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Abstract. In this paper, we construct Kähler-Norden statistical structures on pseudo-Riemannian mani-
folds equipped with a torsion-free linear connection and an almost complex structure. Also, we present
some examples and study curvature properties for these structures by using Tachibana operator. Finally,
we consider a Norden statistical manifold and study Codazzi coupling of its connection with the almost
complex structure on it.

1. Introduction

The notion of an almost Norden manifold was introduced by Norden in 1960 [14]. In the following
years, Gribachev, Mekerov and Djelepov studied its geometrical structure and gave the notion of generalized
B−manifolds [10]. Almost Norden structures are among the most important geometrical structures that can
be considered on a manifold. Let M be a 2n−dimensional differentiable manifold endowed with an almost
complex structure J and a pseudo-Riemannian metric 1 of signature (n,n) such that 1(JX,Y) = 1(X, JY) for
arbitrary vector fields X and Y on M. Then, the pseudo-Riemannian metric 1 is called a Norden metric.
Norden metrics are referred to as anti-Hermitian metrics or B−metrics. They find widespread application
in mathematics as well as in theoretical physics. In [13], Iscan and Salimov proved that there exist a one-to-
one correspondence between Kähler-Norden manifolds and Norden manifolds with a holomorphic metric.
Also, they showed that the Riemannian curvature tensor in such manifolds is pure and holomorphic. In
addition, the scalar curvature is a locally holomorphic function.

In 1980s, the notion of statistical structure was introduced and began to play an important role to build
a very effective branch called information geometry which is a combination of differential geometry and
statistics. Its applications can be found in various fields of science. For example, see [1, 3, 7, 8, 18] for some
utilization in image processing, physics, computer science and machine learning. A detailed survey on
information geometry can be studied in [2].

In this paper, we combine the above mentioned theories in a certain sense, that is, we introduce the
notion of Kähler-Norden statistical manifold and study its geometric properties.

The paper is organized as follows. In Section 2, we recall notions of almost Norden manifolds and
statistical manifolds. Then, we consider almost Norden statistical manifolds and study a basic property
of them. In Section 3, we introduce Kähler-Norden statistical structures. Also, we provide examples
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including these structures. Moreover, we study twin Norden metrics. In Section 4, we present some
properties of statistical curvature tensor of Kähler-Norden statistical manifolds by Tachibana operators.
Finally, in Section 5, we study Codazzi coupling of the connection of a Norden statistical manifold with the
almost complex structure on the manifold.

Throughout this paper, all manifolds, tensor fields and connections are always assumed to be differen-
tiable of class C∞. Also, we denote by ℑp

q(M) the set of all tensor fields of type (p, q) on M.

2. Almost Norden statistical manifolds

An isomorphism J of the tangent bundle TM is defined by smooth sections of the bundle End(TM) such
that it is invertible everywhere. In the special case when J2 = −Id, J is called an almost complex structure.
The manifold M endowed with an almost complex structure J is called an almost complex manifold. Let
(M, J) be an almost complex manifold. A pseudo-Riemannian metric 1 of signature (n,n) is a Norden metric
(B-metric) if

1(JX, JY) = −1(X,Y)

or equivalently 1(JX,Y) = 1(X, JY) for any X,Y ∈ ℑ1
0(M). In this case, (M, J, 1) is called an almost Norden

manifold. Also, an almost Norden manifold (M, J, 1) is called a Norden manifold if the almost complex
structure J is integrable i.e., the Nijenhuis tensor field NJ vanishes, where

NJ[X,Y] = [JX, JY] − J[JX,Y] − J[X, JY] − [X,Y] (1)

for any X,Y ∈ ℑ1
0(M).

Let ∇ be a torsion-free linear connection on M, and 1 be a pseudo-Riemannian metric. Denote by ∇̂ the
Levi-Civita connection of 1.

Definition 2.1. A pair (∇, 1) is called a statistical structure on M if the cubic tensor fieldC = ∇1 is totally symmetric;
namely the Codazzi equations hold:

(∇X1)(Y,Z) = (∇Y1)(X,Z), (= (∇Z1)(X,Y)) (2)

for any X,Y,Z ∈ ℑ1
0(M). Also, the manifold M together with these structures is called a statistical manifold.

In a local coordinate, the cubic tensor field C has the following form

Ci jk = ∂k1i j − Γ
h
ik1 jh − Γ

h
jk1ih, Ci jk = C jik = Cki j, (3)

where ∂i =
∂
∂xi and Γi

jk are the Christoffel symbols of the Codazzi connection ∇.

Considering the Levi-Civita connection ∇̂ of metric 1, then the above equation implies

Γr
i j =Γ̂

r
i j −

1
2
1rk
Ci jk,

where Γ̂r
i j are the connection components of ∇̂ and given by

Γ̂r
i j =

1
2
1rk
{∂i1 jk + ∂ j1ki − ∂k1i j}. (4)

On a statistical manifold (M, 1,∇), the 1-conjugate connection ∇∗ of ∇ is introduced by the following
formula

X1(Y,Z) = 1(∇XY,Z) + 1(Y,∇∗XZ) (5)
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for any X,Y,Z ∈ ℑ1
0(M). It can be checked easily that (∇∗, 1) is also a statistical structure and

C
∗(X,Y,Z) = (∇∗X1)(Y,Z) = −C(X,Y,Z).

For the statistical structure (∇, 1), we set

KXY = ∇XY − ∇̂XY. (6)

It is easy to see that K ∈ ℑ1
2(M) satisfies the following:

KXY = KYX, 1(KXY,Z) = 1(Y,KXZ) (7)

and

(∇X1)(Y,Z) = −21(KXY,Z).

Conversely, considering a pseudo-Riemannian metric 1 and K ∈ ℑ1
2(M) that satisfy (7), it follows that

(∇ := ∇̂ + K, 1) is a statistical structure on M.

Definition 2.2. An almost Norden manifold (M, J, 1) equipped with a statistical structure (∇, 1) will be called an
almost Norden statistical manifold.

