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Abstract. In this paper, we establish the existence and uniqueness of common fixed point theorem for self
mappings satisfying contractive condition of integral type via the concept of C-class functions in complete
metric spaces. Further, we furnish an example to validate our result. Our result improves various results
in the current literature. Towards the end, the existence and uniqueness of common solutions for system of
functional equations arising in dynamic programming are discussed as an application of our main result.

1. Introduction

Fixed point theory is one of the most fruitful and effective tools in mathematics. It is widely used for the
existence to the solutions of many nonlinear problems in many branches of physics and engineering. The
Banach contraction principle [13] is the first important result on fixed point for contractive type mapping.
This principle has many applications in differential equations, functional equations, integral equations,
economics and several others. Banach’s contraction principle is mostly used by the researcher for fixed
point common fixed point in many types of contraction mapping. Several authors have generalized the
Banach’s contraction in different ways [2—4, 7, 12, 17].

In 1976, Jungck [27] introduced the concept of commuting maps. He also generalized the Banach fixed
point theorem. In 1982, Sessa [42] introduced the concept of weak commutativity and established some
common fixed point theorems. After that 1986, Jungck [28] introduced the concept of compatible mappings
and then also introduced the weakly compatible mappings [29]. Branciari [16] established an integral
version of the Banach contraction principles and proved fixed point theorem for a single-valued contractive
mapping of integral type in metric space. After that many authors generalized the result of Branciari and
obtained fixed point and common fixed point theorems for various contractive conditions of integral type
on different spaces [1, 5, 6, 18-23, 25, 30-32, 40, 41, 44, 45].

Ansari [8] introduced the notion of C-class function as a major generalization of Banach contraction
principle and obtained some fixed point results. After that many authors were interested to obtained
common fixed point theorems for C-class function [9, 10, 37]. Recently, some authors obtained fixed point
and common fixed point for C-class function [11, 15, 24, 26, 38, 39, 43].
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2. Preliminaries

We recall some definitions which will be used in the sequel.
Definition 2.1. [36] Let (X, d) be a metric space. Then a sequence {x,} in X is called

1. convergent if and only if there exists x € X such that d(x,,x) — 0, as n — oco. In this case, we write
lim, 00 X, = x.
2. Cauchy if and only if d(x,, x,,) — 0, as n,m — oo.

Definition 2.2. [36] The metric space (X, d) is complete if every Cauchy sequence in X is convergent.

Definition 2.3. [8] A mapping F : [0, 00)?> — R is called C-class function if it is continuous and satisfies following
axioms:

1. F(s,t) < sforall (s, t) € R%;
2. F(s,t) = s implies that either s = 0 or t = 0.
Let us denote C the family of C-class functions.

Remark 2.1. [8] Clearly, for some F we have F(0,0) = 0.

Example 2.2. [8] The following functions F : [0, 0)*> — R are elements of C, for all s, t € [0, c0):

F(s,t)=s—t F(s,t)y=s=>t=0;

F(s,t)=ms, 0 <m<1,F(s,t) =s=s5=0;

F(s,t) = sp(s), B : [0, 00) — [0,1) is continuous, F(s,t) =s = s = 0;

F(s,t) = s — @(s), F(s,t) = s = s = 0, here ¢ : [0,00) — [0,00) is a continuous function such that
et =0 & t=0.

Ll e

Definition 2.4. [33] A function 1 : [0, 00) — [0, o0) is called an altering distance function if the following properties
are satisfied.

1. 1 is nondecreasing and continuous,
2. Y(t) =0ifand only if t = 0.

Definition 2.5. [8] An ultra altering distance function is a continuous nondecreasing mapping @ : [0, c0) — [0, o0)
such that @(t) > 0, > 0and ¢(0) > 0.

In this paper, we establish the existence and uniqueness of common fixed point theorem for self mappings
satisfying contractive condition of integral type via the concept of C-class functions in complete metric
spaces. Further, we furnish an example to validate our result. Our result improves various results in the
current literature. We apply our result to the existence and uniqueness of common solutions for system of
functional equations arising in dynamic programming.

3. Main Result

In our main result we denote 11 € W; is an altering distance function, ¢, € W, is an ultra altering
distance function and ¢ € W3 is a Lebesgue-integrable function.

