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Abstract. Trapezoid inequality estimates the difference of the integral mean of a function on the finite
interval [a, b] and the arithmetic mean of its values at the endpoints a and b. Quantum calculus is the
calculus based on finite diference principle or without the concept of limits. Euler-Jackson q-difference
operator and q-integral operator are discretization of ordinary derivatives and integrals and they can be
generalized to its shifted versions on arbitrary domain [a, b].

In this paper we disprove a trapezoid inequality for shifted quantum integral operator appearing in the
literature by giving two counterexamples. We point out some differences between the definite q-integral
and Riemann integral to explain why the mistake is made and obtain corrected results. We also prove the
sharpness of our new bounds in estimating the value of the quantum integral mean. Further we derive
generalized sharp trapezoid inequality in which we point out the case with tightest bounds.

1. Introduction

The well known trapezoid inequality [14] which estimates the difference of the integral mean of a
function on the finite interval and its values at the endpoints of that interval is given by∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

∫ b

a
f (t)dt

∣∣∣∣∣∣ ≤ 1
4

(b − a)
∥∥∥ f ′

∥∥∥
∞
. (1)

It holds for every f : [a, b]→ R continuous on [a, b] and differentiable on ⟨a, b⟩with derivative f ′ : ⟨a, b⟩ → R
bounded on ⟨a, b⟩ i.e.∥∥∥ f ′

∥∥∥
∞

:= sup
t∈(a,b)

∣∣∣ f ′ (t)∣∣∣ < +∞.

In the published paper [17], beside other important integral inequalities, authors obtained the following
generalization of the trapezoid inequality for quantum calculus.
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Theorem 1.1. (Incorrect result from [17], Theorem 3.3)
Let f : [a, b]→ R be a q-differentiable function with Da

q f continuous on [a, b] and 0 < q < 1. Then we have∣∣∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣ ≤ b − a
2
(
1 + q

) ∥∥∥Da
q f

∥∥∥
∞
. (2)

In this paper, we shall give examples to show that this theorem is not valid, derive the sharp bound for
(2) and generalized q-trapezoid inequality.

Quantum calculus is the calculus based on finite difference principle or without the concept of limits. It
has two main branches: q-calculus and h-calculus. From q-calculus, by taking q→ 1, infinitesimal calculus is
obtained. Quantum q-calculus has many significant applications in number theory, combinatorics, fractals,
approximation theory, numerical analysis, ordinary and partial difference equations, dynamical systems,
quantum groups, quantum algebras, Lie algebras, complex analysis, and also computer science, particle
physic and quantum mechanics (see [1–4, 6, 7, 11, 15, 16]).

Among first obtained results concerning integral inequalities in q-calculus was the result of H. Gauchi-
man (see [8]) for a class of q-integrals called restricted q-integrals. Soon after various quantum analogues
of classical integral inequalities were considered (see for instance [5, 8, 12, 13, 16–18]).

The paper is organized as follows. In Section 2 we give preliminaries for quantum calculus. In Section 3
we disprove (2) by giving counterexamples and obtain corrected results. We also prove the sharpness of
our new bounds in estimating the value of quantum integral mean and derive generalized sharp trapezoid
inequality in which we point out the case with tightest bounds.

2. q-calculus preliminaries

F. H. Jackson [9] in 1908 has defined the Euler-Jackson q-difference operator (q-derivative of the function)
by

Dq f (x) =
f (x) − f

(
qx

)(
1 − q

)
x
, x ∈ ⟨0, b] , q ∈ ⟨0, 1⟩

Dq f (0) = lim
x→0

Dq f (x)

for an arbitrary function f : [0, b]→ R, b ∈ ⟨0,∞⟩. Note that every function f : [0, b]→ R is q-differentiable
for every x ∈ ⟨0, b] and if lim

x→0
Dq f (x) exists it is q-differentiable on [0, b]. The q-derivative is a discretization

of ordinary derivative and if f is differentiable function then

lim
q→1

Dq f (x) = f ′ (x) .

