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Abstract. In this article, we deal European style option, with arbitrary payoff which includes both put
and call options, on an asset whose price evolves as Itô-McKean skew Brownian motion with Azzalini
skew-normal distribution. Initially, we investigate a condition which leads the Itô-McKean skew Brownian
motion to be a martingale. Next, we price the option and show that if the payoff function is convex then
so is the price function. After this, we show if the payoff is finite then the price function satisfies a partial
differential equation with respect to time. Further, we provide a necessary and sufficient condition for the
price function to satisfy Feymann-Kac type equation. Next, we study Black-Scholes type equation and give
expressions for the delta hedge. Finally, we study the particular case of an European call option in order to
compare some of our results with the existing literature. Our results can be used to investigate the optimal
exercise boundary, discrete time hedging strategies etc. of the option.

1. Introduction

In 1973, Black and Scholes [2] introduced a closed form formula for an European call option in the
case when the log-returns of the underlying asset price are normally distributed. Their model does not
consider the skewness, time dependence, jumps, etc. of the log-return which occurs in the real market
data. In this regard, Peiro [15] studied skewness and symmetry of returns in stock markets and showed
that it cannot be rejected for most of the markets. Hussain and Shashiashvili [10], Hussain et al. [8, 9]
studied several American style options and the corresponding discrete time hedging strategies. They
found that uniform approximations of the value function of the American style options can be used to
obtain uniform approximations of the corresponding delta hedging strategies. To be more precise for asset
markets, researchers studied option theory under skew Brownian motion. It is a diffusion process which is
characterized by a parameter p ∈ [0, 1], with excursion from zero; positive has probability p and negative
has probability 1− p. Through this motion, one can split the risks associated with the underlying asset into
endogenous and exogenous parts. The theory of skew Brownian motion was initially introduced by Itô
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and McKean [11] and the density of which is investigated by Azzalini [1]. Lejay [12] discussed in detail the
construction of Skew Brownian Motion. Several authors, Ouknine [14], studied properties of skew Brownian
motion. Eling et al. [4] showed that skew Brownian motion is better able to catch the characteristics of
hedge fund returns than the usual Brownian motion. They also show that skewness parameter has several
advantages as compared to common measures of skewness. Moreover, Rossello [17] studied arbitrage
under the skew Brownian motion models. Itô and McKean [11] also gave the concept of Itô-McKean skew
Brownian motion while Harrison and Shepp [7] studied a stochastic differential equation of a random
variable having properties of Itô-McKean skew Brownian motion (i.e., considering both endogenous and
exogenous risks). In their investigation, they found that the part studying exogenous risk is in fact the
absolute of a Brownian motion while the part studying endogenous risk is Brownian motion, that is, Itô-
McKean skew Brownian motion is the sum of standard Brownian motion and an independent reflected
Bronian motion. Azzalini [1] investigated the distribution of Itô-McKean skew Brownian motion. Corns and
Satchell [3], and Zhu and He [20] worked with Itô-McKean skew Brownian motion and priced European
call option and studied the Greeks of the option only. For more detail on Itô-McKean skew Brownian
motion, its properties and distributions, we refer readers to Gairat and Sheherbakov [5], Mukherjee and
Dey [13], Raqab, Shafiqah Al-Awadhi and Debasis Kundu [16] etc.

In this paper, we extend the work of Corns and Satchell [3] and Zhu and He [20]. To do this, we consider
the Itô-McKean skew Brownian motion given in Corns and Satchell [3] and Zhu and He [20]

Xδt =
√

1 − δ2 W1
t + δ|W

2
t |, δ ∈ (−1, 1), 0 ≤ t ≤ T,

where W1
t and W2

t being two independent standard Brownian motions and |W2
t | is the absolute of W2

t , and
study European style options (which include both call and put options) with arbitrary payoff on an asset
evolves under Xδt . Initially, we investigate a condition under which Xδt is sub-martingale, martingale and
super-martingale. Next, we price the option and show that if the payoff function is convex then so is the
price function. After that, we show that if the payoff is finite then the price function satisfies a partial
differential equation with respect to time. Next, we show that the price function satisfies a Feymann-
Kac type equation if and only if Xδt is martingale. We also study the Black-Scholes type equation, give
expressions for the delta hedge and study the Greeks of the option. Finally, we study the particular case of
European call option in order to compare some of our results i.e., the price function and the Greeks given
in the literature. Results can be used to investigate the optimal exercise boundary, discrete time hedging
strategies etc. of the corresponding option.

2. Basic Notations and Some Preliminary Results

In this section, we give basic notions and some preliminary results, similar to Corns and Satchell [3] and
Zhu and He [20], which are frequently used in the investigation of our results.

