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Abstract. In this paper, we consider a fixed point problem related to some contraction mappings and
introduce new classes of Picard operators for such mappings in the framework of F -metric space, yielding
some interesting and novel results. As application of the obtained results, we investigate the Hyers-Ulam
stability of a fixed point problem, a Cauchy functional equation, and an integral equation. Also, we present
the well-posedness of the fixed point problem and integral equation. Some illustrative examples are also
provided to support the new findings.

1. Introduction

In the theory of Ulam’s stability, one can find the efficient tools to evaluate the errors, that is, to study the
existence of an exact solution of the perturbed functional equation which is not far from the given function
(see [10, 13, 24] and references cited therein). In the subject of analysis, the study of solutions and stability
results of functional equations is a popular topic. In nonlinear analysis, notably in fixed point theory, the
stability results of functional equations are used. The study of the stability of functional equations has
many applications in economics and optimization theory (see [6]). Recently, many research publications
addressed the stability of several forms of functional equations (see [16, 20–23, 28–30]).

One of the most important branches of nonlinear analysis is fixed point theory. The Banach contraction
principle, or fixed point theorem, was initially stated in Banach’s thesis [3], where it was used to prove
the existence of an integral equation solution. Due to its simplicity and applicability, it has now become a
highly common method for solving existence issues in many disciplines of mathematical analysis. Because
of its relevance and simplicity, Banach’s contraction principle has generated several interesting extensions
and generalizations (see Boyd and Wong [4], Geraghty [12], Amini-Harandi and Petrusel [2], Jleli and Samet
[14], Wardowski and Dung [31], Wardowski [32] and others).

In the last few years, there are many interesting modifications (or generalizations) of the metric space
concept appeared in the literature, such as Czerwik [7] introduced the notion of b-metric with a coefficient
2, and this notion was further generalized by the author in [8] with a coefficient K ≥ 1 in 1994. Matthews
[19] gave the concept of partial metric space, Branciari [5] introduced a notion of a v-generalized metric
space, Khamsi et al. [17] reintroduced the notion of b-metric as metric type, Fagin et al. [9] gave the
notion of s − relaxedp metric (see, also [18]) and thereafter many researchers gave different and wonderful
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concepts. Recently, Jleli et al. [15] presented a fascinating generalization called as F -metric space. They
demonstrated that every metric space is an F -metric space, but not the other way around, proving that
F -metric space is more general than metric space. They found a similar result for s-relaxedp metric space
with the use of realistic examples. They looked at the comparison between b-metric and F -metric spaces,
constructed a natural topology on F -metric spaces, and showed that the closed ball is closed with regard
to the proposed topology after imposing a sufficient condition. Finally, they proved a Banach contraction
fixed point theorem in F -metric spaces.

In this paper, we present some results for the existence of the Picard operator for the class of contraction
mappings and investigate the Hyers-Ulam stability of fixed point problem, Cauchy functional equation,
and integral equation as applications. We also obtain the well-posedness of a fixed point problem and
integral equation. Some examples are provided for the usability of the results.

2. Preliminaries

Let F be the set of function f : (0,+∞)→ R satisfying the following conditions:
(Θ1) f is non-decreasing, that is 0 < λ < µ implies f (λ) ≤ f (µ),

(Θ2) for every sequence {µn} ⊂ (0,+∞),we have

lim
n→∞
µn = 0⇔ lim

n→∞
f (µn) = −∞.

Definition 2.1. [15] Let E , ∅, and D : E × E → [0,∞) be a map. Assume that there exists ( f , α) ∈ F × [0,∞)
such that
(D1) (ϖ,κ) ∈ E × E ,D(ϖ,κ) = 0⇔ ϖ = κ,
(D2) D(ϖ,κ) = D(κ, ϖ), for all (ϖ,κ) ∈ E × E ,
(D3) for every (ϖ,κ) ∈ E × E , for every r ∈N, r > 1, and for every (ϖi)r

i=1 ⊂ E with (ϖi, ϖi+1) = (ϖ,κ), we have

D(ϖ,κ) > 0⇒ f (D(ϖ,κ)) ≤ f

 r−1∑
i=1

D(ϖi, ϖi+1)

 + α.
Then D is said to be an F -metric (FM) on E , and the pair (E ,D) is said to be an F -metric space (FMS).

Definition 2.2. [15] Let (E ,D) be an FMS and A be a nonempty subset of E . A is said to be F -open if for every
ϖ ∈ A , there is some δ > 0 such that S (ϖ, δ) ⊂ A , where

S (z, δ) = {p ∈ E : D(ϖ, p) < δ}.

We say that a subset A of E is F -closed if E \A is F -open. The family of all F -open subset of E is denoted by
TF .

Definition 2.3. [15] Let (E ,D) be an FMS. A sequence {ϖr} is F -convergent to ϖ ∈ E if {ϖr} is convergent to E
with respect to topology TF .

Definition 2.4. [15] Let (E ,D) be an FMS and {ϖr1 } be a sequence in E . A sequence {ϖr1 } is said to be F -Cauchy if

lim
r2,r1→∞

D(ϖr1 , ϖr2 ) = 0.

Definition 2.5. (see [11, 25, 26]) Let (E ,D) be an FMS and T : E → E be a self mapping. A sequence {ϖr} defined
by ϖr+1 = T (ϖr) = T rϖ0 is called a Picard sequence (PS) based at point ϖ0 ∈ E . A self mapping T is said to be a
Picard operator (PO) if it has a unique fixed point κ ∈ E and κ = lim

r→∞
T rϖ for all ϖ ∈ E .