F. H. Jackson [10] in 1910 has also defined q-integral (or Jackson integral) by
x∫

0

f (t) dqt =
(
1 − q

)
x
∞∑

k=0

qk f
(
qkx

)
, x ∈ ⟨0, b] . (3)

If the series on right hand-side is convergent, then q-integral
∫ x

0
f (t) dqt exists. If f is continuous on

[0, b] as q→ 1 the series
(
1 − q

)
x
∞∑

k=0

qk f
(
qkx

)
tends to the Riemann integral (see [3], [11])

lim
q→1

x∫
0

f (t) dqt =

x∫
0

f (t) dt.
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The sufficient condition under which the series
(
1 − q

)
x
∞∑

k=0

qk f
(
qkx

)
converges to q-antiderivative of f is

given in the following theorem from [11]:

Theorem 2.1. If
∣∣∣ f (x) xα

∣∣∣ is bounded on the interval ⟨0,A] for some 0 < α < 1, then the q-integral defined by (3)
converges to q-antiderivative of f (x) on ⟨0,A].

For 0 ≤ a < b we define

b∫
a

f (t) dqt =

b∫
0

f (t) dqt −

a∫
0

f (t) dqt.

Theorem 2.2. (Fundamental theorem of q-calculus [11]) If F(x) is a q-antiderivative of f (x) and F(x) is continuous
at x = 0, 0 ≤ a < b we have

b∫
a

f (t) dqt = F (b) − F (a) .

Corollary 2.3. If the ordinary derivative f ′(x) exists in a neighborhood of x = 0 and is continuous at x = 0, we have

b∫
a

Dq f (t) dqt = f (b) − f (a) .

Obviously q-integral depends on the values of f outside of the interval of integration. Thus, if f (t) ≥ 0,
t ∈ [0, b] it is not necessary that

∫ x

c f (t) dqt ≥ 0. If we take, for example, f (t) = 1 − t, t ∈ [0, 1] and q = 1
3 we

have
∫ 1

1
2

(1 − t)d 1
3
t = − 1

16 < 0.

An important difference between the definite q-integral and Riemann integral is that even if we are
integrating a function on an interval [a, b], a > 0 we have to take into account its behavior at t = 0 as well
as its values on [0, a]. This is the main reason for mistakes made in Theorem 1.1 (Theorem 3.3. in [17]). For
instance, take indicator function of [ 1

2 , 1]

1[ 1
2 ,1] (t) =


0, 0 ≤ t < 1

2 ,

1, 1
2 ≤ t ≤ 1.

Although for Riemann integral we have

1∫
1
2

dt =

1∫
1
2

1[ 1
2 ,1]dt

for q-integral this is not the case:

1∫
1
2

1dqt =
1
2
,



A. Aglić Aljinović et al. / Filomat 36:16 (2022), 5653–5664 5656

but

1∫
1
2

1[ 1
2 ,1]dqt =

1∫
0

1[ 1
2 ,1]dqt −

1
2∫

0

1[ 1
2 ,1]dqt =

(
1 − q

) 

⌊
− logq 2

⌋∑
k=0

qk

 − 1
2


=

(
1 − q

⌊
− logq 2

⌋
+1
−

1 − q
2

)
.

It is not hard to check that the latter expression is not equal to 1
2 for all q ∈ ⟨0, 1⟩. In fact, the two coincide

only if

q =
1
n√2

, n ∈N.

Previous definitions and results for f : [0, b]→ R can easily be generalized for f : [a, b]→ R (see [16]).
If we have a function f : [a, b]→ R then ”shifted” q-derivative for q ∈ ⟨0, 1⟩ can be defined as

Da
q f (x) =

f (x) − f
(
a + q (x − a)

)(
1 − q

)
(x − a)

, if x ∈ ⟨a, b] ,

Da
q f (a) = lim

x→a
Da

q f (x) .