Consider a probability space (Ω,F ,P) on which we consider the motion Xδt (investigated and studied
in Corns and Satchell [3], Mukherjee and Dey [13], Zhu and He [20] etc.) defined as

Xδt =
√

1 − δ2 W1
t + δ|W

2
t |, δ ∈ (−1, 1), 0 ≤ t ≤ T, (1)

where W1
t and W2

t are two independent standard Brownian motions.
Let T > 0 be a finite time horizon and the σ−algebras generated respectively by W1

t and W2
t are

independent. Let us denote by (Ft)0≤t≤T, the P−completion of the natural filtration of W1
t and W2

t , 0 ≤ t ≤ T.
On the filtered probability space (Ω,F ,Ft,P)0≤t≤T, we consider a financial market on a risky asset St; 0 ≤ t ≤
T; evolves as geometric Brownian motion (investigated and studied in Corns and Satchell [3], Zhu and He
[20] etc.) in the following form

ST = Ste
∫ T

t µ(v)dv+σ(XδT−Xδt ), 0 ≤ t ≤ T, (2)

where St is the value of the share of a stock at time t, while σ is the stock volatility and (µ(t),Ft)0≤t≤T is
certain bounded progressive measurable process, and a money market account paying constant interest
rate r.
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Densities of the random variables
√

1 − δ2 W1
t and δ|W2

t | are given as

f√1−δ2W1
t
(x) =

1√
2πt(1 − δ2)

e−
x2

2t(1−δ2) , (3)

0 ≤ t ≤ T, δ ∈ (−1, 1); while

fδ|W2
t |

(x) =
d

dx
P
(
δ|W2

t | ≤ x
)

=

 d
dx P

(
|W2

t | ≤
x
δ

)
, if δ > 0;

d
dx P

(
|W2

t | ≥
x
δ

)
, if δ < 0,

=


√

2
δ
√
πt

e−
x2

2δ2 t , if δ > 0;

−

√
2

δ
√
πt

e−
x2

2δ2t , if δ < 0.
(4)

Using convolution theory and densities (3) and (4), one can obtain the Azzalini [1] skew-normal density

fXδt (x) =


∫ x

−∞
f√1−δ2W1

t
(z) fδ|W2

t |
(x − z)dz, if δ > 0;

fW1
t
(x); if δ = 0;∫

∞

x f√1−δ2W1
t
(z) fδ|W2

t |
(x − z)dz, if δ < 0,

=


2
√

t
ϕ

(
x
√

t

)
Φ

(
xδ√

t(1−δ2)

)
, if δ , 0,

1
√

2πt
e−

x2
2t , if δ = 0,

(5)

where ϕ
(

x
√

t

)
= 1
√

2π
e−

x2
2t and Φ

(
xδ√

t(1−δ2)

)
= 1
√

2π

∫ δx√
t(1−δ2)

−∞
e−

u2
2 du.

Denoting

Wt =
√

1 − δ2 W1
t , and Rt = δ|W2

t |,

then using (3) and (4), one gets the conditional densities as

fσWT |σWt (x1|y) =
1

σ
√

(1 − δ2)(T − t)
ϕ

 x1 − y

σ
√

(1 − δ2)(T − t)

 , (6)

where δ ∈ (−1, 1) while

fσRT |σRt (x2|z) =


1

σδ
√

T−t

(
ϕ

(
x2−z
σδ
√

T−t

)
+ ϕ

(
x2+z
σδ
√

T−t

))
, for δ > 0;

−1
σδ
√

T−t

(
ϕ

(
x2−z
σδ
√

T−t

)
+ ϕ

(
x2+z
σδ
√

T−t

))
, for δ < 0.

(7)

Next we express

E
[
ST

∣∣∣Ft

]
= Ste

∫ T
t µ(v)dv−σ(Wt+Rt)E

[
eσ(WT+RT)

∣∣∣Ft

]
, 0 ≤ t ≤ T, (8)

where

E
(
eσ(WT+RT)

∣∣∣Ft

)
=


∫
∞

0

∫
∞

−∞
ex1+x2 fσWT ,σRT |σWt,σRt (x1, x2|y, z)dx1dx2, if δ > 0;∫ 0

−∞

∫
∞

−∞
ex1+x2 fσWT ,σRT |σWt,σRt (x1, x2|y, z)dx1dx2, if δ < 0.

To calculate the latter conditional expectation we split the density of two independent random variables
Wt and Rt as

fσWT ,σRT |σWt,σRt (x1, x2|y, z) = fσWT |σWt (x1|y) fσRT |σRt (x2|z),
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therefore

E
(
eσ(WT+RT)

∣∣∣Ft

)
=


∫
∞

0

∫
∞

−∞
ex1+x2 fσWT |σWt (x1|y) fσRT |σRt (x2|z)dx1dx2, if δ > 0;∫ 0

−∞

∫
∞

−∞
ex1+x2 fσWT |σWt (x1|y) fσRT |σRt (x2|z)dx1dx2, if δ < 0.