Now, we prove our main result.
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Theorem 3.1. Let (X, d) be a complete metric space and S, T : X — X be a mapping such that for such x,y € X,

d(Sx,Ty) Mx,y) M)
1#1( fo ' (P(t)dt)sF(%( fo ’ cp(t)dt),wz( fo ’ (p(t)dt)), )

where F is a C-class function, 1 € W1, ¢, € W, and ¢ € W3 where ¢ : [0, 00) — [0, 00) be a Lebesgue-integral
function which is summable on each compact subset of R*, non-negative and such that for each € > 0,

f Q(t)dt > 0,
0

d(x, Ty) + d(y, Sx)
-

and

M(x,y) = max{d(x, y),d(x,Sx),d(y, Ty),

()
Then S and T have a unique common fixed point.

Proof. Let xy € X such that Sxp = x1 and Tx; = xp. Define a sequence {x,} in X such that xp,+1 = Sxz, and
Xon+2 = Tx2n+1/ fOI' n= 0/ 1/ 2/ Tt

Let fya}, yu = ;" oyt
Consider,

d(X21+1,X20+2) (Sx21,Tx2n+1)
o fo P(B)dt) = f: P(t)dt)

M (X211, %21+1) M (X2, %21+1)
<fu( [ ot v [ p(tdt), ©

where from (2),

1
M(xn, Xas1) = max{d(ez, ¥aue1), (21, Sx20), 211, Txr1), 5 1o, Tx2001) + d@2001, S22

1
= mﬂx{d(xm, X2n41), A(X21, X2u41), A(X2n41, X2n42), E{d(x2n1x2n+2) +d(x2n41, X2n+1)}}
= max{d(X2n, X2u+1), A(X2n+1, X2n+2)} (4)

If d(xon+1, X2n+2) = d(Xon, X2n41) for some 7, then from (3) and (4), we get

d(X2n+1,%20+2) (X2n+1,%2n+2) d(X2n+1,X20+2)
¥i( fo p(t)dt) < F(y( f: (b)dt), o fo P(b)dt)), 5)

Thus by definition of F € C, we get

d(X2n+1,X20+2) d(X2n+1,X20+2)
either fo P(B)dt) = 0 or o fo p(t)dt) = 0.

From definition of 1; and 1, it is possible only if

d(X2n+1,X21+2)
f p(tdt = 0.
0
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This is a contraction to our hypothesis. Thus d(x2,, X244+1) > d(X2n+1, X244+2), this implies

(X241, X20+2) (X2n,X21+1) (x2n,X2n+1)
o fo p(t)dt) < F(y fod P(B)dt), o f P(t)dt)),

by definition of F € C, we get

d(X20+1,X2n42) (x2n,%2141)
%(L qmmﬂ<¢«lj P(t)dt)

Since 11 is continuous and non-decreasing, therefore

d(X2n+1,X2n+2) d(Xon,X2n+1)
f phdt < f e(t)dt,
0 0

continuiting this way

d(X2n+1,X2n+2) d(Xan,Xon+1) d(x0,X1)
j‘ ¢mm<f~ ¢mﬂ<~-<j‘ (Dt
0 0 0

It follows that {y,} is a monotone decreasing and lower bounded sequence. Therefore there existsa r > 0
such that

d(xX20+1,%2n+2)

lim y, = lim ptdt =r. (6)

Suppose that r > 0. Taking limit as 7 — co on both sides of (5) and using (6), we get

P1(r) < E@a(r), (7)),

from definition of F € C, we get
either P1(r) =0, o(r) = 0.

By definition of ¢; and ¢, we get r = 0.
Hence from (6), we get

(x2n+l /XZVH-Z)

lim pHdt =0, (7)

—00
n 0

and

(22n,%21+1)

lim Q(t)dt = 0.

n—oo 0
by property of ¢, we get
r}l_r& A(Xon4+1, Xon42) = 0 and 1}1_{1;10 A(Xon, X2n+1) =0 ®)

Now, we prove that {x,} is a Cauchy sequence. To prove this, suppose that {x,} is not a Cauchy sequence.
Therefore for an € > 0, there exists two subsequences {x,,} and {x,,} such that m; < n; < m;;; and

A(Xp;, Xn,) > € and d(xy,, Xy, ) < €. o)
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Consider

(X 2Xn;)
1#1( j: @(t)dt) sl,bl( f: (p(t)dt)
M(Xu;_y Xn;_y)

M(Xm;_y Xni_y)
< F(y fo P(B)dt), o fo (B)dt)). (10)