If lim
x→a

Da
q f (x) exists, f : [a, b]→ R is said to be q-differentiable. ”Shifted” q-integral is defined by

x∫
a

f (t) da
qt =

(
1 − q

)
(x − a)

∞∑
k=0

qk f
(
a + qk (x − a)

)
, x ∈ [a, b] .

If the series on right hand-side is convergent, then q-integral
∫ x

a
f (t) da

qt exists and f : [a, b] → R is

q-integrable on [a, x]. If c ∈ ⟨a, x⟩, q-integral is defined by

x∫
c

f (t) da
qt =

x∫
a

f (t) da
qt −

c∫
a

f (t) da
qt.

If f (x) and 1(x) are two real functions defined on [a, b] whose ordinary derivatives exist in a neighborhood
of x = a and are continuous at x = a, then we have q-integration by parts formula

b∫
a

f (t) Da
q1 (t) da

qt = f (b) 1 (b) − f (a) 1 (a) −

b∫
a

1
(
qt +

(
1 − q

)
a
)

Da
q f (t) da

qt.

Remark 2.4. Since definitions of ”shifted” q-derivative and ”shifted” q-integral when a = 0 coincide with definitions
of Jackson q-derivative and Jackson integral (3) in the rest of the paper we shall omit superscript zero when a = 0.

3. q-Trapezoid inequality

Here and hereafter the symbol ∥·∥⟨a,b]
∞ denotes the norm∥∥∥ f

∥∥∥⟨a,b]

∞
= sup

t∈⟨a,b]

∣∣∣ f (t)
∣∣∣ .
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Remark 3.1. In the proof of Theorem 1.1 ( Theorem 3.3. in [17]) the above mentioned mistake was made:

b∫
a+b

2

∣∣∣∣∣t − a + b
2

∣∣∣∣∣ da
qt =

b∫
a+b

2

(
t −

a + b
2

)
da

qt

=

b∫
a

(
t −

a + b
2

)
da

qt −

a+b
2∫

a

(
t −

a + b
2

)
da

qt

but
∣∣∣t − a+b

2

∣∣∣ , t − a+b
2 for t ∈ [a, b] or for t ∈

[
a, a+b

2

]
.

Next examples will show that Theorem 1.1 is not valid for all q-differentiable function f with Da
q f

continuous on [a, b], and all 0 < q < 1.

Example 3.2. In order to find functions which do not satisfy statement of the Theorem 1.1 we have implemented
q-derivative defined by Euler-Jackson difference operator and q-integral by using definition (3) with first 104 elements
of the sum. One possible example of the function for which the Theorem 1.1 is not valid is

f (x) = 134x2
− 63x − 1, (4)

when a = 0, b = 1 and q = 1
10 . Therefore, using standard Python libraries NumPy and Matplotlib we easily calculate

and show graphically the 1
10−derivative of this function. In the Figure 1 we show graph of this function together

with the graph of its q-derivative. Numerically we have obtained, that the left hand side of the inequality (2) is

0.0 0.2 0.4 0.6 0.8 1.0

−60

−40

−20

0

20

40

60

80

f (x) = 134x2 − 63x − 1

D 1
10

f (x)

Figure 1: Graph of f (x) and its 1
10−derivative

approximately 40.02, while the right hand side is 38.36.
Now, we will calculate the same analytically, using standard formulas taken from [11] as follows:

Dqxn = [n]xn−1, n ∈N

and ∫
xndqx =

xn+1

[n + 1]
, n , −1,
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where [n] is a q-analog of n defined as:

[n] =
qn
− 1

q − 1
.

Now, we easily calculate the true values of q-integral and q-derivative of the function given by (4), for a = 0,
b = 1, q = 1

10 as follows:

D 1
10

f (x) = 134 · [2]x − 63 · [1] = 134 ·
1

100 − 1
1

10 − 1
x − 63 = 147.4x − 63.

We easily see that ∥Dq f (x)∥∞ = 147.4 − 63 = 84.4, so the right hand side of (1) equals

1
2(1 + 1

10 )
· 84.4 ≈ 38.36.