Use of (6) and (7) further gives

= ey+z+ (T−t)σ2

2

[
Φ

(
z + (T − t)σ2δ2

σδ
√

T − t

)
+ e−2zΦ

(
−z + (T − t)σ2δ2

σδ
√

T − t

) ]
, (9)

for both δ negative or positive.
Let us denote

Iz(T − t) = ln
[
Φ

(
z + (T − t)σ2δ2

σδ
√

T − t

)
+ e−2zΦ

(
−z + (T − t)σ2δ2

σδ
√

T − t

) ]
, (10)

where z = σRt. With the above expresion, (9) becomes

E
(
eσ(WT+RT)

∣∣∣Ft

)
= ey+z+ (T−t)σ2

2 +Iz(T−t), (11)

where y = σWt and z = σRt.
Moreover, for y = σWt, z = σRt, δ ∈ (−1, 1), density f (u|y, z) = fσWT+σRT |σWt,σRt (u|y, z) can be expressed as

fσWT+σRT |σWt,σRt (u|y, z)

=


∫ u

−∞
fσWT |σWt (v|y) fσRT |σRt (u − v|z)dv, if δ > 0;∫

∞

u fσWT |σWt (v|y) fσRT |σRt (u − v|z)dv, if δ < 0,

=
e−

(u−y−z)2

2(T−t)σ2

σ
√

2π(T − t)
Φ

 δ2(u − y − z) + z

σδ
√

(T − t)(1 − δ2)

 + e−
(u−y+z)2

2(T−t)σ2

σ
√

2π(T − t)
Φ

 δ2(u − y + z) − z

σδ
√

(T − t)(1 − δ2)

 ,
(12)

for δ ∈ (−1, 1).

3. Main Results

In this section, we extend the work of Corns and Satchell [3] and Zhu and He [20] and study new results
under the setup of these authors. First, we study mean and variance of the random variable Xδt defined in
(1) and discuss its martingale property. These results lead to the investigation of the Feymann-Kac formula,
Black-Scholes type equation and the continuous time delta hedging strategy. Next, we price European
style option, with arbitrary payoff, on the asset ST formulated in (2) and show that if the payoff function is
convex then so is the price function. After this, we show that if the payoff is finite, then the price function
is continuous and satisfies a partial differential equation with respect to time. Next, we show that the price
function satisfies a Feymann-Kac type equation if and only if the process XδT is martingale. After these,
we study the Black-Scholes type equation, expressions for the delta hedge and Greeks of the option. Last,
we come to the particular case of European call option in order to compare some of our results (the price
function and the Greeks) with the existing literature. Results can be used to investigate the optimal exercise
boundary, discrete time hedging strategies etc of the corresponding option.

By notion of the absolute

|W2
t | =

{
W2

t , if W2
t ≥ 0;

−W2
t , if W2

t < 0,

we can express

|W2
t | =W2

tI(W2
t ≥0) −W2

tI(W2
t <0), (13)
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where IA is the indicator function on event A.
Using the latter expression and definition of the Brownian motion, we express and calculate the expected

value |W2
t | as

E[|W2
t |] = E[W2

tI(W2
t ≥0) −W2

tI(W2
t <0)]

= E[2W2
tI(W2

t ≥0) −W2
t ]

= E[2W2
tI(W2

t ≥0)],

where we have used I(W2
t ≥0) + I(W2

t <0) = 1. This further gives

E[|W2
t |] = E

2√t
W2

t
√

t
I(

W2
t
√

t
≥0

)


=
2
√

t
√

2π

∫
∞

−∞

xe
−x2

2 I(x≥0)dx

=

√
2t
π
,

while variance as

V[|W2
t |] = E

[
|W2

t |
2
]
−

(
E
[
|W2

t |
])2

=
(π − 2)
π

t.

Using these results we find that the expected value of Xδt is calculated as

E[Xδt ] =
δ(π − 2)
π

t, δ ∈ (−1, 1),

while the variance as

V[Xδt ] = V
[√

1 − δ2 W1
t + δ|W

2
t |
]

= (1 − δ2)t +
δ2(π − 2)
π

t

=
π − 2δ2

π
t.

In the following result, we study the martingale property of the Itô McKean skew Brownian motion Xδt .