In the following we get a relation between ∇ and ∇∗. It is remarkable that this relation is presented by
Teofilova in [21] without proof.

Proposition 2.3. Let (∇, 1, J) be an almost Norden statistical structure on M. Then we have

1((∇Y J)Z,X) = 1(Z, (∇∗Y J)X)

for any X,Y,Z ∈ ℑ1
0(M).

Proof. Since Y1(JZ,X) = Y1(Z, JX) and the pair (∇, 1) is a statistical structure, thus (5) implies

1(∇Y JZ,X) + 1(JZ,∇∗YX) = 1(∇YZ, JX) + 1(Z,∇∗Y JX).

The above equation and

(∇Y J)X = ∇Y JX − J∇YX

complete the proof.

Let (U, xi) be a locally coordinate system on (M). Then we have J∂i = J j
i∂ j and K∂i∂ j = Kr

i j∂r. So, in locally,
the Norden statistical structure conditions on the manifold M are expressed as follows

Γr
i j = Γ

r
ji, Ci jk = C jik,

J j
i Jk

j = −δ
k
i , Jk

i J jk = −1i j, Γr
i j − Γ̂

r
i j = Kr

i j,

Jm
i ∂m(Js

j) − Jm
j ∂m(Js

i ) − ∂i(Jm
j )Js

m + ∂ j(Jm
i )Js

m = 0,

(8)

where J jk = Jr
j1rk.

Example 2.4. Let M be a two-dimension manifold endowed with an almost complex structure J and a local coordinate
(x1, x2), such that

J =
(

J1
1 J2

1
J1
2 J2

2

)
.



E. Peyghan et al. / Filomat 36:17 (2022), 5691–5706 5694

Since J2(∂1) = −∂1 and J2(∂2) = −∂2 where ∂i =
∂
∂xi , i = 1, 2, we have

(J1
1)2 + J2

1 J1
2 = −1, J2

1(J1
1 + J2

2) = 0, (9)

J1
2(J1

1 + J2
2) = 0, (J2

2)2 + J2
1 J1

2 = −1.

Now, we consider possible cases for the above equations
Case 1. J2

2 = −J1
1.

In this case, using the first and the fourth equations of (9), we deduce (J1
1)2 + J2

1 J1
2 = −1.

Case 2. J2
2 , −J1

1.
In this case, the second and the third equations of (9) imply J2

1 = J1
2 = 0 and (J1

1)2 = (J2
2)2 = −1. But this is not

possible.
Therefore all almost complex structures on M is given by the following matrix presentation:

J =
(

a b
c −a

)
, a2 + bc = −1.

Example 2.5. Let J =
(

0 I
−I 0

)
and 1 =

(
0 I
I 0

)
be a complex structure and a pseudo-Riemannian metric on

M = R2 with respect to the standard coordinate system (x1, x2) and its associated vector fields ∂
∂x1 ,

∂
∂x2 . We consider

(1, 2)-tensor field K = Kl
i j
∂
∂xl ⊗ dxi

⊗ dx j, i, j, l = 1, 2 on R2 as follows:

K1
11 = K2

12 = K2
21 = −K1

22 = α, K2
22 = K1

12 = K1
21 = −K2

11 = β,

where α, β are functions on R2. Then K satisfies (7). Also, (2) holds. Hence (∇ = ∇̂ + K, 1, J) is a Norden statistical
structure on R2.

The normal distribution manifold has a two-dimensional parameter space which is defined as

M1 = {p(x, µ, σ)|p(x, µ, σ) =
1
√

2πσ
exp{−

(x − µ)2

2σ2 , µ ∈ R, σ > 0}}

and hence M1 may be viewed as a 2-dimensional manifold which has (µ, σ) as a coordinate system.

Example 2.6. The Fisher metric of the normal distribution manifold M1 is the following

(1i j) =
[

1
σ2 0
0 2

σ2

]
. (10)

We set ∂1 =
∂
∂µ and ∂2 =

∂
∂σ . The non-zero components Γ̂k

i j of the connection ∇̂ on M1 are given by

Γ̂1
12 = Γ̂

1
21 = −

1
σ
, Γ̂2

11 =
1

2σ
, Γ̂2

22 = −
1
σ
.

Setting the non-zero components of (1, 2)-tensor field K as

K1
12 = K1

21 = −
1
σ
, K2

11 = −
1

2σ
, K2

22 = −
2
σ
,

we can see that (M1, 1,∇ = ∇̂ + K) is a statistical manifold. But Example 2.4 implies that M1 with the Fisher
metric 1 doesn’t admit an almost Norden statistical structure because the condition 1(J∂1, J∂1) = −1(∂1, ∂1) implies
a2 + 2b2 = −1 and this is not possible. Therefore the quadruple (M1,∇, 1, J) is never a Norden statistical manifold.
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Example 2.7. Consider the normal distribution manifold M1. Let M =M1 ×M1 be a product manifold with a local
coordinate (σ, µ, η, θ). We define a Riemannian metric 1 on M as follows

1
σ2 0 0 0
0 2

σ2 0 0
0 0 −

1
σ2 0

0 0 0 −
2
σ2

 . (11)

Putting ∂1 =
∂
∂σ , ∂2 =

∂
∂µ , ∂3 =

∂
∂η and ∂4 =

∂
∂θ , the set = {∂i}

4
i=1 is a natural basis of TM. Assume K is a (1, 2)-tensor

field on M which is symmetric and satisfies in the following

K1
12 = K3

23 = K4
13 = K4

24 = −K2
22 = −K2

44 = −
1
σ
,

K2
11 = −K2

33 = −
1

2σ
, K1

34 = −K3
14 =

2
σ

and other components are zero. On the other hand, non-zero components of the the Levi-Civita ∇̂ are determined by

Γ̂1
12 = Γ̂

1
21 = Γ̂

3
23 =Γ̂

3
32 = Γ̂

4
24 = Γ̂

4
42 = Γ̂

2
22 = Γ̂

2
44 = −

1
σ
,

Γ̂2
11 = −Γ̂

2
33 =

1
2σ
.