Definition 2.6. [15] Let (E ,D) be an FMS and {ϖr} be a sequence in E . A sequence {ϖr} is said to be F -complete
if every F -Cauchy sequence in E is F -convergent to a certain point in E .

Definition 2.7. [15] Let (E ,D) be an FMS and A be a non empty subset of E . A is said to be F -compact if A is
compact with respect to the topology TF on E .
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3. Wb− Picard Operator

To start with, we have the following notations:

Definition 3.1. Suppose that Φ denote the family of functions φ : [0,∞)→ [0,∞) satisfying following conditions:

(Wi) φ is non-decreasing, that is 0 < λ < µ implies φ(λ) ≤ φ(µ).
(Wii) φr(t)→ 0 as r→∞, for t ∈ [0,∞).

Definition 3.2. Let (E ,D) be an FMS. If D satisfying the following condition:

(D4) D(λκ, λϖ) ≤| λ | D(κ, ϖ), λ ∈ R.

Then D is said to be an F -linear metric (F LM) on E , and the pair (E ,D) is said to be an F -linear metric space
(F LMS).

Now, we give Wb−contraction which will be used in our results.

Definition 3.3. Let (E ,D) be an FMS and T : E → E be a self mapping. A mapping T is called Wb−contraction
if there exists a φ ∈ Φ such that for all ϖ,κ ∈ E , we have

D(T ϖ,T κ) ≤ φ(D(ϖ,κ)). (1)

Remark 3.4. Here, we note that Wb-contraction mapping has at most one fixed point (FP). Take E = [0,∞). Suppose
that T has two distinct FPs say e1, e2 ∈ E , such that D(e1, e2) > 0. Using (1) we have

D(e1, e2) = D(T e1,T e2) ≤ φ(D(e1, e2)) = φ(D(T e1,T e2)) ≤ φ2(D(e1, e2)) ≤ ...
≤ φr(D(e1, e2)).

Taking r→∞, and using Definition 3.1, we have, D(e1, e2) ≤ 0. Hence D(e1, e2) = 0, that is, e1 = e2.

Lemma 3.5. Suppose that T is a Wb-contraction in FMS (E ,D). Then for every PS {ϖr} ⊂ E defined in Definition
2.5, we have D(ϖr, ϖr+1)→ 0 as r→∞, where ϖr , ϖr+1.

Proof. Let ϖ0 be an arbitrary element. Define the PS {ϖr} ⊂ E defined by ϖr+1 = T ϖr = T rϖ0 for all
r ∈N ∪ {0}. We may assume that D(ϖ0, ϖ1) > 0. Since T is a Wb contraction, we have

D(ϖr, ϖr+1) = D(T ϖr−1,T ϖr)
≤ φ(D(ϖr−1, ϖr)) = φ(D(T ϖr−2,T ϖr−1))

≤ φ2(D(ϖr−2, ϖr−1))
...

≤ φr−1(D(T ϖ0,T ϖ1))
≤ φr(D(ϖ0, ϖ1)).

Therefore, we have D(ϖr, ϖr+1) ≤ φr(D(ϖ0, ϖ1)), for all r ∈ N. Taking limit r→ ∞ and using Definition 3.1,
we have

lim
r→∞

D(ϖr, ϖr+1) ≤ lim
r→∞
φr(D(ϖ0, ϖ1))→ 0.

Hence lim
r→∞

D(ϖr, ϖr+1) = 0.

Lemma 3.6. If all the hypotheses of Lemma 3.5 hold. Then the PS is an F -Cauchy sequence.
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Proof. Let ( f , α) ∈ F × [0,∞) be such that (D3) is satisfied. Suppose that ε > 0 is given. By (Θ1), there exists
a η > 0 such that for 0 < t < η, we have

f (t) < f (ε) − α. (2)

Let ϖ0 be an arbitrary element. Define the PS {ϖr} ⊂ E defined by ϖr+1 = T ϖr = T rϖ0 for all r ∈ N ∪ {0}.
We may assume that D(ϖ0, ϖ1) > 0. Using Lemma 3.5, we have lim

r→∞
D(ϖr, ϖr+1) = 0. Further, we have

s−1∑
i=r

D(ϖi, ϖi+1) = D(ϖr, ϖr+1) +D(ϖr+1, ϖr+2) + . . . +D(ϖs−1, ϖs). (3)

It implies that

s−1∑
i=r

D(ϖi, ϖi+1) ≤ φr(D(ϖ0, ϖ1)) + φr+1(D(ϖ0, ϖ1)) + . . . + φs−1(D(ϖ0, ϖ1)). (4)

Hence, we have
s−1∑
i=r

D(ϖi, ϖi+1) ≤
φr(D(ϖ0, ϖ1))

1 − φ(D(ϖ0, ϖ1))
.

Since lim
r→∞

φr(D(ϖ0, ϖ1))
1 − φ(D(ϖ0, ϖ1))

= 0, for a given η > 0 there exists N ∈N such that 0 <
φr(D(ϖ0, ϖ1))

1 − φ(D(ϖ0, ϖ1))
< η, for

r ≥ N. Hence by (2) and (Θ1), we obtain

f

m−1∑
i=n

D(ϖi, ϖi+1)

 ≤ f
(
φr(D(ϖ0, ϖ1))

1 − φ(D(ϖ0, ϖ1))

)
< f (ε) − α, s > r ≥ N. (5)

Using (D3) and (5), we obtain

f (D(ϖr, ϖs)) ≤ f

 s−1∑
i=r

D(ϖi, ϖi+1)

 + α < f (ε).