Theorem 3.1. The random variable Xδt , 0 ≤ t ≤ T, is sub-martingale if

ϕ

(
W2

t
√

T − t

)
>

W2
t√

2π(T − t)

(
1 − I(W2

t <0)

√

2π
)
,

martingale if

ϕ

(
W2

t
√

T − t

)
=

W2
t√

2π(T − t)

(
1 − I(W2

t <0)

√

2π
)
, (14)

while super-martingale if

ϕ

(
W2

t
√

T − t

)
<

W2
t√

2π(T − t)

(
1 − I(W2

t <0)

√

2π
)
.
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Proof. Consider the expected value

E
[
XδT |Ft

]
= E

[
XδT − Xδt + Xδt |Ft

]
= Xδt + E

[
XδT − Xδt |Ft

]
= Xδt + δE

[
|W2

T | − |W
2
t |
∣∣∣Ft

]
= Xδt + δ

∫
∞

−|W2
t |

y f|W2
T |−|W

2
t |

(y)dy, (15)

where the density function can be calculated as

f|W2
T |−|W

2
t |

(y) =
d

dy
P
(
|W2

T | − |W
2
t | ≤ y

)
=

d
dy

P
(
−y − |W2

t | −W2
t ≤W2

T −W2
t ≤ y + |W2

t | −W2
t

)
.

Using relation (13) and W2
t =W2

tI(W2
t ≥0) +W2

tI(W2
t <0), we further express

f|W2
T |−|W

2
t |

(y) =
d

dy
P

− y + 2W2
tI(W2

t ≥0)
√

T − t
≤

W2
T −W2

t
√

T − t
≤

y − 2W2
tI(W2

t <0)
√

T − t


=

1
√

2π

d
dy

∫ y−2W2
t I(W2

t <0)
√

T−t

−

y+2W2
t I(W2

t ≥0)
√

T−t

e
−w2

2 dw

=
1√

2π(T − t)

e
−

y−2W2
t I(W2

t <0)

2

2(T−t) + e
−

y+2W2
t I(W2

t ≥0)

2

2(T−t)

 .
Using the latter density, we write

E
[
XδT |Ft

]
= Xδt +

δ√
2π(T − t)

∫
∞

−|W2
t |

y

e
−

y−2W2
t I(W2

t <0)

2

2(T−t) + e
−

y+2W2
t I(W2

t ≥0)

2

2(T−t)

 dy

= Xδt −
δ(T − t)√
2π(T − t)

∫
∞

−|W2
t |

[−y + 2W2
tI(W2

t <0) − 2W2
tI(W2

t <0)

T − t
e
−

y−2W2
t I(W2

t <0)

2

2(T−t)

+
−y − 2W2

tI(W2
t ≥0) + 2W2

tI(W2
t ≥0)

T − t
e
−

y+2W2
t I(W2

t ≥0)

2

2(T−t)

]
dy

= Xδt +
δ
√

T − t
√

2π

e−
|W2

t |+2W2
t I(W2

t <0)

2

2(T−t) + e−

|W2
t |−2W2

t I(W2
t ≥0)

2

2(T−t)


+

2δW2,tI(W2
t <0)√

2π(T − t)

∫
∞

−|W2
t |

e
−

(
y−2W2

t I(W2,t<0)

)2
2(T−t) dy −

2δW2
tI(W2

t ≥0)√
2π(T − t)

∫
∞

−|W2
t |

e
−

y+2W2
t I(W2

t ≥0)

2

2(T−t) dy



S. Hussain et al. / Filomat 36:17 (2022), 5843–5856 5849

= Xδt + δ
√

T − t

ϕ  |W2
t | + 2W2

tI(W2
t <0)

√
T − t

 + ϕ  |W2
t | − 2W2

tI(W2
t ≥0)

T − t


+

2δW2
tI(W2

t <0)
√

2π

∫
∞

−W2
t

√
T−t

e
−y2

2 dy −
2δW2

tI(W2
t ≥0)

√
2π

∫
∞

W2
t

√
T−t

e
−y2

2 dy

= Xδt + δ
√

T − t
[
ϕ

(
W2

t
√

T − t

)
+ ϕ

(
−W2

t
√

T − t

)]

+
2δW2

t
√

2π

I(W2
t <0)

∫ W2
t

√
T−t

−∞

e
−y2

2 dy − I(W2
t ≥0)

∫
∞

W2
t

√
T−t

e
−y2

2 dy

 .
Using relation I(W2

t ≥0) + I(W2
t <0) = 1, we get

E
[
XδT |Ft

]
= Xδt + 2δ

√

T − t ϕ
(

W2
t

√
T − t

)
+

2δW2
t

√
2π

(
I(W2

t <0)

√

2π − 1
)

= Xδt + 2δ
√

T − t

ϕ (
W2

t
√

T − t

)
+

W2
t√

2π(T − t)

(
I(W2

t <0)

√

2π − 1
) .

(16)

Results follow from the latter expression.

Now we are ready to valuate European style options on the asset evolves as (2) with arbitrary payoff
that include both European put and call type of options.