According to the above equations we conclude that (M, 1,∇ = ∇̂ + K) is a statistical manifold. Defining the complex
structure J as

J∂1 = ∂3, J∂2 = ∂4, J∂3 = −∂1, J∂4 = −∂2,

it follows 1(J∂i, J∂ j) = −1(∂i, ∂ j), i, j = 1, 2, 3, 4. So (M,∇ = ∇̂ + K, 1, J) forms a Norden manifold.

Example 2.8. We consider a statistical model M depending on four parameters ξi, i = 1, · · · , 4, i.e., the discrete
probabitily model given by

X x1 x2 x3 x4 x5

P(X = xk) ξ1 ξ2 ξ3 ξ4 1 − ξ1
− ξ2

− ξ3
− ξ4

with ξi
∈ (0, 1). The outcomes xi, i = 1, · · · , 5 occur with probabilities ξi, i = 1, 2, 3, 4 and 1 − ξ1

− ξ2
− ξ3

− ξ4,
respectively. We describe the metric 1 on M by

(1i j) =


1
ξ1 +

1
1−ξ1−ξ2

1
1−ξ1−ξ2 0 0

1
1−ξ1−ξ2

1
ξ2 +

1
1−ξ1−ξ2 0 0

0 0 −
1
ξ1 −

1
1−ξ1−ξ2 −

1
1−ξ1−ξ2

0 0 −
1

1−ξ1−ξ2 −
1
ξ2 −

1
1−ξ1−ξ2

 .
It is easy to see that

(1i j)−1 =


−ξ1(−1 + ξ1) −ξ1ξ2 0 0
−ξ1ξ2

−ξ2(−1 + ξ2) 0 0
0 0 ξ1(−1 + ξ1) ξ1ξ2

0 0 ξ1ξ2 ξ2(−1 + ξ2)

 .
Also, using (4) and the components 1i j and (1i j)−1, we get

Γ̂1
11 =

1
2
111
{∂1111} +

1
2
112
{2∂1112 − ∂2111} =

−2ξ1 + ξ1ξ2 + 1 − ξ2

2ξ1(1 − ξ1 − ξ2)
:= α1.
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Similarly, we conclude that

Γ̂1
33 = Γ̂

3
13 = α1, Γ̂1

12 = Γ̂
1
34 = Γ̂

3
14 = Γ̂

3
23 = α2, Γ̂2

22 = Γ̂
2
44 = Γ̂

4
24 = α3,

Γ̂1
22 = Γ̂

1
44 = Γ̂

3
24 = α4, Γ̂2

12 = Γ̂
2
34 = Γ̂

4
14 = Γ̂

4
23 = α5, Γ̂2

11 = Γ̂
2
33 = Γ̂

4
13 = α6,

where α2 =
−ξ1

2(1−ξ1−ξ2) , α3 =
−ξ1+ξ1ξ2+1−2ξ2

2ξ2(1−ξ1−ξ2) , α4 =
ξ1(−1+ξ1)

2ξ2(1−ξ1−ξ2) , α5 =
−ξ2

2(1−ξ1−ξ2) and α6 =
ξ2(−1+ξ2)

2ξ1(1−ξ1−ξ2) . Defining the
non-zero components of the symmetric tensor field K = Kl

i j
∂
∂ξl ⊗ dξi

⊗ dξ j, i, j, l = 1, 2, 3, 4 on M as

K1
11 = −K1

33 = K3
13 = α1, K1

12 = −K1
34 = K3

14 = K3
23 = α2, K2

22 = −K2
44 = K4

24 = α3,

K1
22 = −K1

44 = K3
24 = α4, K2

12 = −K2
34 = K4

14 = K4
23 = α5, K2

11 = −K2
33 = K4

13 = α6,

(M,∇ = ∇̂ + K, 1) is a statistical manifold. Considering the complex structure J on M as

J
∂

∂ξ1 =
∂

∂ξ3 , J
∂

∂ξ2 =
∂

∂ξ4 , J
∂

∂ξ3 = −
∂
∂ξ1
, J

∂

∂ξ4 = −
∂

∂ξ2 .

One can see 1(J ∂∂ξi , J ∂∂ξ j ) = −1( ∂∂ξi ,
∂
∂ξ j ), for i, j = 1, 2, 3, 4, i.e., 1 is a Norden metric. Therefore (M,∇ = ∇̂ + K, 1, J)

is a Norden manifold.

3. Kähler-Norden statistical manifolds

In this section, we shall introduce Kähler-Norden statistical structures. Also, we provide examples
including these structures. Moreover, we shall study twin Norden metrics of statistical manifolds.

Now we consider the Φ-operator (or Tachibana operator [20]) applied to the Norden metric 1:

(ΦJ1)(X,Z1,Z2) = JX(1(Z1,Z2)) − X1(JZ1,Z2) (12)
+ 1((LZ1 J)X,Z2) + 1(Z1, (LZ2 J)X)

for any Z1,Z2 ∈ ℑ
1
0(M). If (ΦJ1) = 0, which is equivalent ∇̂J = 0 [13], then the Norden metric is a holomorphic

metric.

Lemma 3.1. Let (M,∇, 1, J) be an almost Norden statistical manifold. Then we have the following formulas:

i)(ΦJ1)(X,Z1,Z2) = 1((∇Z1 J)X,Z2) + 1(X, (∇Z2 J)Z1) − 1((∇X J)Z1,Z2),
ii) (ΦJ1)(X,Z1,Z2) = 1((∇∗Z1

J)X,Z2) + 1(X, (∇∗Z2
J)Z1) − 1((∇∗X J)Z1,Z2),

iii) (ΦJ1)(X,Z1,Z2) + (ΦJ1)(Z2,Z1,X) = 21((∇̂Z1 J)X,Z2)

for any X,Z1,Z2 ∈ ℑ
1
0(M).