Using Θ1, we have

D(ϖr, ϖs) < ε,

for s, r ≥ N. Hence {ϖr} is F - Cauchy.

Theorem 3.7. Every Wb-contraction in an F -complete FMS (E ,D) is a PO.

Proof. Let ϖ0 be an arbitrary element. Using Lemma 3.6, PS {ϖr} is an F−Cauchy sequence. Since (E ,D) is
F -complete, there exists ϖ∗ ∈ E such that {ϖr} is F - convergent to ϖ∗, that is

lim
r→∞

D(ϖr, ϖ
∗) = 0. (6)

Now we have to prove that ϖ∗ is a FP of T . We argue by contradiction, suppose that D(T ϖ∗, ϖ∗) > 0. By
(D3), we have

f (D(T ϖ∗, ϖ∗)) ≤ f [D(T ϖ∗,T ϖr) +D(T ϖr, ϖ
∗)] + α

≤ f
[
φ(D(ϖ∗, ϖr)) +D(ϖr+1, ϖ

∗)
]
+ α.

Taking r→∞ and using (Θ2) and (6), we have

lim
r→∞

f
[
φ(D(ϖ∗, ϖr)) +D(ϖr+1, ϖ

∗)
]
+ α = −∞.

Therefore, f (D(T ϖ∗, ϖ∗)) ≤ −∞ or D(T ϖ∗, ϖ∗) ≤ −∞, which is contradiction. Therefore, we have
D(T ϖ∗, ϖ∗) = 0, that is Tϖ∗ = ϖ∗. Hence the result.
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Example 3.8. Let E = [0, 3] and D : E × E → E be the mapping defined by

D(x, y) = (x − y)2,

for all (x, y) ∈ E × E is F -complete FMS with f (t) = ln(t) and α = ln(3).
T : E → E be a mapping defined by

T x =
x
2
+ 1,

for all x ∈ E . Define φ : [0, 3]→ [0, 3] as φ(t) =
t
4
+ a, where a ≤

1
5

, so it satisfies the following conditions:

(i) φ is non-decreasing,
(ii) φr(t)→ 0 as r→∞, for t ∈ [0, 3].

Then T has a Wb−contraction and has a unique FP.

−2 −1 1 2 3 4

1

2

3

4 y = x

y =
x
2
+ 1

Figure 1: Graph of x =
x
2
+ 1, showing the intersecting point (fixed point) of curve is 2.

Proof. Let T x =
x
2
+ 1, for each x ∈ E . Consider

D(T x,T y) =
(x

2
+ 1 −

y
2
− 1

)2

=
(x

2
−

y
2

)2

=
(x − y)2

4

=
D(x, y)

4

≤
D(x, y)

4
+ a.

Therefore, D(T x,T y) ≤ φ(D(x, y)), φ(t) =
t
4
+ a is a non decreasing function. Therefore T has a

Wb-contraction. Since (E ,D) is F -complete therefore T has a unique FP and FP of x =
x
2
+ 1 is 2 (see Fig.

1).
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3.1. Hyers-Ulam (HU) stability
Many authors have investigated the HU stability of various functional equations in various abstract

spaces. In this section, we analyze the HU stability result by generalizing the results of [1, 27] in the setting
of FMS using FP techniques.

Definition 3.9. Let T : E → E be an operator on an FMS (E ,D). The FP equation

ϖ = T (ϖ), ϖ ∈ E (7)

is HU stable if there exists a strictly increasing and surjective function β : [0,∞) → [0,∞) with β(t) = t − φ(t),
t ∈ [0,∞), where φ is a non-decreasing function φ : [0,∞)→ [0,∞) and lim

r→∞
φr(t) = 0 and such that for each ε > 0

and each solution κ∗ of the inequality D(κ,T (κ)) < ε, for each κ ∈ E , there exists a solution ϖ∗ of equation (7) such
that

D(κ∗, ϖ∗) < β−1(ε).

Definition 3.10. If the FP problem (7) for T meets the following criteria, then it is well-posed (WP)

(p1) T has a unique FP ϖ∗ ∈ E ,
(p2) if for any sequence {ϖr} in E such that

lim
r→∞

D(T ϖr, ϖr) = 0,

then

lim
r→∞

D(ϖr, ϖ
∗) = 0.

Theorem 3.11. Assume that all of Theorem 3.7’s hypotheses are true. Then the following conditions are hold:

(A1) The FP problem (7) is HU stable, that is, if for each ε > 0 and each solutionκ∗ of the inequality D(κ,T (κ)) < ε,
for each κ ∈ E , there exists a solution ϖ∗ of equation (7) such that

D(κ∗, ϖ∗) < β−1(ε).

(A2) If {ϖr} is a sequence in E such that lim
r→∞

D(T ϖr, ϖr) = 0 and ϖ∗ is a FP of T , then the FP problem (7) is WP.

Proof. (A1) Using Theorem 3.7, there is a unique ϖ∗ ∈ E such that ϖ∗ = T ϖ∗ that is ϖ∗ ∈ E is solution of
the FP equation (ϖ = T ϖ). Assume that ε > 0 and κ∗ ∈ E . Using (D3), we have

f (D(κ∗, ϖ∗)) ≤ f [D(κ∗,T κ∗) +D(T κ∗, ϖ∗)] + α
≤ f [ε +D(T κ∗,T ϖ∗)] + α
≤ f [ε + φ(D(κ∗, ϖ∗))] + α.