Theorem 3.2. Value function with arbitrary finite payoff H(x) of the European style option on the asset ST, evolves
as (2), can be expressed as

c(τ, x) = e−rτ
∫
∞

0

H(w)
w

f
(
hx,τ(w) + y + z|y, z

)
dw, (17)

with

f
(
hx,τ(w) + y + z|y, z

)
=

e
−(hx,τ (w))2

2τσ2

σ
√

2πτ
Φ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)

 + e
−(hx,τ (w)+2z)2

2τσ2

σ
√

2πτ
Φ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)


=

1
σ
√
τ

[
ϕ

(
hx,τ(w)
σ
√
τ

)
Φ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)


+ ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
Φ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)

 ], (18)

where hx,τ(w) = ln w
x −

(
r − σ

2

2

)
τ + Iz(τ), τ = T − t, x = St, y = σWt and z = σRt.

Proof. Using expressions (8) and (11), we can express the mathematical expectation of the discounted stock
price S̃t = e−rtSt as

E
(
S̃T |Ft

)
= E

(
e−rTST |Ft

)
= S̃te

∫ T
t µ(v)dv−

(
r− σ

2
2

)
(T−t)+Iz(T−t)

.
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Hence, the discounted stock S̃t is a martingale under risk neutral measure P̃, i.e.,

Ẽ
(
e−rTST

∣∣∣Ft

)
= e−rtSt, 0 ≤ t ≤ T,

if and only if∫ T

t
µ(v)dv −

(
r −
σ2

2

)
(T − t) + Iz(T − t) = 0, 0 ≤ t ≤ T, (19)

where Ẽ denotes the mathematical expectation under risk neutral measure P̃.
With this, the stochastic differential equation of the stock price (2) becomes

dSt = St

(
rdt − dIz(t) + σdXδt

)
,S0 ≥ 0, (20)

where

dIz(t) =
−e−Iz(t)

2σδt
√

t

[
(σ2δ2t − z)ϕ

(
σ2δ2t + z

σδ
√

t

)
+ e−2z(σ2δ2t + z)ϕ

(
σ2δ2t − z

σδ
√

t

) ]
dt,

(21)

where y = σWt while z = σRt.
Let T be the option expiry time and H(x) be the payoff of an European style option on an asset St evolves

as (20), then the discount of the expected value of H(ST) up to current time t is denoted and expressed as

c(T − t, x) = e−r(T−t)Ẽ
[
H(ST)

∣∣∣Ft

]
= e−r(T−t)Ẽ

[
H
(
xe
σ(WT−Wt)+

(
r− σ

2
2

)
(T−t)−Iz(T−t)+σ(RT−Rt)

)∣∣∣Ft

]
= e−r(T−t)

∫
∞

−∞

H
(
xe

(
r− σ

2
2

)
(T−t)−Iz(T−t)−y−z+u

)
f (u|y, z)du. (22)

Using change of variable

v =
(
r −
σ2

2

)
(T − t) − Iz(T − t) − y − z + u (23)

in the density (12) and denote τ = T − t, we get

c(τ, x) = e−rτ
∫
∞

−∞

H (xev) f
(
v −

(
r −
σ2

2

)
τ + Iz(τ) + y + z|y, z

)
dv, (24)

with

f
(
v −

(
r −
σ2

2

)
τ + Iz(τ) + y + z|y, z

)

=
e
−

(
v−

(
r− σ

2
2

)
τ+Iz (τ)

)2
2τσ2

σ
√

2πτ
Φ

δ2
(
v −

(
r − σ

2

2

)
τ + Iz(τ)

)
+ z

σδ
√
τ(1 − δ2)


+

e
−

(
v−

(
r− σ

2
2

)
τ+Iz (τ)+2z

)2
2τσ2

σ
√

2πτ
Φ

δ2
(
v −

(
r − σ

2

2

)
τ + Iz(τ) + 2z

)
− z

σδ
√
τ(1 − δ2)

 . (25)

Making substitution w = xev, we get the required result.
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Now, we are ready to study some properties of the value function c(τ, x), 0 ≤ t < T, x > 0, through the
payoff function H(x). Particular cases are European call and put options with payoffs (ST−L)+ and (L−ST)+,
respectively. These properties include continuity and convexity of the value function and also satisfies the
well known Feyman-Kac type equation. And under certain conditions, it satisfies Black Scholes equation.
Our results agree with Corns and Satchell [3] and Zhu and He [20] for the special cases of European Call
Options where the Greeks can also be calculated. Hence our approach is a generalization of [3, 20] and
opens a new direction which needs to be tested in future studies.

Theorem 3.3. If the payoff H(x) is convex, then so is the value function c(τ, x).

Proof. Since H(x) is convex, thus the first order left/right derivative H′(x∓) exists and is increasing (see
Royden [18]). Differentiating (24) with respect to x we get left/right derivative as

cx∓(τ, x) = e−rτ
∫
∞

−∞

evH′ (xev
∓) f

(
v −

(
r −
σ2

2

)
τ + Iz(τ) + y + z|y, z

)
dv, (26)

where x = St, y = σWt, z = σRt and δ ∈ (−1, 1).
As H′(x∓) exists and increases with respect to x, thus cx∓(τ, x) also exists and increases with respect to x.