From (2)
M X, X ,) = max{d(xmi_l, Xy )s Ay, S, ,), d (X, T, ), 4Gy, Tn,) ; Ay 1) }
= G, ), 0, ), A ), 220 - A1)
= max{d(xm,.f] s Xy ), A Xy, Xm,), AKXy, X)), 2(m, n)}, 11
where
2 1y = 2 n) Al %) W)
Thus

My Xn_q ) max{d(m;_y X,y ),A(Xm;_y X, ),A(Xn,_y 2Xn;),2(m 1)}
| ot = | Pyt
0 0

d(Xm;_q X,y ) (Xmi_q Xm;) d(Xn;_y Xn;) z(1m,1)
= max] f Q(t)dt, fd p(bdt, f p(bdt, f Pt} (13)
0 0 0 0

using (9) and triangle inequality, we get

d(x”ni—l / x”H) < d(me 4 xmi) + d(xmi/ x”i—])

<d(Xm,_,, Xm;) + €.

Taking limit as i — oo and from (8), we get

(xm,',l’x"xfl)
lim p(t)dt < f p(bdt. -
i—00 0
Also
d(xm'—ll xn[) + d(Xn,_lr xmi)
z(m,n) = 1 2
< Ay, Xm) + 2AXn, .y Xny) + AXny, Xn,)
< 2
d miqr Xm;) + d 17 i
< (.’)C =i L)Z (x — ’) +d(xmx>1’x"l*1) te

Taking limit as i — co and from (8), we get

z(m,mn)

lim Q(t)dt < f Q(t)dt. (15)
0

=00 Jo
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Taking limit as i — oo in equality (10) and using equations (11), (12), (13), (14) and (15) all together in (10)
we get

1#1( j; @(t)dt)s F(%( fof(p(t)dt),lpz( f; (p(t)dt)),

From definition of F € C, we get

either lpl(j: qo(t)dt) =0 or wz([(p(t)dt) =0.

From definition of ¢»; and 1, it is possible only if foe @(t)dt = 0. This is a contradiction to our hypothesis.
Hence the sequence {x,} is a Cauchy sequence. Since (X, d) is a complete metric space, it yields that {x,} and
hence any subsequence thereof, converge to z € X. So, {Sx2,} and {Txp,+1} converge to z € X, which implies

d(SXZIl/Tx2n+1)

lim y, = lim (t)dt = 0.
and
lim Sx,, = zand lim Txp,.1 =z (16)

Now, we show that z is a fixed point of S and T. First claim that z is a fixed point of S. Suppose, it is not.
Then d(5z,z) > 0
Let 6 = d(Sz,z) Consider,

0 (Sz,2)
1#1( j; @(t)dt)=¢1( fod qo(t)dt)

d(Sz,Tx2u+1)
= lim 1, fo P(t)dt)

n—oo
M(z,%21+1) M(z,20+1)

< lim F(¢( P(B)dt), o p(t)dt)), (17)
0 0
where
1
M(z, X2041) = max{d(z, xau11), d(z, Sz), d(xaus1, Txons1), 1z Toxznan) + dGezn, s2)lf

,}glgo M(z, x2141) = max{d(z, z),d(z, 5z),d(z, z), %{d(z, z) +d(z, Sz)}}

d(z, Sz)
2

= max{0,d(z, Sz),0,
= d(z, Sz).

}

Taking limit as n — oo in (17), we get

) (z,5z) d(z,5z)
i fo p(B)dt) < F(ya( j: P(t)dt), 4»4 fo P(H)dh))

5 O
< F(yn( fo P(b)dt), o fo ().

Thus we obtain,

5 5
either ¢1(f0 et)dt) =0 or ll)z(j(: o(t)dt) = 0.
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It is possible only if foé @(t)dt) = 0. This is a contradiction to our hypothesis. Hence z is a fixed point of S.
Now we show that z is also fixed point of T. Suppose, it is not. Then d(z, Tz) > 0
Let 6 = d(z, Tz) Consider,

0 (z,Tz)
lPl( fo (p(t)dt) :l,bl( fod (p(t)dt)

d(Sxo,,T2)
= lim 1, fo P(t)dt)

n—o0
M(XZn rZ)

M (x21,2)
<imFo [ poan, v [ pu) 19
where
M(xo,,2) = max{d(XZn,Z)/ d(xon, Sxau),d(z, Tz), %{d(x%/ Tz) +d(z, sz”)}}

gglgo M(x2,,2) = max{d(z, 2),d(z,z),d(z, Tz), %{d(z, Tz) +d(z, z)}}
d(z, Tz)
2

= max{0,0,d(z, Tz), }

=d(z, Tz).

