2 + α < 1”.

Remark 2.3. Let
max{

1 + anLQ − an

1 − 1+α
2 an

,
1 + anLQ − an

1 −Man
} = N.

For any K ≥ 0, if (K − 1)(1 + L)2 + α < 1, then we can always get that

∥xn+1 − p∥ ≤ N∥xn − p∥.
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Lemma 2.4. Suppose that all the conditions of Lemma 2.1 hold. Assume further that the sequences {an} and {bn} of
the Ishikawa iteration (1) satisfying

lim
n→∞

an = 0 and lim
n→∞

bn = 0. (11)

Then the sequence {∥xn − p∥} is bounded.

Proof. From Lemma 2.1, we need to consider the following two cases.
Case I: Suppose K ≤ 1. Let r = ∥x0 − p∥. Now we will prove by induction that ∥xn − p∥ ≤ r for all n ≥ 0.

Obviously, ∥x0 − p∥ ≤ r. Assume that ∥xn − p∥ ≤ r for some n ≥ 1, we will show that ∥xn+1 − p∥ ≤ r. Suppose
not, that is ∥xn+1 − p∥ > r. From the condition (11), there exits N1 ∈N such that

LQ = L[(an + bn)(1 + L) + anbnL(L − 1)] <
1 − α

2

for all n > N1. From Lemma 2.1(i), we have

r < ∥xn+1 − p∥ ≤
1 + anLQ − an

1 − 1+α
2 an

∥xn − p∥ ≤ r

for all n > N1, which yields a contradiction. Therefore, {∥xn − p∥} is bounded.
Case II: Suppose K > 1. We also let r = ∥x0−p∥. Similar to the proof of Case I, we can also get ∥xn−p∥ ≤ r

for all n ≥ 0. Therefore, {∥xn − p∥} is bounded.

Now, we give the main theorem of this paper.

Theorem 2.5. Suppose that all the conditions of Lemma 2.4 hold and {xn} converges to a fixed point p of T. Assume
that
∑
∞

n=0 an = ∞. Let {zn} be any sequence in C and {εn} defined by

εn = ∥zn+1 − (1 − an)zn − anTwn∥,

wn = (1 − bn)zn + bnTzn,

where εn = ε′n + ε
′′
n ,
∑
∞

n=0 ε
′
n < ∞, and ε′′n = o(an). Then the sequence {xn} is weakly T−stable.

Proof. Let zn+1 = (1 − an)zn + anTwn + δn. Then δn = zn+1 − (1 − an)zn − anTwn. So,

∥δn∥ = εn = ε
′

n + ε
′′

n .

Since

zn+1 − p = an(Tzn+1 − zn+1) + an(Twn − Tzn+1) + (1 − an)(zn − p) + an(zn+1 − p) + δn,

we have

∥zn+1 − p∥2 ≤ an⟨Tzn+1 − zn+1, zn+1 − p⟩ + anL∥wn − zn+1∥ · ∥zn+1 − p∥ + (1 − an)∥zn − p∥ · ∥zn+1 − p∥

+ an∥zn+1 − p∥2 + ∥δn∥ · ∥zn+1 − p∥, (12)

and

∥wn − zn+1∥ = ∥[(1 − bn)zn + bnTzn] − [(1 − an)zn + anTwn + δn]∥
= ∥bn(Tzn − zn) + an(zn − Twn) − δn∥

≤ bn∥Tzn − zn∥ + an∥zn − Twn∥ + ∥δn∥. (13)

From Lemma 2.4, we know that {∥zn − p∥} and {∥wn − p∥} are bounded. Notice that

∥zn − Tzn∥ ≤ ∥zn − p∥ + ∥Tzn − p∥ ≤ (1 + L)∥zn − p∥,
∥zn − Twn∥ ≤ ∥zn − p∥ + ∥Twn − p∥ ≤ ∥zn − p∥ + L∥wn − p∥,
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which imply that {∥zn − Tzn∥} and {∥zn − Twn∥} are also bounded. Let

P = max{ sup{∥zn − p∥}, sup{∥wn − p∥}, sup{∥zn − Tzn∥}, sup{∥zn − Twn∥} }.

Then P < ∞. By (13), we have

∥wn − zn+1∥ ≤ (an + bn)P + ∥δn∥. (14)

From (5), we obtain

⟨Tzn+1 − zn+1, zn+1 − p⟩ ≤
K − 1

2
∥Tzn+1 − zn+1∥

2
−

1 − α
2
∥zn+1 − p∥2. (15)

Now, we consider the following two cases:
Case I: Suppose K ≤ 1. In this case, (15) becomes

⟨Tzn+1 − zn+1, zn+1 − p⟩ ≤ −
1 − α

2
∥zn+1 − p∥2. (16)

Inserting (14) and (16) into (12), we have

∥zn+1 − p∥2 ≤ [−
an(1 − α)

2
+ an] · ∥zn+1 − p∥2 + (1 − an)∥zn − p∥ · ∥zn+1 − p∥ + [an(an + bn)LP

+ ∥δn∥] · ∥zn+1 − p∥.

