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Abstract. A = (a,) be a regular summability matrix. In the present paper we deal with subspaces of the
space of A—statistically convergent sequences obtained by the rate at which the A—statistical limit tends to
zero. We prove that a sequence is the A—strongly convergent if and only if it is the A—statistically convergent
and the A—uniformly integrable with the rate of 0 (a,) where a = (a,) is a positive nonincreasing sequence.
We also make a link between the A—strong convergence and the A—distributional convergence with the
rate of 0 (a,). Finally, as an application we present an approximation theorem of Korovkin type.

1. Introduction

Strong, statistical and distributional convergences are of some interest in the convergence theories. Some
studies on the statistical convergence may be found in [4-8, 10, 12, 14-16, 24]. Recently Duman, Khan and
Orhan [8], introduced the concept of A-statistical convergence with a rate at which the A—statistical limit
tends to zero where A = (a,x) is a nonnegative regular matrix (see also [7]). In the present paper we mainly
deal with subspaces of the space of A-statistically convergent sequences obtained by the rate at which
the A—statistical limit tends to zero. We prove that a sequence is the A—strongly convergent if and only
if it is the A—statistically convergent and the A—uniformly integrable with the rate of o (a,) where a = (a,,)
is a positive nonincreasing sequence. We also make a link between the A—strong convergence and the
A—distributional convergence with the rate of 0 (a,). Some criteria for the A—statistical convergence with
the rate of o(a,) is also given. Finally, as an application, an approximation theorem of Korovkin type is
considered.

We pause to collect some notation. If the natural density of the set E := {k € IN : |x; — L| > ¢} is zero then
we say that the sequence (xy) is statistically convergent to L (see, e.g.[9], [10] ). Replacing the Cesaro matrix
(C 1) by a nonnegative regular matrix A = (a,x) Freedman and Sember [10] extended the notion of natural
density to the A—density for a subset E of positive integers. Recall that an infinite matrix A = (a,) is said
to be regular if the sequence Ax := ((Ax),) = (Xio; 4ukXk), exists (i.e., the series on the right hand side is
convergent for each #) and lim (Ax),, = lim x,, for each convergent sequence x = (x,) . A characterization of
regularity of the matrix A = (a,x) may be found in [2]. Using this idea Connor [3], Kolk [16], Miller [19]
examined the A-statistical convergence. In [21] a criterion for the statistical convergence was given. Later
on it was weakened by Salat [20] when x satisfies a certain condition (see, also, [4]).
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Let A = (a,x) be a nonnegative regular summability matrix and let 2 = (a,) be a positive nonincreasing
sequence. Following [8] we say that the sequence x = (x;) is A-statistically convergent to the number L with
the rate of 0 (a,,) if for each € > 0,

liml Z aq = 0.

a
" klxe-Lize

In this case we write st4, —limx = L or x; — L = st4 —o0(ax), as k — oo. We also consider the following two
subspaces of A-statistically convergent sequences:

Stag = {x = (x) : sta, — limx = L for some L},
St?“i,u = {x = (xk) : StA,g —limx = 0} .

Also Demirci, Khan and Orhan [7] proved under certain conditions that stffw and st , cannot be endowed
with a locally convex FK—topology.

In Section 2 we study the A-density with the rate of 0(a,) and present some basic properties of
this concept. Section 3 is reserved for the A—strong convergence, the A—uniform integrability and the
A—distributional convergence with the rate of 0 (a,). In Section 4 we give some criteria for the A—statistical
convergence with the rate of 0 (a,,). In the last section as an application we prove an approximation theorem
of Korovkin type.

2. A—density with the rate of o (a,)
This section collects some results concerning the A—density with the rate of 0 (a,) .

Definition 2.1. Let A = (a,x) be a nonnegative reqular matrix and let a = (a,) be a positive nonincreasing sequence.
Let E be a subset of positive integers. The upper 64, (E) and lower 64, (E) densities of E are respectively defined by

04q(E) =limsup L ¥ au, and §, (E)=liminfl ¥ a,.
n " keE ’ n " keE

If SA,ﬂ (E)=9¢ A (E) then we say that E has A—density with the rate of 0 (a,) .

Throughout the paper we assume that 64, (IN) = « is finite. Note that a cannot be zero since A = (a,) is
a nonnegative regular matrix.

Proposition 2.2. For subsets E, G of positive integers we have
DECG=> 6A,tl (E) < 6A,a (G) ’

ii) 044 (@) =0,

iii) if either 04 (E) or 04,4 (IN\E) exists then 04, (N\E) = a— 64,4 (E).