Furthermore, ∫
f (

1
10

x)d 1
10

x =
134
100

∫
x2d 1

10
x −

63
10

∫
xd 1

10
x −

∫
d 1

10
x =

134
111

x3
−

63
11

x2
− x.

From Theorem 2.2 we have ∫ 1

0
f (

1
10

x)d 1
10

x =
134
111
−

63
11
− 1.

Values obtained analytically coincides with those obtained using Python.

Next we give another example of a class of functions for which (2) doesn’t hold.

Example 3.3. We will show that for

fq (t) =
∣∣∣∣∣1q t − 1

∣∣∣∣∣ , t ∈ [0, 1]

inequality∣∣∣∣∣∣∣∣ fq(0) + fq (1)
2

−

1∫
0

fq
(
qt
)

dqt

∣∣∣∣∣∣∣∣ ≤ 1
2
(
1 + q

) ∥∥∥Dq fq
∥∥∥
∞

(5)

doesn’t hold for every q ∈ ⟨0, 1⟩. Denote m =
⌊
− logq 2

⌋
, so qm+1 < 1

2 ≤ qm and we have

1∫
0

fq
(
qt
)

dqt =
(
1 − q

) ∞∑
k=0

qk fq
(
qk+1

)
=

(
1 − q

) 0 +
∞∑

k=1

qk
(
1 − qk

) = q
1 + q

.

Since fq (0) = 1, fq (1) = 1−q
q and

Dq fq (t) = − 1
q , 0 ≤ t ≤ 1

q ,

Dq fq (t) ∈
〈
−

1
q ,

1
q

〉
1
q < t < 1

q2 ,

Dq fq (t) = 1
q ,

1
q2 ≤ t ≤ 1,
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we have
∥∥∥Dq fq

∥∥∥⟨0,1]

∞
= 1

q . In this case inequality (5) reduces to∣∣∣∣∣ 1
2q
−

q
1 + q

∣∣∣∣∣ ≤ 1
2
(
1 + q

)
q
,

that is∣∣∣∣∣∣1 + q − 2q2

2
(
1 + q

)
q

∣∣∣∣∣∣ ≤ 1
2
(
1 + q

)
q
,

after multiplying by 2
(
1 + q

)
q it can be rewriten as∣∣∣1 + q − 2q2

∣∣∣ ≤ 1.

Last inequality is invalid for every q ∈
〈
0, 1

2

〉
.

Next we give q-Trapezoid inequality and its generalization and prove that both inequalities are sharp.

Theorem 3.4. (Trapezoid inequality for q-calculus) Let f : [a, b] → R be a function whose ordinary derivative
exist in a neighborhood of x = a and is continuous at x = a. Then for q ∈ ⟨0, 1⟩ we have∣∣∣∣∣∣∣∣ f (a) + f (b)

2
−

1
b − a

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣
≤ (b − a)

1 + q
(
2qm
− 1

) (
1 − 2qm+1

)
2
(
1 + q

)  ∥∥∥Da
q f

∥∥∥
∞

(6)

where m =
⌊
logq

1
2

⌋
.

Proof. The q-integration by parts formula gives

b∫
a

(
t −

a + b
2

)
Da

q f (t) da
qt = (b − a)

(
f (a) + f (b)

2

)
−

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

and using generalized triangle inequality for q-calculus (see [3]) we obtain∣∣∣∣∣∣∣∣(b − a)
f (a) + f (b)

2
−

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

b∫
a

(
t −

a + b
2

)
Da

q f (t) da
qt

∣∣∣∣∣∣∣∣
≤

b∫
a

∣∣∣∣∣t − a + b
2

∣∣∣∣∣ ∣∣∣Da
q f (t)

∣∣∣ da
qt ≤

∥∥∥Da
q f

∥∥∥
∞

b∫
a

∣∣∣∣∣t − a + b
2

∣∣∣∣∣ da
qt

and

b∫
a

∣∣∣∣∣t − a + b
2

∣∣∣∣∣ da
qt =

(
1 − q

)
(b − a)