Taking limit as n — oo in (18), we get

0 (z,Tz) d(z,Tz)
a fo (Hdt) < F(yr( f P(H)D), Yo fo (D))

0 O
< F(y( fo P(B)dt), Pa( fo P(t)dt)).

Thus we obtain,
5 5
either 1/)1([ e(H)dt) =0 or ljzz(f e()dt) = 0.
0 0

It is possible only if foé @()dt) = 0. This is a contradiction to our hypothesis. Hence z is also a fixed point of
T. Thus z is a common fixed point of S and T.
For uniqueness, suppose that there exists an other common fixed point w # z such that Sw = Tw = w, from

)

d(w,z) A(Sw,Tz)
1#1( fo @(t)dt)=¢1( fo qo(t)dt)

M(w,z) M(w,z)

<Hui() - pwan (| pwdn)
where
M(w,z) = max{d(w, z),d(w, Sw),d(z, Tz), %{d(w, T2) +d(z, Sw)}}

= max{d(w, z), d(w, w), d(z, z), %{d(w, z) + d(z, w)}}

= max{d(w, 2),0,0,d(w, z)}
=d(w,z)
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Hence

d(w,z) d(w,z) (w,z)
o fo (Hdt) < F(yr( fo P(H)D), o j: (Hat)),

by definition of F € C, we get

d(w,z)

d(w,z)
either 1/)1(](; @(t)dt) =0or z,bz(j; p)dt) = 0.

This implies fod(w'z) @()dt = 0. This is a contradiction to our hypothesis. Thus z is a unique common fixed
point of S and T.

Remark 3.1. If we take 11(t) = t in Theorem 3.1, we get the following result.

Corollary 3.2. Let (X, d) be a complete metric space and S, T : X — X be a mapping such that for such x,y € X,

4(5x,Ty) Mx,y) Mx,y)
fo p(t)dt < F( fo P(t)dt, o fo p(t)dt)),

where F is a C-class function, 1, € WV, and ¢ € W3 where ¢ : [0, 00) — [0, 00) be a Lebesgue-integrable function
which is summable on each compact subset of R*, non-negative and such that for each € > 0,

f Q(Hdt >0
0

d(x, Ty) + d(y, Sx)
T

and

M(x,y) = max{d(x, y),d(x,5x),d(y, Ty),
Then S and T have a unique common fixed point.

Remark 3.2. If we take S = T in Theorem 3.1, we get the Theorem 8 of Gupta et al. [23].

Corollary 3.3. Let (X, d) be a complete metric space and T : X — X be a mapping such that for such x,y € X,

d(Tx,Ty) M) M)
a fo y p(B)dt) < F(y( fo ' P(B)dt), o fo ’ o)),

where F is a C-class function, 1 € W1, Y, € Wy and ¢ € W3 where ¢ : [0, 00) — [0, 00) be a Lebesgue-integrable
function which is summable on each compact subset of R*, non-negative and such that for each € > 0,

f Q(t)dt > 0
0

d(x, Ty) +d(y, Tx)
e

and

M(x,y) = max{d(x, y),d(x, Tx),d(y, Ty),

Then T has a unique fixed point.

Now, we illustrate an example to validate our main Theorem 3.1.
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Example 3.3. Consider X = [0,2] and d(x,y) = |x — y|. Define the mappings S and T on X such that
S =%, T) == forall xeX
2 4
Define a function F : [0,0)? — R as
8
F(r,t) =mr, forall 0 <m= ) <1
Then F is a C-class function.

Let us define 1, ¢ : [0, 00) — [0, 00) by ¢1(t) = t and @(t) = £, then for each € > 0, clearly

€2
f QBdt == > 0.
o 6

We can verify the contraction condition (1) by a simple calculation for the case x, y € X as follows:
Case(1). If x =0,y = 1. Then

d(x,Ty) +d(y,Sx) 3

dix,y) =1, d(x,5x) =0, d(y, Ty) = —

4’ 2 ~ 8
M(x,y) = max{d(x, y),d(x, Sx),d(y, Ty), d(x, Ty) ; 4y, Sx)} =1.

d(Sx,Ty) |2x_ |2 1
LHS. = i fo P(bdt) = Ty = 5

and
M(x,y) M(x,y) M(x,y)
RHS. = F(y( fo ! P(B)dt), o fo ! p(t)dt)) = m f ! P(H)dt

0
1

8

—mj(; (p(t)dt—5—4.