Hence using property of (Θ1), we have D(κ∗, ϖ∗) ≤ ε + φ(D(κ∗, ϖ∗)), or D(κ∗, ϖ∗) − φD(κ∗, ϖ∗) ≤ ε.
Further, we have β(D(κ∗, ϖ∗)) ≤ ε. Hence

D(κ∗, ϖ∗) ≤ β−1(ε),

which completes the proof.
(A2) If {ξr} is a sequence in E such that lim

r→∞
D(T ξr, ξr) = 0 and ϖ∗ is a unique FP of T (using Theorem 3.7).

From the triangle inequality and contractive condition, we have

f (D(ξr, ϖ
∗)) ≤ f [D(ξr,T ξr) +D(T ξr, ϖ

∗)] + α
≤ f [D(ξr,T ξr) +D(T ξr,T ϖ

∗)] + α
≤ f [D(ξr,T ξr) + φ(D(ξr, ϖ

∗))] + α.
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On the same lines of above cases, we have
β(D(ξr, ϖ∗)) ≤ D(ξr,T ξr). Taking limit r→∞, we get

lim
r→∞
β(D(ξr, ϖ

∗)) ≤ lim
r→∞

D(ξr,T ξr).

Therefore, lim
r→∞
β(D(ξr, ϖ∗)) = 0. Hence D(ξr, x∗) = 0. This shows that the FP problem (7) is WP.

Theorem 3.12. Assume that all of Theorem 3.7’s hypotheses are true. If R : E → E is a map such that there exists
Λ > 0 with

D(T ξ,Rξ) < Λ,

for all ξ ∈ E , then for any FP κ∗ of R, we have

D(ϖ∗,κ∗) ≤ β−1(Λ).

Proof. Suppose that R : E → E is a map such that there exists Λ > 0, with D(T ξ,Rξ) < Λ, for all ξ ∈ E .
Choose κ∗ be the FP of R then by the property of (D3), we have

f (D(ϖ∗,κ∗)) ≤ f (D(ϖ∗,κ∗)) + α
≤ f (D(T ϖ∗,Rκ∗)) + α
≤ f [D(T ϖ∗,T κ∗) +D(T κ∗,Rκ∗)] + α
≤ f [φ(D(ϖ∗,κ∗)) +D(T κ∗,Rκ∗)] + α
≤ f [φ(D(ϖ∗,κ∗)) + Λ] + α.

Using the property of Θ1, we have

D(ϖ∗,κ∗) ≤ φ(D(ϖ∗,κ∗)) + Λ.

It implies D(ϖ∗,κ∗)−φ(D(ϖ∗,κ∗)) ≤ Λ. Therefore, we get β(D(ϖ∗,κ∗)) ≤ Λ or D(ϖ∗,κ∗) ≤ β−1(Λ).Hence the
result.

3.2. Stability of Cauchy functional equation
Theorem 3.13. Let (E ,D) be an F LMS and T : E → E be a Wb−contraction.

Assume that R : E → E is a mapping such that for each ε1 > 0

D(R(κ + ϖ),R(κ) + R(ϖ)) < ε1, (8)

for all ϖ,κ ∈ E .
Then there exists a unique function q : E → E satisfies

D(R(κ), q(κ)) < β−1(ε), (9)

where ε =
ε1

2
.

Proof. Put κ = ϖ in (8), we have

D (R(2κ), 2R(κ)) < ε1. (10)

Since, by the Definition 3.2

D (R(2κ), 2R(κ)) ≤ |2|D
(1

2
R(2κ),R(κ)

)
< ε1.
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Therefore, we have

D
(1

2
R(2κ),R(κ)

)
<
ε1

2
. (11)

Now we define an operator T : E → E by

T R(κ) =
1
2

R(κ). (12)

Then (11) becomes

D (T R(κ),R(κ)) < ε, (13)

where
ε1

2
= ε. Now we have to prove that there exists a unique function q : E → E satisfies

D(R(κ), q(κ)) < β−1(ε).

To prove this, using Theorem 3.7, there is a unique q(κ) such that q(κ) = T q(κ).
Assume that ε > 0 and κ ∈ E . Using (D3), we have

f (D(q(κ),R(κ))) ≤ f [D(q(κ),T R(κ)) +D(T R(κ),R(κ))] + α
≤ f [D(T q(κ),T R(κ)) + ε] + α
≤ f [φ(D(q(κ),R(κ))) + ε] + α.

Hence using property of (Θ1), we have D(q(κ),R(κ)) ≤ ε+φ(D(q(κ),R(κ))),or D(q(κ),R(κ))−φ(D(q(κ),R(κ))) ≤
ε. Further, we have β(D(q(κ),R(κ))) ≤ ε. Hence

D(q(κ),R(κ)) ≤ β−1(ε).

Finally we have to prove the uniqueness part. To prove this, suppose that there exist a function
q1 : E → E (q , q1) such that

D(R(κ), q1(κ)) < β−1(ε).