Without loss of generality, assume that ∥zn+1 − p∥ > 0 for all n ≥ 0, we obtain

∥zn+1 − p∥ ≤
an(1 + α)

2
∥zn+1 − p∥ + (1 − an)∥zn − p∥ + an(an + bn)LP + ∥δn∥.

and it follows that

∥zn+1 − p∥ ≤
(1 − an)∥zn − p∥ + an(an + bn)LP + ε′n + ε′′n

1 − an(1+α)
2

≤ (1 −
1 − 1+α

2

1 − 1+α
2 an

an)∥zn − p∥ +
an(an + bn)LP + ε′n + ε′′n

1 − 1+α
2

≤ [1 − (1 −
1 + α

2
)an]∥zn − p∥ +

2
1 − α

[an(an + bn)LP + ε′n + ε
′′

n ]. (17)

Applying Lemma 1.6 to (17) yields that lim
n→∞

zn = p.
Case II: Suppose K > 1. Since ∥Tzn+1 − zn+1∥ ≤ (1 + L)∥zn+1 − p∥, from (15), we have

⟨Tzn+1 − zn+1, zn+1 − p⟩ ≤
(K − 1)(1 + L)2

− (1 − α)
2

· an∥zn+1 − p∥2. (18)

Plugging (18) and (14) into (12), we have

∥zn+1 − p∥2 ≤
(K − 1)(1 + L)2 + 1 + α

2
· an∥zn+1 − p∥2 + (1 − an)∥zn − p∥ · ∥zn+1 − p∥ + [an(an + bn)LP

+ ∥δn∥] · ∥zn+1 − p∥.

Assume that ∥zn+1 − p∥ > 0 for all n ≥ 0, we have

∥zn+1 − p∥ ≤ [
(K − 1)(1 + L)2 + 1 + α

2
] · an∥zn+1 − p∥ + (1 − an)∥zn − p∥ + [an(an + bn)LP + ε′n + ε

′′

n ],
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which implies

∥zn+1 − p∥ ≤
(1 − an)∥zn − p∥ + [an(an + bn)LP + ε′n + ε′′n ]

1 − (K−1)(1+L)2+1+α
2 an

.

Let β = (K − 1)(1 + L)2 + α. Since (K − 1)(1 + L)2 + α < 1 and K > 1, we know that β ∈ (0, 1). Similar to the
proof of Case I, by Lemma 1.6, we have lim

n→∞
zn = p. Therefore, the sequence {xn} is weakly T−stable.

Example 2.6. Let C = [− 3
4 ,

3
4 ] and define T : C→ C by

Tx = 2x3
−

1
2

x.

This function is L-Lipschitzian with L = 2.875 and strongly demicontractive with α = 0.243,K = 1.050. T has a
unique fixed point p = 0. Note that

(K − 1)(1 + L)2 + α = 0.994 < 1.

Set a0 = b0 = 0 and an = bn =
1
n for all n ≥ 1. Then

lim
n→∞

an = 0, lim
n→∞

bn = 0 and
∞∑

n=0

an = ∞.

By the Ishikawa iteration (1), we have

yn = (1 −
1
n

)xn +
1
n

(2x3
n −

1
2

xn) =
2
n

x3
n +

2n − 3
2n

xn

and

xn+1 = (1 −
1
n

)xn +
1
n

(2y3
n −

1
2

yn)

= (1 −
1
n

)xn +
1
n

[2(
2
n

x3
n +

2n − 3
2n

xn)3
−

1
2

(
2
n

x3
n +

2n − 3
2n

xn)]

=
2
n

(
2
n

x3
n +

2n − 3
2n

xn)3
−

1
2n

(
2
n

x3
n +

2n − 3
2n

xn) + (1 −
1
n

)xn

for all n ≥ 1. It follows from the Matlab software that lim
n→∞

xn = 0. Thus, the sequence {xn} is weakly T−stable by

Theorem 2.5. However, take a sequence {zn}: zn =
1
2 , then

lim
n→∞
εn = lim

n→∞
∥zn+1 − f (T, an, zn)∥ = 0.

Obviously, lim
n→∞

zn , 0. From Definition 1.1, the sequence {xn} is not T−stable.

Remark 2.7. In the above example, the Ishikawa iteration (1) is weakly T−stable but not T−stable in the framework
of a strongly demicontractive mapping. Therefore, we partially solve the open problem in [1].
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