Thus c(τ, x) is convex with respect to x.

Theorem 3.4. The value function c(τ, x), with finite payoff function H(·), is continuous on [0,T) and satisfies

cτ(τ, x) = −
(
r +

1
2τ

)
c +

e−rτ

σ
√
τ

∫
∞

0

H(w)
w
1τ

(
hx,τ(w) + y + z|y, z

)
dw, (27)

where

1τ
(
hx,τ(w) + y + z|y, z

)
=

hx,τ(w)
σ2τ

ϕ

(
hx,τ(w)
σ
√
τ

)
Φ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)

 (hx,τ(w)
2τ

−
dIz(τ)

dτ
+ r −

σ2

2

)
−

1

σδ
√
τ(1 − δ2)

ϕ

(
hx,τ(w)
σ
√
τ

)
ϕ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)


×

(
δ2hx,τ(w) + z

2τ
− δ2

(
dIz(τ)

dτ
+ r −

σ2

2

))
+

hx,τ(w) + 2z
σ2τ

ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
× Φ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)

 (hx,τ(w) + 2z
2τ

−
dIz(τ)

dτ
+ r −

σ2

2

)
−

1

σδ
√
τ(1 − δ2)

ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
ϕ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)


×

(
δ2 (hx,τ(w) + 2z) − z

2τ
− δ2

(
dIz(τ)

dτ
+ r −

σ2

2

))
, (28)

where hx,τ(w) = ln w
x −

(
r − σ

2

2

)
τ + Iz(τ), x = St, y = σWt, z = σRt, δ ∈ (−1, 1), while Iz(τ) and d

dτ I
z(τ) are given by

(10) and (21), respectively.

Proof. The partial derivative of c(τ, x), given in Theorem 3.2, with respect to τ can be calculated as

cτ(τ, x) = −rc(τ, x) + e−rτ
∫
∞

0

H(w)
w

fτ
(
hx,τ(w) + y + z|y, z

)
dw

]
, (29)
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where fτ
(
hx,τ(w) + y + z|y, z

)
is calculated from (18) as

fτ
(
hx,τ(w) + y + z|y, z

)
= −

1
2τ

f
(
hx,τ(w) + y + z|y, z

)
+

1
σ
√
τ

[hx,τ(w)
σ2τ

ϕ

(
hx,τ(w)
σ
√
τ

)
Φ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)


×

(
hx,τ(w)

2τ
−

dIz(τ)
dτ

+ r −
σ2

2

)
−

1

σδ
√
τ(1 − δ2)

ϕ

(
hx,τ(w)
σ
√
τ

)
× ϕ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)

 (δ2hx,τ(w) + z
2τ

− δ2

(
dIz(τ)

dτ
+ r −

σ2

2

))
+

hx,τ(w) + 2z
σ2τ

ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
Φ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)

 (hx,τ(w) + 2z
2τ

−
dIz(τ)

dτ
+ r −

σ2

2

)
−

1

σδ
√
τ(1 − δ2)

ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
ϕ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)


×

(
δ2 (hx,τ(w) + 2z) − z

2τ
− δ2

(
dIz(τ)

dτ
+ r −

σ2

2

)) ]
= −

1
2τ

f
(
hx,τ(w) + y + z|y, z

)
+

1
σ
√
τ
1
(
hx,τ(w) + y + z|y, z

)
. (30)

Inserting (30) in (29) we get the result.

In the following result, we study the Feymann-Kac type differential equation for the corresponding
option. Solution of this equation gives fair price of the corresponding option.

Theorem 3.5. If the left/right derivative H′(x±) of the payoff function exists then the value function c(τ, x) is
differentiable with respect to τ and the left/right second order derivative cxx∓(τ, x) exists. Moreover, this function
satisfies the Feymann-Kac type equation of the form

ct + x

r + e−Iz(t)

2σδt
√

2πt

(σ2δ2t − z)e
−

1
2

(
σ2δ2 t+z
σδ
√

t

)2

+ e−2z(σ2δ2t + z)e
−

1
2

(
σ2δ2 t−z
σδ
√

t

)2 cx

+
x2σ2

2
cxx = rc, (31)

with condition

ϕ

(
W2

t
√

T − t

)
=

W2
t√

2π(T − t)

(
1 − I(W2

t <0)

√

2π
)
,

where z = σδ|W2
t |, δ ∈ (−1, 1) while Iz(τ) is given in (10).