∞∑
k=0

qk
∣∣∣∣∣a + qk (b − a) −

a + b
2

∣∣∣∣∣
=

(
1 − q

)
(b − a)2

∞∑
k=0

qk
∣∣∣∣∣qk
−

1
2

∣∣∣∣∣ .
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Since m =
⌊
− logq 2

⌋
we have

m ≤ − logq 2 < m + 1

qm+1 <
1
2
≤ qm

and

∞∑
k=0

qk
∣∣∣∣∣qk
−

1
2

∣∣∣∣∣ = m∑
k=0

qk
(
qk
−

1
2

)
+

∞∑
k=m+1

qk
(1

2
− qk

)
=

1 − q2m+2

1 − q2 −
1
2

1 − qm+1

1 − q
+

1
2

qm+1 1
1 − q

− q2m+2 1
1 − q2

=
1 − 2q2m+2

1 − q2 +
qm+1

−
1
2

1 − q
.

Thus

b∫
a

∣∣∣∣∣t − a + b
2

∣∣∣∣∣ da
qt = (b − a)2

(
1 − 2q2m+2

1 + q
+ qm+1

−
1
2

)

= (b − a)2

1 + q
(
2qm
− 1

) (
1 − 2qm+1

)
2
(
1 + q

)  .
The proof is done after dividing the first inequality by (b − a).

Remark 3.5. Since we have qm+1 < 1
2 ≤ qm and also 2qm+1 < 1 ≤ 2qm, it is obvious that for any q ∈ ⟨0, 1⟩ we have

1
2
(
1 + q

) ≤ 1 + q
(
2qm
− 1

) (
1 − 2qm+1

)
2
(
1 + q

)
and the equality holds for m = − logq 2.

Theorem 3.6. (Generalized trapezoid inequality for q-calculus) Let f : [a, b]→ R be a function whose ordinary
derivative exist in a neighborhood of t = a and is continuous at t = a. Then for q ∈ ⟨0, 1⟩ , x ∈ ⟨a, b] we have∣∣∣∣∣∣∣∣x − a

b − a
f (a) +

b − x
b − a

f (b) −
1

b − a

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣
≤ (b − a)

(
1 − 2q2m+2

1 + q
+

x − a
b − a

(
2qm+1

− 1
)) ∥∥∥Da

q f
∥∥∥
∞

(7)

where m =
⌊
logq

x−a
b−a

⌋
.

Proof. The q-integration by parts formula gives

b∫
a

(t − x) Da
q f (t) da

qt = (x − a) f (a) + (b − x) f (b) −

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt.
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and using generalized triangle inequality (see [3]) we obtain∣∣∣∣∣∣∣∣(x − a) f (a) + (b − x) f (b) −

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

b∫
a

(t − x) Da
q f (t) da

qt

∣∣∣∣∣∣∣∣
≤

b∫
a

|t − x|
∣∣∣Da

q f (t)
∣∣∣ da

qt ≤
∥∥∥Da

q f
∥∥∥
∞

b∫
a

|t − x| da
qt

and

b∫
a

|t − x| da
qt =

(
1 − q

)
(b − a)

∞∑
k=0

qk
∣∣∣a + qk (b − a) − x

∣∣∣
=

(
1 − q

)
(b − a)2

∞∑
k=0

qk
∣∣∣∣qk
−

x − a
b − a

∣∣∣∣ .
Since m =

⌊
logq

x−a
b−a

⌋
we have

m ≤ logq
x − a
b − a

< m + 1

qm+1 <
x − a
b − a

≤ qm

and
∞∑

k=0

qk
∣∣∣∣qk
−

x − a
b − a

∣∣∣∣ = m∑
k=0

qk
(
qk
−

x − a
b − a

)
+

∞∑
k=m+1

qk
(x − a

b − a
− qk

)
=

1 − q2m+2

1 − q2 −

(x − a
b − a

) 1 − qm+1

1 − q
+

(x − a
b − a

)
qm+1 1

1 − q
− q2m+2 1

1 − q2

=
1 − 2q2m+2

1 − q2 +
(x − a

b − a

) 2qm+1
− 1

1 − q
.