Proof. Using [X,Y] = ∇XY − ∇YX, firstly, we give the following

(LZ1 J)X = (LZ1 JX) − J(LZ1 X)
= (∇Z1 JX) − ∇JXZ1 − J(∇Z1 X − ∇XZ1)
= (∇Z1 J)X − ∇JXZ1 + J∇XZ1.

Similarly we get

(LZ2 J)X = (∇Z2 J)X − ∇JXZ2 + J∇XZ2.

By means of the above equations, when we applied the Tachibana operator to the Norden metric 1, we get
from (12)

(ΦJ1)(X,Z1,Z2) = (∇JX1)(Z1,Z2) − (∇X1)(JZ1,Z2) + 1((∇Z1 J)X,Z2) (13)
+ 1(Z1, (∇Z2 J)X) − 1((∇X J)Z1,Z2).
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Since of being a statistical structure (∇, 1), the equation (13) transforms into

(ΦJ1)(X,Z1,Z2) = (∇Z21)(Z1, JX) − (∇Z21)(JZ1,X) − 1((∇X J)Z1,Z2) (14)
+ 1(Z1, (∇Z2 J)X) + 1((∇Z1 J)X,Z2).

We find also

(∇Z21)(Z1, JX) = (∇Z21)(JZ1,X) (15)
+ 1(((∇Z2 J)Z1,X) − 1(Z1, (∇Z2 J)X).

Substituting (15) into (14), we obtain

(ΦJ1)(X,Z1,Z2) = 1((∇Z1 J)X,Z2) + 1(X, (∇Z2 J)Z1) − 1((∇X J)Z1,Z2),

which gives (i). Similarly, we conclude (ii) and (iii).

An almost complex manifold equipped with a holomorphic metric is called a Kähler-Norden manifold.
With this in hand, we will derive a Kähler-Norden statistical manifold as an almost Norden statistical
manifold equipped with a holomorphic metric.

Theorem 3.2. An almost Norden statistical manifold (M,∇, 1, J) is a Kähler-Norden statistical manifold if ∇J = 0,
in addition the formula

KX JY = JKXY (16)

holds for any X,Y ∈ ℑ1
0(M), where K ∈ ℑ1

2(M) is given as (6).

Proof. Setting ∇J = 0 in the part (i) of Proposition 2.3, it immediately follows that (ΦJ1) = 0, i.e., the
Norden metric 1 is a holomorphic metric. Hence, the almost Norden statistical manifold (M,∇, 1, J) is a
Kähler-Norden statistical manifold. In addition, the equation (6) with Y→ JY becomes

KX JY = ∇X JY − ∇̂X JY

= (∇X J)Y + J∇XY − (∇̂X J)Y − J∇̂XY.

But ∇J = 0 implies ΦJ1 = 0 and consequently ∇̂J = 0. So, the above equation reduces to

KX JY = JKXY,

which completes the proof.

In [9], the second author and his collaborator proved that if ∇J = 0, then ∇∗ J = 0. Hence, we have the
following.

Proposition 3.3. Let 1 and∇ be a pseudo-Riemannian metric and a torsion-free linear connection on the manifold M,
respectively. If ∇∗ is the 1-conjugate connection of ∇, and J is an almost complex structure on M, then the following
statements are equivalent:

a) (∇, 1, J) is Kähler-Norden statistical structure,
b) (∇∗, 1, J) is Kähler-Norden statistical structure.

Example 3.4. Equip M = R4 by the pseudo-Riemannian metric 1 =
∑2

i=1(dxi
⊗ dxi+2 + dxi+2

⊗ dxi) and the
complex structure J( ∂∂xi ) = ∂

∂xi+2 , i = 1, 2 and J( ∂∂xi ) = − ∂
∂xi−2 , i = 3, 4, where (x1, x2, x3, x4) is the standard coordinate
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system and { ∂∂xi }
4
i=1 are its associated vector fields. For functions αi, i = 1, · · · , 8 on R4, define (1, 2)-tensor field

K = Kl
i j
∂
∂xl ⊗ dxi

⊗ dx j, i, j, l = 1, 2, 3, 4 on R4 by

K1
11 = −K1

33 = K3
13 = α1,

K1
12 = −K1

34 = K2
11 = −K2

33 = K3
14 = K3

23 = K4
13 = α2,

K1
13 = −K3

11 = K3
33 = α3,

K1
14 = K1

23 = K2
13 = −K3

12 = K3
34 = −K4

11 = K4
33 = α4,

K2
22 = −K2

44 = K4
24 = α5,

K1
22 = −K1

44 = K2
12 = −K2

34 = K3
24 = K4

14 = K4
23 = α6,

K2
24 = −K4

22 = K4
44 = α7,

K1
24 = K2

14 = K2
23 = −K3

22 = K3
44 = −K4

12 = K4
34 = α8,

where Kl
i j = Kl

ji and other components of the tensor K are zero. So K satisfies the conditions in Definition 2.1, and we

get a Kähler-Norden statistical manifold (R4,∇ = ∇̂ + K, 1, J).

Example 3.5. Let M be a manifold with a local coordinate (x1, x2, x3, x4) such that {∂i := ∂
∂xi }

4
i=1 is a natural basis of

TM with the dual {dxi
}
4
i=1. We define a pseudo-Riemannian metric 1 on M as follows


0 0 1

C2 0
0 0 0 2

C2
1

C2 0 0 0
0 2

C2 0 0

 , (17)

where C is constant. Assume K = Kl
i j∂l ⊗ dxi

⊗ dx j, i, j, l = 1, 2, 3, 4 is a (1, 2)-tensor field on M. Using (7), we get
Kl

i j = Kl
ji and

K1
11 = K3

13, K1
12 = K3

23 = 2K4
13, K1

13 = K3
33, K1

14 = 2K2
13 = K3

34,

K1
22 = 2K4

23, K1
23 = 2K4

33, K1
24 = 2K2

23 = 2K4
34, K1

34 = 2K2
33,

K1
44 = 2K2

34, K2
11 =

1
2

K3
14, K2

12 = K4
14 =

1
2

K3
24, K2

14 =
1
2

K3
44,

K2
22 = K4

24, K2
24 = K4

44, K3
12 = 2K4

11, K3
22 = 2K4

12.