Hence the sequence x = (xx) is the A—statistically convergent to L with the rate of o (a,) provided that
for each ¢ > 0 the set

E(e):={keN:|x—-L|>c¢},

has the A—density zero with the rate of 0 (a,), i.e., 044 (E (¢)) = 0.

Fridy and Khan [12] proved that the A-statistical convergence is a regular method if and only if the
columns of A go to zero. It is important to note that the A—statistical convergence with the rate of o (a,) is
a regular method if and only if a,x = 0(a,), as n — oo, for every k € IN. In the sequel the method will be
assumed to be regular.

The next result is an improvement of a result of Demirci [5].
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Theorem 2.3. Let A and B be nonnegative regular matrices and a = (a,) be a positive nonincreasing sequence.
Assume that

1 (o]
limsup — A — buel = 0.
nP a, ;‘ | nk nkl

Then 64, (K) = 0 if and only if 53, (K) = 0 for every K € IN.

Proof. 1f 5,4,,1 (K) =0, then lim sup ﬂln Y, a,x = 0. Since

n keK
1 1 1
Ezank_azbnk < sznk_bnﬂ
kekK keK keK
< % Z |ank - bnk|/
k=1
we get from the hypothesis that
. 1 1
limsup |— Zank - — ank =0.
a a

n ™ keK ™ keK

This implies that SA,H (K) = 0if and only if 53,,, (KY=0. O

3. Strong, Distributional Convergences and Uniform Integrability

In this section we consider the A—strong convergence and the A—uniform integrability with a rate. We
prove that a sequence is the A—strongly convergent if and only if it is the A—statistically convergent and
the A—uniformly integrable with the rate of 0 (a,) where a = (a,) is a positive nonincreasing sequence. We
also make a link between the A—strong convergence and the A—distributional convergence with the rate
of 0 (a,). Recall that strong summability arises in the study of the summability of Fourier series [13].

Definition 3.1. Let A = (aux) be a nonnegative reqular matrix and let a = (a,,) be a positive nonincreasing sequence.
Let W, (A) be defined by

1 [ee)
W, (A) := {x: lim — Z A [xx — L| = 0 for some L}.
nody =

If x € W, (A), then we say that x is A—strongly summable to L with the rate of o (a,).

Definition 3.2. Let A = (a,x) be a nonnegative reqular matrix and let a = (a,) be a positive nonincreasing sequence.
A sequence x = (xy) is said to be A—uniformly integrable with the rate of o (ay) if

. 1
lim sup . Z || |2 = 0.

= " Kot
By Uy, we denote the set of all A—uniformly integrable sequences with the rate of o (ay,).

It is clear from the definition that any bounded sequence x = (xy) is the A—uniformly integrable with
the rate of 0 (a,,) .
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Definition 3.3. A real sequence x is defined to be A—distributionally convergent to oF with the rate of o (a,) where
F is a probality distribution on R, if

1
lim — Ak = aF (t) ’
" ln k;kq

for each t at which F is continuous.

The following theorem is motivated by the Summer seminar lectures given by M.K. Khan on ”Proba-
bilistic Methods in the Theory of Summability” at Ankara University during 21 August-1 September 2006
([14]).

The class of summability matrices with nonnegative entries is denoted by M*.

The next result characterizes the uniform integrability with the rate of 0 (a,) .

Theorem 3.4. Let x = (xy) be a real sequence and let A € M* and let a = (a,) be a positive nonincreasing sequence.
The following statements are equivalent:
1) X € uA,ll/

(o]
2)i)sup L ¥ anlxil < oo,
n " k=1

ii) For any ¢ > 0 there exists a 6 > 0 such that for any subset E of nonnegative integers for which

1
sup ﬂ_ Zank <9,

n T heE
we have
1
sup — Zank || < €.
a
n " keE

Proof. Let x € Uy ,. Then for an arbitrarily given ¢ > 0 we may choose a fy € R with

1 ~
sup — Z A %] < % for each t > ty.