Thus

b∫
a

|t − x| da
qt = (b − a)2

(
1 − 2q2m+2

1 + q
+

x − a
b − a

(
2qm+1

− 1
))

The proof is done after dividing the first inequality by (b − a).

Theorem 3.7. Let q ∈ ⟨0, 1⟩. Trapezoid inequality for q-calculus (7) is sharp for every x ∈ ⟨0, 1].

Proof. In order to simplify notations we set a = 0 and b = 1. For every fixed q ∈ ⟨0, 1⟩ and any x ∈ ⟨0, 1] we
will show that equality in∣∣∣∣∣∣∣∣x f (0) + (1 − x) f (1) −

1∫
0

f
(
qt
)

dqt

∣∣∣∣∣∣∣∣ ≤
(

1 − 2q2m+2

1 + q
+ x

(
2qm+1

− 1
)) ∥∥∥Dq f

∥∥∥
∞

(8)

is obtained for function

fx (t) =
∣∣∣t − qm+1

∣∣∣ , t ∈ [0, 1] .
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It is obvious that

Dq fx (t) = −1, 0 ≤ t ≤ qm+1,

Dq fx (t) ∈ ⟨−1, 1⟩ qm+1 < t < qm,

Dq fx (t) = 1, qm
≤ t ≤ 1,

so
∥∥∥Dq fx

∥∥∥
∞
= 1. For m =

⌊
logq x

⌋
we have qm+1 < x ≤ qm. Further fx(0) = qm+1, fx (1) = 1 − qm+1 and

x fx (0) + (1 − x) fx (1) = 1 − qm+1 + x
(
2qm+1

− 1
)
.

Also
1∫

0

fx
(
qt
)

dqt =
(
1 − q

) ∞∑
k=0

qk fx
(
qk+1

)

=
(
1 − q

) m−1∑
k=0

qk
(
qk+1
− qm+1

)
+

∞∑
k=m+1

qk
(
qm+1

− qk+1
)

=
(
1 − q

) (
q

1 − q2m

1 − q2 − qm+1 1 − qm

1 − q
+ qm+1 qm+1

1 − q
− q2m+3 1

1 − q2

)
=

q + 2q2m+2
− qm+1

− qm+2

1 + q

and (8) reduces to∣∣∣∣∣∣1 − qm+1 + x
(
2qm+1

− 1
)
−

q + 2q2m+2
− qm+2

− qm+1

1 + q

∣∣∣∣∣∣
≤

(
1 − 2q2m+2

1 + q
+ x

(
2qm+1

− 1
))
.

After short calculation we can see that

1 − qm+1
−

q + 2q2m+2
− qm+2

− qm+1

1 + q
=

1 − 2q2m+2

1 + q

so in (8) equality is obtained.

Remark 3.8. In the case when x = a+b
2 , and for q ∈ ⟨0, 1⟩, (7) reduces to (6). Thus (6) is sharp since we have proved

that (7) is sharp for every x ∈ ⟨0, 1⟩.

Corollary 3.9. Suppose all assumptions from Theorem 3.6 hold. Then the following inequality holds∣∣∣∣∣∣∣∣ f (a) −
1

b − a

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣ ≤ q (b − a)
1 + q

∥∥∥Da
q f

∥∥∥
∞
.

Proof. Take x = b in (7).