We define the complex structure J by J(∂i) = ∂i+2, i = 1, 2 and J(∂i) = −∂i−2, i = 3, 4. Hence (16) implies

K1
11 = −K1

33, K1
12 = K3

23 = K3
14 = −K1

34, K1
13 = −K3

11, K1
14 = K1

23 = −K3
12,

K1
22 = K3

24 = −K1
44, K1

24 = K3
44 = −K3

22, K2
11 = −K2

33 = K4
13,

K2
12 = −K2

34 = K4
23, K2

13 = −K4
11 = K4

33, K2
14 = K2

23 = −K4
12 = K4

34,

K2
24 = −K4

22 = K4
44, K2

44 = −K4
24.

For functions fi = fi(µ, σ), i = 1, · · · , 8 on M, we set

K1
11 = f1, K1

12 = f2, K1
13 = f3, K1

14 = f4,

K1
22 = f5, K1

24 = f6, K2
22 = f7, K2

24 = f8.
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Using ∇∂i∂ j = ∇̂∂i∂ j + K∂i∂ j, we have

∇∂1∂1 = f1e1 +
1
2

f2e2 − f3e3 −
1
2

f4e4,

∇∂1∂2 = f2e1 +
1
2

f5e2 − f4e3 −
1
2

f6e4,

∇∂1∂3 = f3e1 +
1
2

f4e2 + f1e3 +
1
2

f2e4,

∇∂1∂4 = f4e1 +
1
2

f6e2 + f2e3 +
1
2

f5e4,

∇∂2∂2 = f1e1 +
1
2

f2e2 − f3e3 −
1
2

f4e4,

∇∂2∂3 = f2e1 +
1
2

f5e2 − f4e3 −
1
2

f6e4,

∇∂2∂4 = f6e1 + f7e2 + f5e3 + f8e4,

∇∂3∂3 = − f1e1 −
1
2

f2e2 + f3e3 +
1
2

f4e4,

∇∂3∂4 = − f2e1 −
1
2

f5e2 + f4e3 +
1
2

f6e4,

∇∂4∂4 = − f5e1 − f8e2 + f6e3 + f7e4.

It is easy to see that ∇ satisfies (2). Therefore (M,∇, 1, J) is a Kähler-Norden statistical manifold.

Example 3.6. We consider a 4-dimensional manifold M with a local coordinate (x1, x2, x3, x4) such that {∂i =
∂
∂xi }

4
i=1

is a natural basis of tangent space TM with the dual basis {dxi
}
4
i=1. Let (J, 1) be a Norden-Walker structure on M, that

is

J∂1 = ∂2, J∂2 = −∂1, J∂3 = −∂4, J∂4 = ∂3 (18)

and

1 = (1i j) =


0 0 1 0
0 0 0 1
1 0 a c
0 1 c b

 ,
where a = −b, c ∈ R (see, [16, 17]). Considering functions A1 and A2 on M, we describe non-zero components of
(1, 2)-tensor field K on M as

K1
33 = −K2

34 = −K2
43 = −K1

44 = A5, K2
44 = −K1

34 = −K1
43 = −K2

33 = A6.

From the above equations, (7) holds. Also, setting ∇∂i∂ j = ∇̂∂i∂ j + K∂i∂ j, we have

C333 = −2A5, C334 = C343 = C433 = 2A6, C444 = −2A6, C344 = C443 = 2A5.

Thus (M,∇, 1) forms a statistical manifold. Moreover, it easy to see that K∂i J∂ j = JK∂i∂ j, i = 1, 2, 3, 4, so (∇, 1, J) is a
Kähler-Norden statistical structure on M.

Now, we restrict ourselves to the case that 1 is a Norden metric on an almost complex manifold (M, J).
So we can apply J to obtain a new Norden metric G associated with the Norden metric 1 of the almost
Norden manifold (M, J, 1) defined by

G(X,Y) = 1(JX,Y)

for any X,Y ∈ ℑ1
0(M). In this case, the pure tensor field G is called the twin metric of 1.
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Proposition 3.7. Let (∇, 1, J) be a Kähler-Norden statistical structure on M. Then (∇,G, J) is a Kähler-Norden
statistical structure on M.

Proof. We assume that the condition (16) holds, and we will show that

(∇XG)(Y,Z) = (∇YG)(X,Z).

The action of ∇ on a (0, 2)−tensor field G is defined as

(∇XG)(Y,Z) = XG(Y,Z) − G(∇XY,Z) − G(Y,∇XZ), (19)

which gives

(∇XG)(Y,Z) = X1(JY,Z) − 1(J∇XY,Z) − 1(JY,∇XZ). (20)

Using (6) and (16) in the above equation, we get

(∇XG)(Y,Z) = (∇̂X1)(Y, JZ) − 1(KXY, JZ) − 1(Y,KX JZ).

Since (∇̂X1)(Y, JZ) = 0, the last equation and (7) imply

(∇XG)(Y,Z) = −21(KXY, JZ).

We derive, analogously,

(∇YG)(X,Z) = −21(KYX, JZ).

Hence, (7) and the last two equations give the result.

4. Statistical curvature tensor on Kähler-Norden statistical manifolds

For a torsion-free linear connection ∇, the curvature tensor R∇ is defined as

R∇(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,

for any X,Y,Z ∈ ℑ1
0(M). Let (∇, 1) be a statistical structure on M. We denote the curvature tensor field of ∇

by R∇ or R for short, and denote R∇∗ by R∗ in the similar fashion. The following formulas hold

1(R(X,Y)Z,W) = −1(R(Y,X)Z,W),

1(R∗(X,Y)Z,W) = −1(R∗(Y,X)Z,W),

1(R(X,Y)Z,W) = −1(R∗(X,Y)W,Z).