Proof. Using Theorem 3.4, we found that c(τ, x) is differentiable with respect to time τ. To show the existence
of the second order derivative cxx∓(τ, x), first we use the change of variable u = xev in (26) and obtain the
alternate form of cx∓(τ, x) as

cx∓(τ, x) =
e−rτ

x

∫
∞

0
H′ (u∓) f

(
ln

u
x
−

(
r −
σ2

2

)
τ + Iz(τ) + y + z|y, z

)
du.

(32)

Using product rule, we calculate the left/right second order partial derivative as

cxx∓(τ, x) = −
1
x

cx∓(τ, x) +
e−rτ

x

∫
∞

0
H′ (u∓) fx

(
ln

u
x
−

(
r −
σ2

2

)
τ + Iz(τ) + y + z|y, z

)
du, (33)
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where the partial derivative fx
(

ln u
x −

(
r − σ

2

2

)
τ + Iz(τ) + y + z|y, z

)
is given as

fx
(

ln
u
x
−

(
r −
σ2

2

)
τ + I(τ) + y + z|y, z

)
=

1
σx
√
τ

[
ϕ

(
hx,τ(u)
σ
√
τ

) (
hx,τ(u)
σ2τ

Φ

 δ2hx,τ(u) + z

σδ
√
τ(1 − δ2)

 − δ

σ
√
τ(1 − δ2)

× ϕ

 δ2hx,τ(u) + z

σδ
√
τ(1 − δ2)

 ) + ϕ (
hx,τ(u) + 2z
σ
√
τ

) (
hx,τ(u) + 2z
σ2τ

Φ

δ2 (hx,τ(u) + 2z) − z

σδ
√
τ(1 − δ2)


−

δ

σ
√
τ(1 − δ2)

ϕ

δ2 (hx,τ(u) + 2z) − z

σδ
√
τ(1 − δ2)

 )], (34)

with hx,τ(u) = ln u
x −

(
r − σ

2

2

)
τ + Iz(τ), x = St, y = σW1

t and z = σδW2
t , δ ∈ (−1, 1).

From Theorem 3.4 and relation (33), we conclude that c(τ, x) is in C1,2((0,T) × (0,∞)) in weak sense.
Next, through Itô formula we calculate the differential of the discounted value function e−rtc(T− t,St) as

d(e−rtc(T − t,St)) = e−rt
[
(−rc + ct) dt + cxdSt +

1
2

cxxd < S >t

]
, x = St, 0 ≤ t ≤ T.

Using (20), we find the differential of the quadratic variation < S >t as σ2S2
t dt. Using this, equations (20)

and (21) further give

d(e−rtc(T − t,St))

= e−rt
[
(−rc + ct) dt + cxSt

(
rdt − dIz(t) + σdXδt

)
+

1
2

cxxσ
2S2

t dt
]

= e−rt
[

(−rc + ct) dt + Stcx

[
rdt −

−e−Iz(t)

2σδt
√

t

(
(σ2δ2t − z)ϕ

(
σ2δ2t + z

σδ
√

t

)
+ e−2z(σ2δ2t + z)ϕ

(
σ2δ2t − z

σδ
√

t

) )
dt + σdXδt

]
+

1
2

cxxσ
2S2

t dt
]
. (35)

From Theorem 3.1, the random variable Xδt is a martingale if

ϕ

(
W2

t
√

T − t

)
=

W2
t√

2π(T − t)

(
1 − I(W2

t <0)

√

2π
)
,

and since the discounted value function e−rtc(T − t,St) is a martingale, we can put the dt term equal to zero
(see for detail Shreve [19]) and get the required equation (31) with the given condition.

In the following result, we come to the Black-Scholes type equation and the delta hedging rule:

Theorem 3.6. For arbitrary payoff function H(.), the delta hedge is given as ∆(t) = cx, and when the payoff function
H(.) is one time left/right differentiable then the value function c(T − t, x) satisfies the Black-Scholes type equation of
the form

rc(T − t, x) = ct(T − t, x) + rxcx(T − t, x) +
σ2

2
x2cxx(T − t, x),
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for all 0 ≤ t < T, x = St, with condition Π(0) = c(T,S0), while the delta hedging strategy has the following alternate
forms

∆(t) = e−rt
∫
∞

0

H(w)
w

fx

(
ln

w
x
−

(
r −
σ2

2

)
t + Iz(t) + y + z|y, z

)
dw

= e−rt
∫
∞

−∞

H′ (xev
∓) ev f

(
v −

(
r −
σ2

2

)
t + Iz(t) + y + z|y, z

)
dv

=
e−rτ

x

∫
∞

0
H′ (u∓) f

(
ln

u
x
−

(
r −
σ2

2

)
τ + Iz(τ) + y + z|y, z

)
du

where fx
(
ln w

x −
(
r − σ

2

2

)
t + Iz(t) + y + z|y, z

)
is given by (34).