T >t

From this we have

(o]
sup - Y aplul < sup L amlvd +supn Y aw
n k=1 n k:|xk|<to n k:lxx|>to

IA

o0
1
tosup - Y au+ 5
n k=1

which yields (7).
To show Part (ii), we take 6 = ¢/2ty, and for any set E of nonnegative integers, we let

1
sup - Zank <.

n " keE
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Hence, we obtain

1 1 1
sup ;- X amclxil < osup o X amcll +supnc X el
n keE n k:lxp|>to n ke:lxg|<to
keE keE
1 1
< sup .- Y. Ak x| + to sup i Y, au
n k:lxk|>to n keE
< % + tpd
= 6,

which yields (ii).
Now, we show that Part (2) implies Part (1). In Part (2) (i), we let

1 (o]
M :=sup — Z A x| < 0.
n an k=1

Moreover by Part (ii), the statement, for any ¢ > 0, there is 6 > 0, such that sup,, ﬂl Yokek Ak < O, implies the
condition

1 (o)
sup — Zank x| < o0.
i3

n

Hence for this € > 0, take tg = %—4
Next, consider the set E (t) := {k : [xx| > t}. So we have for any fixed ¢ > f, that
sup ;- L ame < psup - X el
n " keE(t) n k=1
M
s 7
M
< h

This means that Part (ii) can be applied, with E = E (t), and we conclude

1
sup - Z Ak Xk < €,

L )
for t > ty. This implies that x € Us,. O
The following result characterizes the A—strong convergence with the rate of 0 (a,,) .

Theorem 3.5. Let A = (a) be a nonnegative reqular matrix, let a = (a,) be a positive nonincreasing sequence and
let x = (xx) be a real number sequence. Then the following statements are equivalent:

i) Tim - Y2y ank el = 0,

ii)sta, —limx =0and x € Ua,,

iii) The sequnece x is the A—distributionally convergent to oF with the rate of 0 (a,) and x € U ,, where F = X[0,00)-
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Proof. (ii) = (i) : Since sty , — limx = 0 and x € Uy, for any € > 0 and any ¢ > 0 we have

lim sup % Y aulxl < limsup al Y. x| + limsup % Y A x|
n Je:lxg|<t n kee<|xg|<t n k:|xg|<min(t,e)
(o]
< tlimsup ul Y. ag + elimsup ai Y aux
n " k:lxg|>¢ n " k=1
< éa.

From this we also get

lim sup al Yoaulxl < limsup al Y. kx| + limsup al Y g |xxl
n n n
n k n ke|xi | <t n ke:lxe | >t

. 3.1
< ea+limsupL Y aulnl. ey
n k>t

Since x € Uy, by (3.1) we obtain (by letting ¢t — o) that
limsup Z lank lxi| < ea.
n k a?l

Since ¢ > 0 is arbitrary, it follows that

.1 _
hrrln ﬂ_n ; i |xx] = 0.
(1) = (i1) : For any ¢ > 0, it is clear that

1 1
i Lok S o Y|,
kelxp|>¢ k

and by Part (i), this implies
Sta, —limx = 0.

To complete the proof, it remains to show that x € Uy ,.
By Part (i), for any € > 0 there exists N € IN such that

1 oo
— Zank |xx| < € foralln > N.
e

Since sup = Y. 4y x| < oo, for each n = 1,2,...,N — 1 we may choose a positive integer K large enough for
n 'k

which

1 Z
ank |xk| < gl
a

" k>K

foralln < N.
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When t > max{|x1], [x2], ..., |xk|}, we observe that

1
sup — Z i x| < &,

LR AN

which means that x € U ,.
(if) = (iii) : By Part (i), we have

.1
1171;11 a—n Zk‘ Ak |xk| =0.

Casel: Let t < 0. If x; < t, then - > 1
Thus we get
T L oaw < —j- L anlul
kexe <t Fex <t
< _% ,11_” Z Ak Xk
k=1
Combining this with (3.2), we have
1
lim — Z ay =0=aF(),
nody
kxg<t
thus F () = 0 for all ¢ < 0.
Case II: Let t > 0. One can get
,%Zank = al Z‘ank‘*'gl Y Ak
"k " kexp <t " kx>t

IA

1 11
o X Akt pa L AmkXk
n n

ke <t kx>t

IA

1 11
i L Gkt o XAk Xl
kexg<t k

Letting n — oo, we obtain

a < liml Y ay
n—00 ko<t

(o]
L
Iim = Y a4 = a,

n—oo fn ;73

IA

which implies F (f) = 1 for all ¢ > 0.
(iif) = (ii) : For all € > 0 we get

1 1 1
i Lk D D S M
k:lxg|>¢ kixp<—e kxe>e

IN

(o]

1 1 1

a, Z ank‘*'azank_a_n Z k-
kixg<—¢ k=1 kixp<e

5329

(3.2)
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By letting n — co we obtain

o1
lim — Z ax<0+a-a=0,
n—co (1,

k:lxg|>¢

which means thatsty, —limx =0. O

4. Criteria

In this section, motivated by those of Demirci [4], Schoenberg [21], Sahin Bayram [23] we give a criterion
for the A—statistical convergence with the rate of 0 (a,). Later on we will also improve this result.