We set

S(X,Y)Z =
1
2
{R(X,Y)Z + R∗(X,Y)Z} (21)

for any X,Y,Z ∈ ℑ1
0(M) and call S ∈ ℑ1

3(M) the statistical curvature tensor field of (∇, 1). We set S(X,Y,Z,W) =
1(S(X,Y)Z,W), then S satisfies

S(X,Y,Z,W) = −S(Y,X,Z,W),

S(X,Y,Z,W) = −S(X,Y,W,Z),

S(X,Y,Z,W) = S(Z,W,X,Y).
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Assume that (M,∇, 1, J) is a Kähler-Norden statistical manifold. Let R denote the curvature tensor field
of (∇, 1). The condition ∇J = 0 leads to

JR(X,Y)Z = R(X,Y)JZ.

Also, Proposition 3.3 implies

JR∗(X,Y)Z = R∗(X,Y)JZ.

According to the above equations, one deduce that

JS(X,Y)Z = S(X,Y)JZ.

Hence, we have

S(JX,Y,Z,W) = S(X, JY,Z,W),

S(X,Y, JZ,W) = S(X,Y,Z, JW),

i.e., S is pure with respect to X and Y, and also pure with respect to Z and W.
Denote by R̂ the Riemannian curvature tensor of ∇̂. It is well known that [12]

S(X,Y,Z,W) = 2R̂(X,Y,Z,W) − 1(KYKXZ − KXKYZ,W).

On the other hand, using (7) and Theorem 3.2, we get

KJXY = KX JY = JKXY.

Using this and the purity of the Riemannian curvature tensor, we obtain

S(X, JY,Z,W) = 2R̂(X, JY,Z,W) − 1(KJYKXZ − KXKJYZ,W)

= 2R̂(X,Y,Z, JW) − 1(J(KYKXZ − KXKYZ),W)

= 2R̂(X,Y,Z, JW) − 1(KYKXZ − KXKYZ, JW)
= S(X,Y,Z, JW),

which means that S(X,Y,Z,W) is pure with respect to Y and W. Thus, the statistical curvature tensor S is
pure.

Proposition 4.1. The statistical curvature tensor field S of a Kähler-Norden statistical manifold is pure.

If a torsion-free linear connection ∇which preserve the almost complex structure J (∇J = 0) satisfies the
condition ∇JXY = J∇XY, then ∇ is called a holomorphic connection (p. 185 of [19]) (see also [4, 5, 6, 11, 13]).
As it is known, the Levi-Civita connection ∇̂ of Kähler-Norden manifold is a holomorphic connection. Then

KJXY = ∇JXY − ∇̂JXY,

which gives us

J(KXY − ∇̂XY) = ∇JXY

or

J∇XY = ∇JXY.

From ∇∗XY = ∇̂XY − KXY and ∇∗ J = 0, similarly we get J∇∗XY = ∇∗JXY = ∇∗X JY. Therefore, we have the
following result.
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Corollary 4.2. In a Kähler-Norden statistical manifold (M,∇, 1, J), the torsion-free linear connection ∇ and its
1-conjugation ∇∗ are holomorphic.

Any tensor field A of arbitrary type which is pure with respect to an complex structure J is holomorphic
if ΦJ A = 0 (fore details, see [15])

Theorem 4.3. In a Kähler-Norden statistical manifold (M,∇, 1, J), the statistical curvature tensor field S is holomor-
phic.

Proof. In the proof, we use several times the techniques of [13]. The Tachibana operator applied to the
(0, 4)-tensor field S is as follow [13, 15]:

(ΦJ S)(X,Y,Z,W,T) = (JX)(S(Y,Z,W,T)) − X(S(JY,Z,W,T)) + S((LY J)X,Z,W,T)
+ S(Y, (LZ J)X,W,T) + S(Y,Z, (LW J)X,T) + S(Y,Z,W, (LT J)X).

From (21), it follows

(ΦJ S)(X,Y,Z,W,T) =
1
2

((JX)((R + R∗)(Y,Z,W,T)) − X((R + R∗)(JY,Z,W,T))

+ (R + R∗)((LY J)X,Z,W,T) + (R + R∗)(Y, (LZ J)X,W,T)
+ (R + R∗)(Y,Z, (LW J)X,T) + (R + R∗)(Y,Z,W, (LT J)X))

=
1
2

((ΦJ R)(X,Y,Z,W,T) + (ΦJ R
∗)(X,Y,Z,W,T)).

On the other hand

(ΦJ R)(X,Y,Z,W,T) = (JX)(R(Y,Z,W,T)) − X(R(JY,Z,W,T))
+ R(∇Y JX − ∇JXY − J∇YX + J∇XY,Z,W,T) + R(Y,∇Z JX − ∇JXZ − J∇ZX + J∇XZ,W,T)
+ R(Y,Z,∇W JX − ∇JXW − J∇WX + J∇XW,T) + R(Y,Z,W,∇T JX − ∇JXT − J∇TX + J∇XT).

From ∇J = 0, the last equation implies

(ΦJ R)(X,Y,Z,W,T) = (JX)(R(Y,Z,W,T)) − X(R(JY,Z,W,T))
+ R(−∇JXY + J∇XY,Z,W,T) + R(Y,−∇JXZ + J∇XZ,W,T)
+ R(Y,Z,−∇JXW + J∇XW,T) + R(Y,Z,W,−∇JXT + J∇XT).