Case(2). If x =0,y = 2. Then

d(x,y) = 2, d(x,Sx) = 0, d(y, Ty) = ; 4 Ty) ; .50 _ 3.
M(x,y) = max{d(x, y),d(x, Sx),d(y, Ty), a(x, Ty) ; 4y, Sx)} =2.

d(Sx,Ty) |2x_ |2 1
LHS. = i fo P(Hdt) = 96y = o7

and
M(x,y) M(x,y) M(x,y)
RHS. = F(y( fo ! P(t)dt), o fo ! p(t)dt)) = m fo ! P(Hdt

2
16
= mj; o(t)dt = T
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case(3). if x =1,y = 2. Then
3 d(x,Ty)+d(y,Sx)
2’ 2 B
d(x, Ty) +d(y, Sx)} _
5 =

1
d(x/ ]/) = 1/ d(x/ sx) = E/ d(]// T]/) =

NI =

M(x, y) = max{d(x, y), d(x, Sx), d(y, Ty),

(Sx,Ty) |2x _ y|2
LHS. = P(t)dt) = =0
0

and

M(x,y) M(x,y) M(x,y)
RHS. = F(n( fo ! P(B)dt), o fo ! P(B)dt)) = m fo ! P(b)dt

fg (it = |
=m Hdt =
0(p 3

Hence from the above three cases it follows that

d(Sx,Ty) M(x,y) M)
i j; ' () < F(r fo ’ (b)), o fo ’ p(ht)),

Similarly, we can verify for other cases. Thus all the conditions of Theorem 3.1 are satisfied and O is the unique
common fixed point of the mappings S and T.

Figure 1: (3D-view) The red surface and blue surface demonstrate the functions S(X) and T(X), respectively, which has common fixed
point at 0.

4. Application to existence theorem for functional equations arising in dynamic programming

In this section, we find the existence and uniqueness of a common solutions for a system of functional
equations arising in dynamic programming which was initiated by Bellman and Lee [14] through the help
of our main Theorem 3.1.

Let P and Q denote the two Banach spaces, S € P and D C Q. Taking S and D signify the state and
decision spaces, respectively. Let B(S) denotes the set of all bounded real-valued functions on S. For an
arbitrary h € B(S), define

lal] = sup{lh(x)| : x € S}.
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Define d : (B(S))> — R* by d(h, k) = supl|h(x) — k(x)| for all i, k € B(S).
Then (B(S),d) is a complete metric space. As proposed in Bellman and Lee [14], the basic form of the
functional equation in dynamic programming is

fx) = optyepH(x, y, f(T(x, ), x €S,

where x and y denote the state and decision vectors, respectively. T denotes the transformation of the
process, f(x) denotes the optimal return function with the initial state x and opt represents sup or inf.

In particular, Liu et al. [34] established fixed point theorems satisfying a contractive condition of integral
type and applied their results for the existence and uniqueness of a solution to the following functional
equation arising in dynamic programming.

f(x) = optyeplu(x, y) + Hi(x, y, f(ar(x,y)))}, forall x €S,

Further, Liu et al. [35] established common fixed point theorems satisfying contractive condition of integral
type and applied their results for the existence and uniqueness of common solutions to the following system
of functional equations arising in dynamic programming.

f(x) = optyeplu(x, y) + Hi(x, y, f(ar(x,y)))}, forall x €S,
(19)

g(x) = optyenfv(x, y) + Ha(x, y, g(ax(x, v)))}, forall x €S,

whereu :SXD - R,a1,a, : SXD — Sand Hi,H, : SXDXR — R.
Let S, T : B(S) — B(S) be the mappings defined by

Sh(x) = optyeplu(x, y) + Hi(x, y, h(ai(x, y)))}, forall (x,h) € S x B(S), (20)
Th(x) = optyeplu(x, y) + Ha(x, y, h(aa(x, y)))}, forall (x,h) € S X B(S). (21)

Theorem 4.1. Let S, T : B(S) — B(S) be the mappings as above for which the following conditions hold:

1. u and H; are bounded fori=1,2,
2. forall (x,y,h,w) € SX D X B(S) x B(S).