Corollary 3.10. Suppose all assumptions from Theorem 3.6 hold. Then the following inequality holds∣∣∣∣∣∣∣∣ f (b) −
1

b − a

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣ ≤ (b − a)
1 + q

∥∥∥Da
q f

∥∥∥
∞
. (9)
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Proof. Following the proof of Theorem 3.6 we have for x = a∣∣∣∣∣∣∣∣(b − a) f (b) −

b∫
a

f
(
qt +

(
1 − q

)
a
)

da
qt

∣∣∣∣∣∣∣∣ ≤
∥∥∥Da

q f
∥∥∥
∞

b∫
a

|t − a| da
qt

and from

b∫
a

|t − a| da
qt =

(
1 − q

)
(b − a)2

∞∑
k=0

q2k =
(b − a)2

1 + q
.

we obtain (9).

Next we prove that the tightest bound in (7) is achieved for m = ⌊logq
1
2 ⌋ and x = a + (b − a)qm.

Corollary 3.11. Suppose all assumptions from Theorem 3.6 hold. The bound (7) is minimal for m = ⌊logq
1
2 ⌋ and

x = a + (b − a)qm.

Proof. Let us find m (and x) such that the right hand side of (7) is minimal. Hence, we have to find the
minimal value of the function

f (m, x) =
1 − 2q2m+2

1 + q
+

x − a
b − a

(2qm+1
− 1).

The expression 2qm+1
− 1 can be positive or negative. If it is positive, then the fraction

x − a
b − a

has to be
minimal. If our expression is negative, then this fraction has to be maximal. We have two cases. Let

mq =
⌊
logq

1
2

⌋
, that gives

qmq+1 <
1
2
≤ qmq .

Now, 2qmq − 1 ≥ 0 and 2qmq+1
− 1 < 0.

If 2qm+1
− 1 ≥ 0 (for m ≤ mq − 1) then

x − a
b − a

has to be minimal. Since m =
⌊
logq

x − a
b − a

⌋
, qm+1 <

x − a
b − a

≤ qm.

The fraction
x − a
b − a

cannot attain the minimal value. However we will put
x − a
b − a

= qm+1 even though it is not

correct. It would be more correct to put
x − a
b − a

= qm+1 + ε for some ε > 0, but we prefer this sloppy notation.
The corresponding x will be denoted by xm. We claim that for m ≤ mq−1 it is valid f (m, xm) ≤ f (m−1, xm−1),
that is

1 − 2q2m+2

1 + q
+ qm+1(2qm+1

− 1) ≤
1 − 2q2m

1 + q
+ qm(2qm

− 1).

Multiplication by 1 + q and rearrangement give

2q2m
− 2q2m+2 + (1 + q)(2q2m+2

− 2q2m) ≤ (1 + q)(qm+1
− qm)

and it follows

2qm+1(q2
− 1) ≤ (1 + q)(q − 1).

This is valid for m ≤ mq − 1. Hence, the function f attains minimum at m = mq − 1 for m ∈ {0, 1, . . .mq − 1}.
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If 2qm+1
− 1 < 0 (for m ≥ mq) then

x − a
b − a

has to be maximal. Hence,
x − a
b − a

= qm. We claim that for m ≥ mq

it is valid f (m + 1, xm+1) ≥ f (m, xm), that is

1 − 2q2m+4

1 + q
+ qm+1(2qm+2

− 1) ≥
1 − 2q2m+2

1 + q
+ qm(2qm+1

− 1).

Multiplication by 1 + q and rearrangement give

−2q2m+4 + 2q2m+2 + (1 + q)(2q2m+3
− 2q2m+1) ≥ (1 + q)(qm+1

− qm)

and it follows

2q2m+1(q2
− 1) ≥ qm(1 + q)(q − 1).

This is valid for m ≥ mq. Hence, the function f attains minimum at m = mq when m ≥ mq.
It remains to find the minimum of the function f since there are two candidates: mq − 1 and mq. It turns

out that f (mq − 1, xmq−1) = f (mq, xmq ), or,

1 − 2q2mq

1 + q
+ qmq (2qmq − 1) =

1 − 2q2mq+2

1 + q
+ qmq (2qmq+1

− 1).

It is an easy exercise for the careful reader.
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