Since ∇ ( resp. ∇∗) is a holomorphic connection, its curvature tensor field R ( resp. R∗) is pure (see [13]).
Hence, from ∇J = 0, it follows

−X(R(JY,Z,W,T)) + R(J∇XY,Z,W,T)
+R(Y, J∇XZ,W,T) + R(Y,Z, J∇XW,T) + R(Y,Z,W, J∇XT)
= −X(R(JY,Z,W,T) + R(∇X JY,Z,W,T)
+R(JY,∇XZ,W,T) + R(JY,Z,∇XW,T) + R(JY,Z,W,∇XT)
= −(∇XR)(JY,Z,W,T)

and

(JX)(R(Y,Z,W,T)) − R(∇JXY,Z,W,T) − R(Y,∇JXZ,W,T)
−R(Y,Z,∇JXW,T) − R(Y,Z,W,∇JXT)
= (∇JXR)(Y,Z,W,T).

Thus

(ΦJ R)(X,Y,Z,W,T) = −(∇XR)(JY,Z,W,T) + (∇JXR)(Y,Z,W,T).
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We get

(∇XR)(JY,Z,W,T) = (∇X1)(R(JY,Z)W,T) + 1((∇XR)(JY,Z,W),T).

The last two equations, yield

(ΦJ R)(X,Y,Z,W,T) = −(∇X1)(R(JY,Z)W,T) − 1((∇XR)(JY,Z,W),T) (22)
+ (∇JX1)(R(Y,Z)W,T) + 1((∇JXR)(Y,Z,W),T).

Since ∇J = 0 and using the Bianchi’s 2nd identity, we conclude

−1((∇XR)(JY,Z,W),T) + 1((∇JXR)(Y,Z,W),T) = −1(J(∇XR)(Y,Z,W),T)
−1((∇YR)(Z, JX,W),T) − 1((∇ZR)(JX,Y,W),T)
= 1(J(∇XR)(Y,Z,W),T) − 1(J(∇YR)(Z,X,W),T) − 1(J(∇ZR)(X,Y,W),T) = 0.

Also, since (∇, 1) is a statistical structure, we obtain

(∇X1)(R(JY,Z)W,T) = (∇JX1)(R(Y,Z)W,T).

Setting two last equations in (22), we deduce (ΦJ R)(X,Y,Z,W,T) = 0. In the same way, we get (ΦJ R∗)(X,Y,Z,W,T) =
0. Therefore, we have the assertion.

5. Codazzi Coupling

In this section, we consider a Norden statistical manifold (M,∇, 1, J) and study Codazzi coupling of the
connection ∇ with the almost complex structure J. Also, we conclude that the connection ∇ is Codazzi
coupled with the twin metric G if and only if ∇ reduces to the Levi-Civita connection ∇̂ or J is parallel under
∇.

Definition 5.1. Let (∇, 1, J) be a Norden statistical structure on the manifold M. The almost complex structure J
and ∇ is called Codazzi coupled if we have

(∇X J)Y = (∇Y J)X,

for any X,Y ∈ ℑ1
0(M).

Lemma 5.2. In a Norden statistical manifold (M,∇, 1, J), if (16) holds, then the Tachibana operator to the Norden
metric 1 satisfies the following identity

(ΦJ1)(X,Y,Z) = (ΦJ1)(Z,Y,X) (23)

if and only if

(∇X J)Y = (∇Y J)X (24)

for any X,Y ∈ ℑ1
0(M).

Proof. If (23) holds, then using (6), we have

(∇X J)Y = ∇X JY − J∇XY = ∇̂X JY − J∇̂XY + KX JY − JKXY = (∇̂X J)Y + KX JY − JKXY.

Setting the above equation in the part (i) of Lemma 3.1, we have

(ΦJ1)(X,Y,Z) =1((∇̂Y J)X,Z) + 1(X, (∇̂Z J)Y) − 1((∇̂X J)Y,Z)
+1(KY JX − JKYX,Z) + 1(X,KZ JY − JKZY) − 1(KX JY − JKXY,Z),
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which using (16) gives

(ΦJ1)(X,Y,Z) =1((∇̂Y J)X,Z) + 1(X, (∇̂Z J)Y) − 1((∇̂X J)Y,Z).

Similarly, it follows

(ΦJ1)(Z,Y,X) =1((∇̂Y J)Z,X) + 1(Z, (∇̂X J)Y) − 1((∇̂Z J)Y,X).

As 1((∇̂Y J)Z,X) = 1((∇̂Y J)X,Z), the last two equations imply 1((∇̂X J)Y,Z) = 1((∇̂Y J)X,Z). So, we deduce

(∇̂X J)Y = (∇̂Y J)X.

Applying KX JY = KY JX in the above equation, we obtain (∇X J)Y = (∇Y J)X. In the similar way, we can prove
the converse of the Lemma.

Example 5.3. Considering the Norden statistical manifold (M,∇, 1, J) in Example 2.7, we obtain

(∇∂i J)∂ j = 0 = (∇∂ j J)∂i, i, j = 1, 2, 3, 4,

except

(∇∂1 J)∂1 = −
1
σ
∂4, (∇∂2 J)∂2 = −

2
σ
∂4, (∇∂1 J)∂3 = −

1
σ
∂2 = (∇∂3 J)∂1,

(∇∂3 J)∂3 =
1
σ
∂4, (∇∂4 J)∂4 =

2
σ
∂4 (∇∂2 J)∂4 = −

2
σ
∂2 = (∇∂4 J)∂2.

Thus the pair (∇, J) is Codazzi coupled. On the other hand, it follows

(ΦJ1)(∂i, ∂ j, ∂k) = 0, i, j = 1, 2, 3, 4,

unless

(ΦJ1)(∂2, ∂1, ∂3) = −
2
σ3 , (ΦJ1)(∂2, ∂2, ∂4) = −

4
σ3 , (ΦJ1)(∂2, ∂3, ∂1) = −

2
σ3 , (ΦJ1)(∂2, ∂4, ∂2) = −

4
σ3 ,

(ΦJ1)(∂4, ∂1, ∂1) =
2
σ3 , (ΦJ1)(∂4, ∂2, ∂2) =

4
σ3 , (ΦJ1)(∂4, ∂3, ∂3) = −

2
σ3 , (ΦJ1)(∂4, ∂4, ∂4) = −

4
σ3 .