M(h,w)

Hi (x,y,h(a1(x,y)))—Ha (x,y,w(a2(x,y))) M(h,w)
f (hdt) < F(un( fo POy | gthan), (22)

P1(

0
where 1 € V1,9, € Wy, p € W3 and

lIh — Twl| + [lw — Shll}

M(h, w) = max{llh — wl|, ||k = Shl|, llw — Twl|, >

(23)
Then the system of functional equations (19) have a unique common solution in B(S).
Proof. Since u and H; are bounded for i = 1,2, there exists M > 0 such that

sup{lu(x, I, IHi(x, v, 1) : (x,y,t) e SX DX R} < M, (24)

from (20) and (21) we obtain Sh and Th are bounded for each /i € B(S), which yields that S and T are self
mappings in B(S). It follows from ¢ € W3 that for each € > 0 there exists 6 > 0 such that

f(p(t)dt <€ forall C ¢ R* with m(C) <6,
c
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where m denotes the Lebesgue measure. Let (x, 1, w) € S x B(S) X B(S). Suppose that opt,ep = supyep. Then
using (20) and (21) we can find y1, y» € D such that

Sh(x) < u(x, y1) + Hi(x, y1, h(a1(x, y1))) + 6, (25)
Tw(x) < u(x, y2) + Ha(x, y2, w(aa(x, y2))) + 6, (26)
Sh(x) = u(x, y2) + Hi(x, y2, h(a1(x, y2))), (27)
Tw(x) = u(x, y1) + Ha(x, y1, w(aa(x, y1)))- (28)

From (25) and (28), we get

Sh(x) — Tw(x) < H1(x, y1, h(a1(x, y1))) — Ha(x, y1, w(az(x, y1))) + 6
< |Hi(x, y1, h(ai(x, y1))) — Ha(x, y1, w(aa(x, y1)))| + 0. (29)

From (26) and (27), we get

Tw(x) — Sh(x) < Ha(x, y2, w(ax(x, y2))) — Hi(x, y2, h(ai(x, y2))) + 0
< |Ha(x, yo2, w(az(x, y2))) — Hi(x, y2, (a1 (x, y2)))| + 0. (30)

From (29) and (30), we get
|Sh(x) — Tw(x)| < max{Ty, To} + o, (31)
where

Ty = |[H1(x, y1, h(ai(x, y1))) — Ha(x, y1, w(aza(x, y1)))l,
Tz = |Ha(x, y2, w(aa(x, y2))) — Hi(x, y2, h(a1(x, y2)))I. (32)

It follows from (22) and (31) and ¢; € Wy, i, € W,, @ € W3 that

|Sh(x)—Tw(x)| max{Tq,T>}+0
o fo P < i fo p(bit)
T1+0 Tr+0
~marfyn [ p0an ([ gtoan)
T, T1+6
= max{y( fo Q(t)dt + fT 1 P(H)db),
T, Ty+6
vl | Q(t)dt + fT 2 p(t)dt)}
T T14+0
< max{y ( fo P(Bdb) + i ( fT P(b)db),
T, Tr+0
o[ pnan vl [ o)
Ty T>
< marfyn( [ p0an, ([ o)
T1+0 Tr+0
+ max{yn( fT 1 P(B)db), Y1 ( fT 2 p(t)dt)}

M(h,w)

M(h,w)
< F(n fo o gl [ o0 +r(@
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Taking € — 0" in the above inequality and using 11 € W1, we get

ISh—Toll M(h,w) M(h,w)
ol [ eom) el [ poa)u [ gom)

Thus all the conditions of Theorem 3.1 are satisfied. Hence the mappings S and T have a unique common
fixed point in B(S), that is, the system of functional equations (19) has a unique common solution.

5. Conclusion

From our investigations, we conclude that the self mappings on a complete metric space satisfying
contractive condition of integral type via the concept of C-class functions have a unique common fixed
point. As an application, we find the existence and uniqueness of common solution for system of functional
equations arising in dynamic programming. An example is given in support of our main result. Our result
provides new path for the researchers in the concerned field.

6. Acknowledgement

The authors are thankful to the editor and referees for their valuable guidance for improvement of the
manuscript.