Now Using (D3), we have

f (D(q(κ), q1(κ))) ≤ f [D(q(κ),R(κ)) +D(R(κ), q1(κ))]

≤ f [β−1(ε) + β−1(ε)],

using property of (Θ1), we have

D(q(κ), q1(κ) ≤ β−1(ε) + β−1(ε). (14)

Since β : [0,∞) → [0,∞) is a strictly increasing and surjective function, so for any given ε ∈ [0,∞) there
exists a δ > 0 such that β( δ2 ) = ε or β−1(ε) = δ2 . Therefore equation (14) implies that

D(q(κ), q1(κ)) ≤ δ,

which completes the proof.
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4. φb− Picard Operator

To start with, we have the following notations:

Definition 4.1. Suppose that Φ denote the family of functions φ : [0,∞)→ [0,∞) satisfying following conditions:

(φi) φ is non-decreasing, that is 0 < λ < µ implies φ(λ) ≤ φ(µ),
(φii) φ(t) = 0 implies t = 0.

Now, we give φb−contraction which will be used in our results.

Definition 4.2. Let (E ,D) be an FMS and T : E → E be a self mapping. A mapping T is called φb−contraction
if there exists a φ ∈ Φ such that for all ϖ,κ ∈ E and k ∈ [0, 1), we have

φ(D(T ϖ,T κ)) ≤ kφ(D(ϖ,κ)). (15)

Remark 4.3. Here, we note that φb-contraction mapping has at most one FP. Take E = [0,∞). Assume that T has
two distinct FPs say e1, e2 ∈ E , such that D(e1, e2) > 0. Using (15) we have

φ(D(e1, e2)) = φ(D(T e1,T e2)) ≤ kφ(D(e1, e2)) = k(φ(D(T e1,T e2)))

≤ k2(φ(D(e1, e2))) ≤ ... ≤ kr(φ(D(e1, e2))).

Taking r→∞, and using Definition 4.1, we have, φ(D(e1, e2)) ≤ 0. Hence φ(D(e1, e2)) = 0, that is, e1 = e2.

Lemma 4.4. Suppose that T is a φb-contraction in an FMS (E ,D). Then for every PS {ϖr} ⊂ E defined in
Definition 2.5, we have D(ϖr, ϖr+1)→ 0 as r→∞, where ϖr , ϖr+1.

Proof. Let ϖ0 be an arbitrary element. Define the PS {ϖr} ⊂ E defined by ϖr+1 = T ϖr = T rϖ0 for all
r ∈N ∪ {0}. We may suppose that D(ϖ0, ϖ1) > 0. Since T is a φb contraction, we have

φ(D(ϖr, ϖr+1)) = φ(D(T ϖr−1,T ϖr))
≤ k(φ(D(ϖr−1, ϖr))) = k(φ(D(T ϖr−2,T ϖr−1)))

≤ k2(φ(D(ϖr−2, ϖr−1)))
...

≤ k(r−1)(φ(D(T ϖ0,T ϖ1)))
≤ kr(φ(D(ϖ0, ϖ1))).

Therefore, we haveφ(D(ϖr, ϖr+1)) ≤ kr(φ(D(ϖ0, ϖ1))), for all r ∈N. Taking limit r→∞ and using Definition
4.1, we have

lim
r→∞
φ(D(ϖr, ϖr+1)) ≤ lim

r→∞
kr(φ(D(ϖ0, ϖ1)))→ 0.

Hence lim
r→∞

D(ϖr, ϖr+1) = 0.

Lemma 4.5. If all the hypotheses of Lemma 4.4 hold. Then the PS is an F -Cauchy sequence.

Proof. Suppose that ( f , α) ∈ F × [0,∞) is such that (D3) is satisfied. Suppose that ε > 0 is given. By (Θ1),
there exists a η > 0 such that for 0 < t < η, we have

f (t) < f (ε) − α. (16)
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Let ϖ0 be an arbitrary element. Define the PS {ϖr} ⊂ E defined by ϖr+1 = T ϖr = T rϖ0 for all r ∈ N ∪ {0}.
We may suppose that D(ϖ0, ϖ1) > 0. Using Lemma 4.4, we have lim

r→∞
D(ϖr, ϖr+1) = 0. Further, we have

s−1∑
i=r

φ(D(ϖi, ϖi+1)) = φ(D(ϖr, ϖr+1)) + φ(D(ϖr+1, ϖr+2)) + . . . (17)

+ φ(D(ϖs−1, ϖs)).

It implies that

s−1∑
i=r

φ(D(ϖi, ϖi+1)) ≤ kr(φ(D(ϖ0, ϖ1))) + kr+1(φ(D(ϖ0, ϖ1))) + . . . (18)

+ ks−1(φ(D(ϖ0, ϖ1))).

Hence, we have

s−1∑
i=r

φ(D(ϖi, ϖi+1)) ≤
kr

1 − k
(φ(D(ϖ0, ϖ1))).

Since lim
r→∞

kr

1 − k
(φ(D(ϖ0, ϖ1))) = 0, for a given η > 0 there exists N ∈N such that 0 <

kr

1 − k
(φ(D(ϖ0, ϖ1))) < η,

for r ≥ N. Hence by (16) and (Θ1), we obtain

f

 s−1∑
i=r

φ(D(ϖi, ϖi+1))

 ≤ f
(

kr

1 − k
(φ(D(ϖ0, ϖ1)))

)
< f (ε) − α, s > r ≥ N. (19)

Using (D3) and (19), we obtain

f (φ(D(ϖr, ϖs))) ≤ f

 s−1∑
i=r

φ(D(ϖi, ϖi+1))

 + α < f (ε).

Using Θ1, we have

φ(D(ϖr, ϖs)) < ε.