Definition 4.1. Let A (aux) be a nonnegative regular summabzllty matrix. Ayx is the sequence whose nth term is

given by (Azx), = ): A Xk, Where we assume that the series Z AnkXy s convergent for each n € IN. If

k=1
lim ! i ApiXr = L
m — =
ia, k:1 nkAk
then we say that x is A—summable to L with the rate of 0 (a,). In this case we write A, —limx = L.

Let £« denote the space of all bounded sequences.

Theorem 4.2. Let A = (a,) be a nonnegative regular matrix and let a = (a,) be a positive nonincreasing sequence.
If sty —limx = L then A, — lim x = aL for every x € {w.

Proof. Letsty, —limx = L and for any ¢ > 0, welet K = {k : |xx — L| > ¢} . Then

o1
lim — e = 0.
n ﬂn
keK

For every x € {,, we have

[ee)
[(Aax), —aL| < 7 L b - zank—
k=1
= _Zanklxk_L|+_Zank|xk_ Zank_
< suplxk—LI ):ank+é Zank—

Letting n — oo we get that ((Agx)n - azL| < ea. Since ¢ > 0 is arbitrary we conclude that A, —limx = aL. O

Lemma 4.3. Let a = (a,) be a positive nonincreasing sequence. If the sequence x = (xy) is the A—statistically
convergent to the number L with the rate of o(a,) and the function g defined on R, is continuous at y = L, then
staq —limg(x) = g(L).

Since the proof uses same technique as in [21], we omit the details (see, also, [4]).
Now we are ready to give an analog of Schoenberg’s criterion.
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Theorem 4.4. Let A = (a,) be a nonnegative reqular matrix and let a = (a,) be a positive nonincreasing sequence.
The sequence x = (xy) is the A—statistically convergent to the number L with the rate of o (a,) if and only if we get

1 = . ,
lim o Z At = qell, 4.1)

for every real t.

Proof. Letsty,—limx =Land forafixedf € R, g(x) = ™. Note that the function g is a continuous function
of x. Then we have by Lemma 4.3 that

sta, — lime™ = el
Since (ei”‘k) € I, we conclude that
A, = lim ™ = qe''t,

by Theorem 4.2.
Conversely suppose that (4.1) holds. As in [21], we define a continuous function M by

0 , 1<y.

Since the M is a Lebesgue integrable function, its Fourier transformation is given by

f) = 4= [M@ye™dy, teR

_ 1 (sin(t/z) )2
T Var\ 2 )
Moreover inverse Fourier Transformation of the function f is

1

M(y) =

Tt

() eitvar

8%8

o 4.2)
= L[ (E2Y et

—00

To complete the proof, we need to show that st4, —limx = 0. Let ¢ > 0 and K := K(¢) := {k € IN : |x¢| > ¢€}.
Substituting £ = u, we obtain

vy _ ¢ r sin (et/2) 2 i
M(z)— ﬂf(T) eat.

Hence
(o)

1w 2\ [ 1 « S
LS (%)= & [ (L F e

k=1

—00
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We remark that (4.2) is an absolutely convergent integral. By the Lebesgue dominated convergence theorem
we see that

e8]

) s 2 & .
imd £oa(2) = £ J (2582 (1m 2 £ oo
k=1 k=1

—00

- g ] (22 0

= aM(0)

= a.
Considering the definition of the function M, we get
RLeaM(¥) = & T auM(2)+d 3 auM(¥)
= kim1<3E<0 ko< k<1 .
< u_,, Z Apk — Z Ak

" keK

Taking limit as n — oo on the both sides of (4.3) and using the fact that 04, (IN) = a, we now see that

.1
lim — E aye = 0.
n—oo (1
" keK

This concludes the proof. O

The next theorem is an analogue of Salat’s result [20].
Let

* 1 -
SA,H = {x : [u— Za,,k |xk|] S &0}.
" k=1

We show that condition (4.1) in Theorem 4.4 can be weakened provided that xisin S}, |

Theorem 4.5. Let A = (a,) be a nonnegative reqular matrix and let a = (a,) be a positive nonincreasing sequence.
Ifx € S, , then the sequence x is the A—statistically convergent to the number L with the rate of o (a,) if and only if
for each rational number t we get