References

[1] M. U. Ali, T. Kamram, E. Karapinar, An approach to existence of fixed points of generalized contractive multivalued mappings
of integral type via admissible mapping, Abstract and Applied Analysis 2014 Article ID 141489 7 pages.
[2] B. Alqahtani, A. Fulga, E. Karapimnar, A short note on the common fixed points of the Geraghty contraction of type Esr,
Demonstratio Mathematica 2018 51:233-240.
[3] B. Algahtani, A. Fulga, E. Karapinar, Common fixed point results on Extended b-Metric Space, Journal of Inequalities and
Applications 2018 Article No. 2018:158.
[4] O. Algahtani, E. Karapmar, P. Shahi, Common fixed point results in function weighted metric spaces, Journal of Inequalities and
Applications 2019 Article No. 2019:164.
[5] H.H. Alsulami, E. Karapmar, H. Piri, S. Rahrovi, R. Zarghami, Rational contractive mappings of integral type on b-metric spaces,
Journal of Mathematical Analysis 8(6) (2017) 90-112.
[6] H. H. Alsulami, E. Karapinar, D. O'Regan, P. Shahi, Fixed points of generalized contractive mappings of integral type, Fixed
Point Theory and Applications 2014 Article No. 2014:213.
[7] H. H. Alsulami, E. Karapimnar, A. Roldan, A short note on common fixed point theorems for non-compatible self-maps in
generalized metric spaces, Journal of Inequalities and Applications (2015) Article No. 2015:55 DOI:10.1186/s13660-015-0579-6.
[8] A.H. Ansari, Note on ¢ — i)-contractive type mappings and related fixed point, The 2nd Regional Conference on Mathematics
and Applications PNU 2014 377-380.
[9] A.H. Ansari, W. Shatanawi, A. Kurdi, G. Maniu, Best proximity points in complete metric spaces with (P)-property via C-class
functions, Journal of Mathematical Analysis 7 (2016) 54—67.
[10] A.H. Ansari, M. A. Barakat, H. Aydi, New approach for common fixed point theorems via C-class functions in G,-metric spaces,
Journal of Function Spaces 2017 Article ID 2624569 pp.9 https://doi.org/10.1155/2017/2624569.
[11] A. H. Ansari, . Kumar, S. Vashistha, C-class functions on common fixed point theorem of weakly compatible maps in partial
metric space, International Journal of Advances in Mathematices 3 (2019) 15-23.
[12] H. Aydi, E. Karapmar, H. Yazidi, Modified F-contractions via a-admissible mappings and application to integral equations.
FILOMAT 31(5) (2017) 1141-148.
[13] S.Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundamenta Mathematicae
3(1922) 133-181.
[14] R.Bellman, E. S. Lee, Functional equations in dynamic programming, Aequationes Mathematicae 17(1) (1978) 1-18.
[15] S. Beloul, A. H. Ansari, C-class function on some common fixed point theorems for weakly sub-sequently continuous mappings
in Menger spaces, Bulletin of International Mathematical Virtual Institute 8 (2018) 345-355 DOI: 10.7251/BIMVI1802345B.
[16] A.Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, International Journal
of Mathematics and Mathematical Sciences 29(9) (2002) 531-536 https://doi.org/10.1155/S0161171202007524.
[17] C. M. Chen, E. Karapinar, Common periodic soft points of the asymptotic sequences in soft metric spaces, Journal of Nonlinear
and Convex Analysis 18(6) (2017) 1141-1151.
[18] S. Chauhan, M. Imdad, E. Karapmar, B. Fisher, An integral type fixed point theorem for multi-valued mappings employing
strongly tangential property, Journal of the Egyptian Mathematical Society 22(2) (2014) 258-264.



[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]
[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

R. Tiwari et al. / Filomat 36:17 (2022), 5821-5834 5834

S. Chauhan, E. Karapinar, Some integral type common fixed point theorems satisfying W-contractive conditions, Bulletin of the
Belgian Mathematical Society-Simon Stevin 21(4) (2014) 593-612.

A.N. Gani, M. Mohamed Althaf, Fixed point theorems for integral type contraction in fuzzy metric spaces using altering distance
function, Bulletin of Pure and Applied Sciences 38E(1) (2019) 425-431 DOI: 10.5958/2320-3226.2019.00046.8.

V. Gupta, N. Mani, A common fixed point theorem for two weakly compatible mappings satisfying a new contractive condition
of integral type. Mathematical Theory and Modeling 1 (2011) 1-6.

V. Gupta, N. Mani, Existence and uniqueness of fixed point for contractive mapping of integral type, International Journal of
Computing Sciences and Mathematics 4 (2013) 72-83.

V. Gupta, A. H. Ansari, N. Mani, Fixed point theorem for new type of auxillary functions, Acta Univ. Sapientiae Mathematica
12(1) (2020) 97-111 DOI: 10.2478/ausm-2020-0006.