Hence

D(ϖr, ϖs) < φ−1(ε),

for s, r ≥ N. Hence {ϖr} is F - Cauchy.

Theorem 4.6. Every φb-contraction in an F -complete FMS (E ,D) is a PO.

Proof. Let ϖ0 be an arbitrary element. Using Lemma 4.5, PS {ϖr} is an F− Cauchy sequence. Since (E ,D) is
F -complete, there exists ϖ∗ ∈X such that {ϖr} is F - convergent to ϖ∗, that is

lim
r→∞

D(ϖr, ϖ
∗) = 0. (20)

Now we have to show thatϖ∗ is a fixed point of T . We argue by contradiction, suppose thatφ(D(T ϖ∗, ϖ∗)) >
0. By (D3), we have

f (φ(D(T ϖ∗, ϖ∗))) ≤ f
[
φ(D(T ϖ∗,T ϖr)) + φ(D(T ϖr, ϖ

∗))
]
+ α

≤ f
[
k(φ(D(ϖ∗, ϖr))) + φ(D(ϖr+1, ϖ

∗))
]
+ α.
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Taking r→∞ and using (Θ2) and (20), we have

lim
r→∞

f
[
k(φ(D(ϖ∗, ϖr))) + φ(D(ϖr+1, ϖ

∗))
]
+ α = −∞.

Therefore, f (φ(D(T ϖ∗, ϖ∗))) ≤ −∞ or φ(D(T ϖ∗, ϖ∗)) ≤ −∞, which is contradiction. Therefore, we have
φ(D(T ϖ∗, ϖ∗)) = 0 implies D(T ϖ∗, ϖ∗) = 0, that is T ϖ∗ = ϖ∗. Hence the result.

Example 4.7. Let E = [0, 3] and D : E × E → E be the mapping defined by

D(x, y) = (x − y)2 i f (x, y) ∈ [0, 3] × [0, 3],

for all (x, y) ∈ E × E is F -complete FMS with f (t) = ln(t) and α = ln(3).
T : E → E be a mapping defined by

T x =
x

ex+ 1
2

,

for all x ∈ E . Define φ : [0,∞)→ [0,∞) as φ(t) = t, so it satisfies the following conditions:
(i) φ is non-decreasing,

(ii) φ(t) = 0 implies t = 0, for t ∈ [0,∞).

Then T has a φb− contraction and has a unique FP.

−1 1 2 3 4

−1

1

2

3

4 y = x

y = xe−x− 1
2

Figure 2: Graph of x =
x

ex+ 1
2

, showing the intersecting point.

Proof. If (x, y) ∈ [0, 3] × [0, 3],

D(T x,T y) =
(

x

ex+ 1
2

−
y

ey+ 1
2

)2

.

By the mean value theorem, there exists a real number h between x and y, such that

D(T x,T y) =
(
−

1

eh+ 1
2

)2

| x − y |2

≤
1
e
| x − y |2

=
1
e
D(x, y).
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Therefore, we deduce that

D(T x,T y) ≤
1
e
D(x, y).

Therefore, φ(D(T x,T y)) ≤ k(φ(D(x, y))), φ(t) = t is a non decreasing function and k =
1
e

. Therefore T

has a φb-contraction. Since (E ,D) is F -complete, therefore T has a unique fixed point and fixed point of

x =
x

ex+ 1
2

is 0 in [0, 3] (see Fig. 2).

4.1. HU stability
Definition 4.8. Let T : E → E be an operator on an FMS (E ,D). The FP equation

ϖ = T (ϖ), ϖ ∈ E (21)

is HU stable if there exists a strictly increasing and surjective function β : [0,∞)→ [0,∞) with β(t) = t−φ−1(kφ(t)),
t ∈ [0,∞), k ∈ [0, 1), where φ is a non-decreasing function φ : [0,∞)→ [0,∞) and φ(t) = 0 implies t = 0 and such
that for each ε > 0 and each solution κ∗ of the inequality D(κ,T (κ)) < ε, for each κ ∈ E , there exists a solution ϖ∗

of equation (21) such that

D(κ∗, ϖ∗) < β−1(ε).

Definition 4.9. If the FP (21) for T meets the following criteria, it is WP

(p1) T has a unique FP ϖ∗ ∈ E ,
(p2) if for any sequence {ϖr} in E such that

lim
r→∞

D(T ϖr, ϖr) = 0,

then

lim
r→∞

D(ϖr, ϖ
∗) = 0.

Theorem 4.10. Assume that all of Theorem 4.6’s hypotheses are true. Then the following conditions hold:

(A1) The FP problem (21) is HU stable, that is, if for each ε > 0 and each solutionκ∗ of the inequality D(κ,T(κ)) < ε,
for each κ ∈ E , there exists a solution ϖ∗ of equation (21) such that

D(κ∗, ϖ∗) < β−1(ε).

(A2) If {ϖn} is a sequence in E such that lim
n→∞

D(T ϖn, ϖn) = 0 and ϖ∗ is a FP of T , then the FP problem (21) is WP.

Proof. (A1) Using Theorem 4.6, there is a unique ϖ∗ ∈ E such that ϖ∗ = T ϖ∗ that is ϖ∗ ∈ E is solution of
the FP equation (ϖ = T ϖ). Assume that ε > 0 and κ∗ ∈ E . Using (D3), we have

f (D(κ∗, ϖ∗)) ≤ f [D(κ∗,T κ∗) +D(T κ∗, ϖ∗)] + α
≤ f [ε +D(T κ∗,T ϖ∗)] + α

≤ f [ε + φ−1(k(φ(D(κ∗, ϖ∗))))] + α.