1l e . ,
lim o kZ: age™ = ae'. (4.4)

Proof. The necessity follows from Theorem 4.4. Sufficiency. For each rational number ¢, let (4.4) hold and ¢,
be an arbitrary real number. We need to show that

[e9)

1S -
lim — ) 0% = gelfol, (4.5)
R

Now let

(o)

1 1 v
Cn (tO/ t) = 2 Z itoxe _ a— Z Ak ltxk

k=1 " k=1
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Observe that

o)

1
|C,; (to, B)] < - Z Ak \/ (cos toxy — cos txk)2 + (sin tpx — sin txk)z.
" k=1

By the Mean Value Theorem we have

(o)

1
Co (b0, O < It = tol — 3" e bl

" k=1
Since x € S;"a, there exists M > 0 such that
ICy (to, t)| < |t — tol M. (4.6)

We observe that

0o

1 , .
il Z ankelto)&‘k _ aethL
n

k=1

0o

1 . .
il Z ankeztxk _ aeltL
an

k=1

<

+ale™ — e +|Cy (fo, 1))

Let ¢ > 0. By the continuity of g (x) = ae"", one can get that there exists a rational number ¢ such that

|eitL _eitoL| < %, (4.7)
and by (4.6) we have
€
ICyu (b0, )| < 3 (4.8)

Finally, combining (4.4) and (4.7) and (4.8) we conclude that (4.5) holds. Since f; € R is arbitrary, hence
stag —limx=L. O

5. An Application to Approximation Theory

The main purpose of this section is to present an application of the rates of the A—statistical convergence
to Korovkin type approximation theory. Note that Korovkin type approximation theorems provide condi-
tions under which a given sequence of positive linear operators, acting on some function space, converges
strongly to the identity operator [17]. Firstly we recall, for the reader’s convenience, some definitions and
notation stated in [1] and [18]. Let X be a compact metric space. The collection of all continuous real

valued functions on X will be denoted by C (X) equipped with norm “ f || =sup, .y ) f (x)| . A linear operator
L:C(X) = C(X) is called positive if L (f) > 0 provided that f > 0.
The diagonal A (f) of f € C(X) in X is defined by

A(f) ={(xt) e XxX: f(x) = f(B)}.
Let a € C(X) and Z () be the set of zeros of a i.e.,
Za)={xeX:a(x)=0}.

If y is a positive function in C (X X X) such that Z(y) c A(f), then y is called a bounding function for
f € C(X).In addition for each t € X we write y; (x) := y (x,1).

Lemma 5.1. Let A = (aj,,) be a nonnegative regular matrix and let a = (a j) be a positive nonincreasing sequence
and let y be a bounding function for f € C(X). Suppose that {L,} be a sequence of positive operators from C (X) into
C(X). If (i) stan = lim||IL, (1) = 1] = 0,

(ii) staa —lim ||L, (71)|| = 0

then sty , — lim ”Lnf - f” =0.
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Proof. Following [18], we immediately get

L0 (F) B = £ O] < &+ (e + £ B ILw (1) () = 1]+ MLy, (72) ().
This gives the inequality

L (f) = fI| < & + B(ILw (1) = 11l + [|Ls 07|

), (5.1)

where B := max{e + ||f ,M}.
Let r > 0. Hence there exist some ¢ > 0 such that ¢ < r. Define the sets
D= {n: Ly (1) = Ul +||La )] 2 7 = ],

Di = {n: L, (1) - 1l = 55,

Dy = {n: L. ()] = 55}
Then we have D C D; U D;. Now (5.1) yields that

l Z ”J’"S%Z”J'"S%ZQJ"JF%Z“}"-

a
] n:||L,,(f)—f||2r J meD ] neDy ] neD,

Letting j — oo on the both sides and using (i) and (ii), we obtain that st4, — lim ”Ln f—f || =0. O

Letting X = [4,b] and taking y; (x) := (x — £)?* as a bounding function of an arbitrary f € Cla, b] then
Lemma 5.1 allows us to conclude the following;:

Theorem 5.2. Let A = (a j,,) be a nonnegative regular matrix and let a = (aj) be a positive nonincreasing sequence
and let L, : C(X) — C(X) be a sequence of positive linear operators. If

staa —lim |[Lafi - £ =0, (1=0,1,2)
then, we get

Staq — lim”Lnf —f” =0,
for any function f € C(X), where f; (y) = y'.
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