T. Hamaizia, Fixed point theorems involving C- class functions in G, metric spaces, Journal of Applied Mathematics and
Informatics 39(3-4) (2021) 529-539.

S. Hussain, M. Samreen, A fixed point theorem satisfying integral type contraction in fuzzy metric space, Results in Fixed Point
Theory and Applications 2018 Article ID 2018013 pp.08 DOI:10.30697/rfpta-2018-013.

M. K. Jain, E. Karapmar, H. Ayadi, R. P. Agrawal, Sy--compatibility and fixed point theorems via inverse C-class functions,
Dynamic Systems and Applications 30(1) (2021) 31-47.

G. Jungck, Commuting mappings and fixed points, The American Mathematical Monthly 83 (1976) 261-263 DOI: 10.2307/2318216.
G. Jungck, Compatible mappings and common fixed points, International Journal of Mathematics and Mathematical Sciences
9(4) (1986) 771-779 https://doi.org/10.1155/50161171286000935.

G. Jungck, Common fixed points for noncontinuous non-self maps on non-metric spaces, Far East Journal of Mathematical
Sciences 4(2) (1996) 199-215.

E. Karapmar, On («,1) contractions of integral type on generalized metric spaces, In Current Trends in Analysis and its
Applications (2015) 843-854.

E. Karapinar, Some fixed points results on Branciari metric spaces via implicit functions, Carpathian Journal of Mathematics
31(3) (2015) 339-348.

E. Karapimnar, P. Shahi, K. Tas, Generalized a-i)-contractive type mappings of integral type and related fixed point theorems,
Journal of Inequalities and Applications 2014 Article No.2014:160.

M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian
Mathematical Society 30(1) (1984) 1-9 DOI https://doi.org/10.1017/50004972700001659.

Z. Liu, X. Li, S. M. Kang, S. Y. Cho, Fixed point theorems for mappings satisfying contractive conditions of integral type and
applications, Fixed Point Theory and Applications 2011 Article ID 2011:64.

Z.Liu, X. Zou, S. M. Kang, J. S. Ume, Common fixed points for a pair of mappings satisfying contractive conditions of integral
type, Journal of Inequalities and Applications 2014 Article ID 2014:394.

Jai G. Mehta, M. L. Joshi, On common fixed point theorem in complete metric space, Gen. Math. Notes 2(1) (2011) 55-63.

V. Ozturk, A. H. Ansari, Common fixed point theorems for mappings satisfying (E.A)-property via C-class functions in b-metric
spaces, Applied General Topology 18 (2017) 45-52 DOI: https://doi.org/10.4995/agt.2017.4573.

M. Ozturk, I. A. Kosal, H. H. Kosal, Coincidence and common fixed point theorems via C-class functions in Elliptic valued metric
spaces, Sciendo 29(1) (2021) 165-182.

H. Qawaqgneh, M. S. Md Noorani, W. Shatanawi, H. Aydi, H. Alsamir, Fixed point results for multi-valued contractions in
b-metric spaces and an application, Mathematics 7(2) (2019) pp.13 DOI:10.3390/math7020132.

B. E. Rhoades, Two fixed point theorems for mapping satisfying a general contractive condition of integral type, International
Journal of Mathematics and Mathematical Sciences 2003, 4007—4013 https://doi.org/10.1155/50161171203208024.

B. Samet, H. Yazidi, Fixed point theorems with respect to a contractive condition of integral type, Rendiconti del Circolo
Matematico di Palermo 60 (2011) 181-190 DOI:10.1007/s12215-011-0041-7.

S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publications de Institut Mathematique
32 (1982) 149-153.

R. Sharma, A. H. Ansari, Some fixed point theorems in an intuitionistic Menger space via C-class and inverse C-class functions,
Computational and Mathematical Methods 2(3) (2020) pp.11 DOI:10.1002/cmm4.1090.

C. Vetro, S. Chauhan, E. Karapinar, W. Shatanawi, Fixed points of weakly compatible mappings satisfying generalized p-weak
contractions, Bulletin of the Malaysian Mathematical Sciences Society 38(3) (2015) 108-1105.

E. Zhang, X. Zhang, Y. Hao, Common fixed point theorems for contractive mappings of integral type in G-metric spaces and
applications, Journal of Function Spaces 2021 Article ID 6619964 15 pages https://doi.org/10.1155/2021/6619964.