Hence using property of (Θ1), we have D(κ∗, ϖ∗) ≤ ε+φ−1(k(φ(D(κ∗, ϖ∗)))),or D(κ∗, ϖ∗)−φ−1(k(φ(D(κ∗, ϖ∗)))) ≤
ε. Further, we have β(D(κ∗, ϖ∗)) ≤ ε. Hence

D(κ∗, ϖ∗) ≤ β−1(ε),

which completes the proof.
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(A2) If {ξr} is a sequence in E such that lim
r→∞

D(T ξr, ξr) = 0 and ϖ∗ is a unique FP of T (using Theorem 4.6).
From the triangle inequality and contractive condition, we have

f (D(ξr, ϖ
∗)) ≤ f [D(ξr,T ξr) +D(T ξr, ϖ

∗)] + α
≤ f [D(ξr,T ξr) +D(T ξr,T ϖ

∗)] + α

≤ f [D(ξr,T ξr) + φ−1(k(φ(D(ξr, ϖ
∗))))] + α.

On the same lines of above cases, we have
β(D(ξr, ϖ∗)) ≤ D(ξr,T ξr). Taking limit r→∞, we get

lim
r→∞
β(D(ξr, ϖ

∗)) ≤ lim
r→∞

D(ξr,T ξr).

Therefore, lim
r→∞
β(D(ξr, ϖ∗)) = 0. Hence D(ξr, x∗) = 0. This shows that the FP problem (21) is WP.

Theorem 4.11. Assume that all of Theorem 4.6’s hypotheses are true. If R : E → E is a map such that there exists
Λ > 0 with

D(T ξ,Rξ) < Λ,

for all ξ ∈X , then for any fixed point κ∗ of R, we have

D(ϖ∗,κ∗) ≤ β−1(Λ).

Proof. Suppose that R : E → E is a map such that there exists Λ > 0, with D(T ξ,Rξ) < Λ, for all ξ ∈ E .
Choose κ∗ be the FP of R then by the property (D3), we have

f (D(ϖ∗,κ∗)) ≤ f (D(ϖ∗,κ∗)) + α
≤ f (D(T ϖ∗,Rκ∗)) + α
≤ f [D(T ϖ∗,T κ∗) +D(T κ∗,Rκ∗)] + α

≤ f [φ−1(k(φ(D(ϖ∗,κ∗)))) +D(T κ∗,Rκ∗)] + α

Therefore, we have

f (D(ϖ∗,κ∗)) ≤ f [φ−1(k(φ(D(ϖ∗,κ∗)))) + Λ] + α.

Using the property of Θ1, we have

D(ϖ∗,κ∗) ≤ φ−1(k(φ(D(ϖ∗,κ∗)))) + Λ.

It implies D(ϖ∗,κ∗) − φ−1(k(φ(D(ϖ∗,κ∗)))) ≤ Λ. Therefore, we get β(D(ϖ∗,κ∗)) ≤ Λ, or D(ϖ∗,κ∗) ≤ β−1(Λ).
Hence the result.

4.2. Stability of Cauchy functional equation
Theorem 4.12. Let (E ,D) be an F LMS and T : E → E be a φb−contraction.

Assume that R : E → E is a mapping such that for each ε1 > 0,

D(R(κ + ϖ),R(κ) + R(ϖ)) < ε1, (22)

for all ϖ,κ ∈ E .
Then there exists a unique function q : E → E satisfies

D(R(κ), q(κ)) < β−1(ε), (23)

where
ε1

2
= ε.
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Proof. Put κ = ϖ in (22), we have

D (R(2κ), 2R(κ)) < ε1. (24)

Since, by the Definition 3.2

D (R(2κ), 2R(κ)) ≤ |2|D
(1

2
R(2κ),R(κ)

)
< ε1.

Therefore, we have

D
(1

2
R(2κ),R(κ)

)
<
ε1

2
. (25)

Now we define an operator T : E → E by

T (R(κ)) =
1
2

R(κ). (26)

Then (25) becomes

D (T (R(κ)),R(κ)) < ε, (27)

where
ε1

2
= ε. Now we have to prove that there exists a unique function q : E → E satisfies

D(R(κ), q(κ)) < β−1(ε).

To prove this, Using Theorem 4.6, there is a unique q(κ) such that q(κ) = T q(κ).
Assume that ε > 0 and κ ∈ E . Using (D3), we have

f (D(q(κ),R(κ))) ≤ f [D(q(κ),T R(κ)) +D(T R(κ),R(κ))] + α
≤ f [D(T q(κ),T R(κ)) + ε] + α

≤ f [φ−1(k(φ(D(q(κ),R(κ))))) + ε] + α.

Hence using property of (Θ1), we have D(q(κ),R(κ)) ≤ ε + φ−1(k(φ(D(q(κ),R(κ))))), or D(q(κ),R(κ)) −
φ−1(k(φD(q(κ),R(κ)))) ≤ ε. Further, we have β(D(q(κ),R(κ))) ≤ ε. Hence

D(q(κ),R(κ)) ≤ β−1(ε).

Finally we have to prove the uniqueness part. To prove this, suppose that there exists a function
q1 : E → E (q , q1) such that

D(R(κ), q1(κ)) < β−1(ε).