So Lemma 5.2 doesn’t hold. But considering σ = constant and defining a new (1, 2)-tensor field K on M such that
K1

11 = K3
13 = K3

31 = −K1
33 and other components of the tensor K are zero, we conclude that (M,∇ = ∇̂ + K, 1, J) is a

Norden manifold. It is easy to see that K∂i J∂ j = K∂ j J∂i and (ΦJ1)(∂i, ∂ j, ∂k) = 0, i, j = 1, 2, 3, 4. Therefore Lemma 5.2
holds.

Now, considering a Norden statistical manifold (M,∇, 1, J), we study Codazzi coupling of ∇ with the
twin metric G. In order we present the following theorem:

Theorem 5.4. Let (M,∇, 1, J) be a Norden statistical manifold. Then we have

(∇XG)(Y,Z) − (∇YG)(X,Z) =1((∇∗Z J − ∇Z J)Y,X) + 1((∇X J)Y − (∇Y J)X,Z) (25)

for any X,Y,Z ∈ ℑ1
0(M).

Proof. Applying (19) and (20), we can write

(∇XG)(Y,Z) = (∇X1)(JY,Z) + 1((∇X J)Y,Z) = C(X, JY,Z) + 1((∇X J)Y,Z). (26)

Similarly, we have

(∇YG)(X,Z) = C(JX,Y,Z) + 1((∇Y J)X,Z). (27)

On the other hand, we obtain

C(X, JY,Z) − C(JX,Y,Z) = 1((∇∗Z J − ∇Z J)Y,X). (28)

From (26)-(28), we conclude (5.5).
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Corollary 5.5. Let (M,∇, 1, J) be a Norden statistical manifold. If the pair (∇, J) is Codazzi coupled, then

(∇XG)(Y,Z) − (∇YG)(X,Z) =1((∇∗Z J − ∇Z J)Y,X)

for any X,Y,Z ∈ ℑ1
0(M).

Corollary 5.6. In a Norden statistical manifold (M,∇, 1, J), the condition Codazzi coupling of ∇ with G, i.e.,

(∇XG)(Y,Z) = (∇YG)(X,Z) (29)

is equivalent to

(∇X J)Y = (∇Y J)X (30)

for any X,Y,Z ∈ ℑ1
0(M), if and only if one of the following assertion holds:

i) ∇ = ∇∗, i.e., ∇ reduces to the Levi-Civita connection ∇̂.
ii) J is parallel under ∇, i.e., ∇J = 0.

Example 5.7. The twin metric G of 1 in Example 5.3 is determined by

(Gi, j) =


0 0 −

1
σ2 0

0 0 0 −
2
σ2

−
1
σ2 0 0 0
0 −

2
σ2 0 0

 .
On the other hand, it follows that (∇∂i G)(∂ j, ∂k) − (∇∂ j G)(∂i, ∂k) = 0 = 1((∇∗

∂k
J − ∇∂k J)∂ j, ∂i) for i, j, k = 1, 2, 3, 4,

except

(∇∂1 G)(∂4, ∂1) − (∇∂4 G)(∂1, ∂1) =
2
σ3 = 1((∇

∗

∂1
J − ∇∂1 J)∂4, ∂1),

(∇∂2 G)(∂3, ∂1) − (∇∂3 G)(∂2, ∂1) =
2
σ3 = 1((∇

∗

∂1
J − ∇∂1 J)∂3, ∂2),

(∇∂2 G)(∂4, ∂2) − (∇∂4 G)(∂2, ∂2) =
8
σ3 = 1((∇

∗

∂2
J − ∇∂2 J)∂4, ∂2),

(∇∂1 G)(∂2, ∂3) − (∇∂2 G)(∂1, ∂3) = −
2
σ3 = 1((∇

∗

∂3
J − ∇∂3 J)∂2, ∂1),

(∇∂3 G)(∂4, ∂3) − (∇∂4 G)(∂3, ∂3) = −
2
σ3 = 1((∇

∗

∂3
J − ∇∂3 J)∂4, ∂3).

So Corollary 5.5 holds.

Example 5.8. We consider the Norden statistical structure (∇, 1, J) in Example 3.6. According to (18), we obtain
(∇∂i J)∂ j = 0, i, j = 1, 2, 3, 4, i.e., the pair structure (∇, J) is Codazzi coupling. The twin metric G of the Norden-Walker
metric 1 is given by

G = (Gi j) =


0 0 0 1
0 0 −1 0
0 −1 −c a
1 0 a c

 .
As (∇∂i G)(∂ j, ∂k) = 0 = (∇∂ j G)(∂i, ∂k), i, j, k = 1, 2, 3, 4, except for

(∇∂3 G)(∂3, ∂3) = −2A2, (∇∂3 G)(∂4, ∂3) = −2A1 = (∇∂4 G)(∂3, ∂3),
(∇∂4 G)(∂4, ∂4) = 2A1, (∇∂3 G)(∂4, ∂4) = 2A2 = (∇∂4 G)(∂3, ∂4),

it follows that G is Codazzi Coupled with ∇. Hence Corollary 5.6 holds.
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We can define in analogous to 1-conjugation of a connection, for any connection ∇, the G-conjugate connec-
tion ∇† by setting

XG(Y,Z) = G(∇XY,Z) + G(Y,∇†XZ)

for any X,Y,Z ∈ ℑ1
0(M). It is easy to see that ∇† is a connection, and (∇†)† = ∇. Since the metric G is

symmetric, the above equation can be written as

XG(Y,Z) = G(∇†XY,Z) + G(Y,∇XZ).

Using the definition of ∇G, we have

(∇XG)(Y,Z) = G(∇†XY − ∇XY,Z),

and since (∇†)† = ∇ it follows that

(∇XG)(Y,Z) = −(∇†XG)(Y,Z).

According to the above discussions we have the following proposition:

Proposition 5.9. In a Norden statistical manifold (M,∇, 1, J), the following statements are equivalent:
i) ∇G = 0,
ii) ∇ = ∇†.
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