Now Using (D3), we have

f (D(q(κ), q1(κ))) ≤ f (D(q(κ),R(κ)) +D(R(κ), q1(κ)))

≤ f (β−1(ε) + β−1(ε)),

using property of (Θ1), we have

D(q(κ), q1(κ)) ≤ β−1(ε) + β−1(ε), (28)

Since β : [0,∞) → [0,∞) is a strictly increasing and surjective function, so for any given ε ∈ [0,∞) there
exists a δ > 0 such that β( δ2 ) = ε or β−1(ε) = δ2 . So equation (28) implies that

D(q(κ), q1(κ)) ≤ δ,

which completes the proof.
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5. Stability of integral equation

Let E = C[s, t] be the set of all real continuous functions on [s, t] equipped with FM

D(ϖ,κ) = ∥ϖ − κ∥∞.

It is well known that (E ,D) is an F -complete FMS with f (t) = ln(t) and α = 0. We consider the integral
equation

ϖ(b) =
∫ t

s
K(b, a, ϖ(a))d(a), (29)

where K : [s, t] × [s, t] ×R→ R. Let T : E → E be a mapping defined by

T ϖ(b) =
∫ t

s
K(b, a, ϖ(a))d(a), (30)

for all ϖ ∈ E , a, b ∈ [s, t].

Theorem 5.1. Suppose that K : [s, t] × [s, t] ×R→ R is continuous function satisfying the following condition

| K(b, a, ϖ(a)) − K(b, a,κ(a)) |2≤ F(b, a) ln
(
| ϖ(a) − κ(a) |2

4
+ 1

)
, (31)

where F : [s, t] × [s, t]→ R is a continuous function and for all ϖ ∈ E , a, b ∈ [s, t], we have∫ t

s
F(b, a)da ≤

1
t − s
.

Then, the integral equation (29) has a solution in E .

Proof. Let ϖ,κ ∈ E . Using the equation (31), and using the Cauchy Schwarz inequality, we have

| T ϖ(b) −T κ(b) |2 =
(∫ t

s
| K(b, a, ϖ(a)) − K(b, a,κ(a)) | da

)2

≤

∫ t

s
12da

∫ t

s
| K(b, a, ϖ(a)) − K(b, a,κ(a)) |2 da

≤ (t − s)
∫ t

s
F(b, a) ln

(
| ϖ(a) − κ(a) |2

4
+ 1

)
da

= (t − s)
∫ t

s
F(b, a) ln

(
D(ϖ,κ)2

4
+ 1

)
da

= (t − s) ln
(
D(ϖ,κ)2

4
+ 1

) ∫ t

s
F(b, a)da

≤ ln
(
D(ϖ,κ)2

4
+ 1

)
≤

D(ϖ,κ)2

4
.

Therefore, we deduce that

D(T ϖ,T κ) ≤
D(ϖ,κ)

2
.

Therefore, φ(D(T ϖ,T κ)) ≤ kφ(D(ϖ,κ)), φ(t) = t is a non-decreasing function and k = 1
2 . Therefore T has

a φb-contraction. Since (E ,D) is F -complete, therefore T has a integral fixed point.
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Theorem 5.2. Assume that all of Theorem 5.1’s hypotheses are true. Then the following conditions hold:

(A1) The integral equation (29) is HU stable, that is, if for each ε > 0 and each solution κ∗ of the inequality
D(κ,T(κ)) < ε2 , for each κ ∈ E , there exists a solution ϖ∗ of equation (29) such that

D(κ∗, ϖ∗) < ε.

(A2) If {ϖn} is a sequence in E such that lim
n→∞

D(T ϖn, ϖn) = 0 and ϖ∗ is a of T then the integral equation (29) is
WP.

Proof.

(A1) Using Theorem 5.1, there is a uniqueϖ∗ ∈ E such thatϖ∗ = T ϖ∗ that isϖ∗ ∈ E is solution of the integral
equation (ϖ = T ϖ). Assume that ε > 0 and κ∗ ∈ E . Using (D3), we have

f (D(κ∗, ϖ∗)) ≤ f [D(κ∗,T κ∗) +D(T κ∗, ϖ∗)] + α

≤ f [
ε
2
+D(T κ∗,T ϖ∗)] + α.

Hence using property of (Θ1), we have

D(κ∗, ϖ∗) ≤
ε
2
+D(T κ∗,T ϖ∗),

≤
ε
2
+

D(κ∗, ϖ∗)
2

.

So we have

D(κ∗, ϖ∗) ≤ ε,

which completes the proof.

(A2) If {ξr} is a sequence in E such that lim
r→∞

D(T ξr, ξr) = 0 and ϖ∗ is a unique fixed point of T (using
Theorem 5.1). From the contractive condition and property (D3), we have

f (D(ξr, ϖ
∗)) ≤ f [D(ξr,T ξr) +D(T ξr, ϖ

∗)] + α
≤ f [D(ξr,T ξr) +D(T ξr,T ϖ

∗)] + α.

On the same lines of above cases, we have
1
2

(D(ξr, ϖ∗)) ≤ D(ξr,T ξr). Taking limit r→∞, we get

lim
r→∞

1
2

(D(ξr, ϖ
∗)) ≤ lim

r→∞
D(ξr,T ξr).

Therefore, lim
r→∞

1
2

(D(ξr, ϖ∗)) = 0. Hence D(ξr, x∗) = 0. This shows that the integral equation (29) is well-
posed.

Significance. We discuss the existence of PO in the setting of FMS and obtain some results on the HU
stability and WP of the FP problem, Cauchy functional equation, and integral equations.
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