Proof. LetΠ(t) denotes the value of self-financing portfolio which invests in money market account paying
constant interest rate r and a stock given in (2) by holding ∆(t) shares at each time t. The differential dΠ(t)
of the portfolio value at each time t can be expressed (see Glonti, Purtukhiya [6], Shreve [19] Chapter 4) as

dΠ(t) = ∆(t)dSt + r (Π(t) − ∆(t)St) dt

= ∆(t)St

(
rdt − dIz(t) + σdXδt

)
+ r (Π(t) − ∆(t)St) dt,

where we have used (20).
Using the latter expression, differential of the discounted portfolio value d

(
e−rtΠ(t)

)
can be expressed as

d
(
e−rtΠ(t)

)
= −re−rtΠ(t)dt + e−rtdΠ(t)

= e−rt∆(t)St

(
σdXδt − dIz(t)

)
. (36)

Next, assume the short option self-financing hedging portfolio value Π(t) agrees with the value function
c(T − t,St), at each time t, then e−rtΠ(t) = e−rtc(T − t,St). And this insures that

d
(
e−rtΠ(t)

)
= d

(
e−rtc(T − t,St)

)
for all 0 ≤ t < T,

with initial condition Π(0) = c(T,S0).
Using the expressions (35) and (36), the latter expression further gives

∆(t)St

(
σdXδt − dIz(t)

)
=

(
−rc + ct + rStcx +

1
2

cxxσ
2S2

t

)
dt − StcxdIz(t) + σcxStdXδt .

Comparing the dXδt terms on both sides we get the delta hedging rule as

∆(t) = cx(T − t,St) for all 0 ≤ t < T,

while, by inserting the expression of dIz(t) from (21) and comparing the dt terms, we obtain the Black-Scholes
type partial differential equation as

rc(T − t, x) = ct(T − t, x) + rxcx(T − t, x) +
σ2

2
x2cxx(T − t, x),

for all 0 ≤ t < T, x = St, with condition Π(0) = c(T,S0).
For the first form of ∆(t), we differentiate (17) with respect to x then find that cx exists and calculated as

cx(τ, x) = e−rτ
∫
∞

0

H(w)
w

fx
(
hx,τ(w) + y + z|y, z

)
dw,

where fx
(
ln w

x −
(
r − σ

2

2

)
t + I(t) + y + z|y, z

)
is calculated as in (34).

Second form in the result is calculated in (26), while the third in (32).
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Theorem 3.7. The partial derivative of c(τ, x) defined in (17) with respect to the interest rate r is given as

cr(τ, x) = −τc(τ, x) + e−rτ
∫
∞

0

H(w)
w

fr
(
hx,τ(w) + y + z|y, z

)
dw, (37)

where

fr
(
hx,τ(w) + y + z|y, z

)
=

hx,τ(w)
σ3
√
τ
ϕ

(
hx,τ(w)
σ
√
τ

)
Φ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)

 + hx,τ(w) + 2z
σ3
√
τ
ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
× Φ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)

 − δ

σ2
√

1 − δ2

[
ϕ

(
hx,τ(w)
σ
√
τ

)
Φ

 δ2hx,τ(w) + z

σδ
√
τ(1 − δ2)


+ ϕ

(
hx,τ(w) + 2z
σ
√
τ

)
Φ

δ2 (hx,τ(w) + 2z) − z

σδ
√
τ(1 − δ2)

 ], (38)

where hx,τ(w) = ln w
x −

(
r − σ

2

2

)
τ + Iz(τ), τ = T − t, x = St, y = σWt and z = σRt.

Greeks: Greeks of the option are:
T(t) = ct(T − t,St) given by Theorem 3.5.
Γ(t) = cxx∓(T − t,St) investigated in the proof of Theorem 3.5.
∆(t) = cx∓(T − t,St) investigated in Theorem 3.6.
R(t) = cr(T − t,St) is investigated in Theorem 3.7.
L(t) = cL(T − t,St) is investigated in Lemma 3.8.
In the next results, we study the particular forms of our results. Putting the payoff function H(ST) =

(ST − k)+, we get the same value function (20) of European call option and the same Greeks as in [20] given
in the following lemma.

Lemma 3.8. Value function of the European call option with payoff (ST − L)+ can be expressed as

c(T − t, x) = xe−0.5σ2(T−t)−Iz(T−t)−y−z
∫
∞

ln L
x−

(
r− σ22

)
(T−t)+Iz(T−t)+y+z

eu f (u|y, z)du

− Le−r(T−t)
∫
∞

ln L
x−

(
r− σ22

)
(T−t)+Iz(T−t)+y+z

f (u|y, z)du, (39)

where x = St and u = σWT+σRT, y = σWt, z = σRt, δ ∈ (−1, 1) while the density f (u|y, z) = fσWT+σRT |σWt,σRt (u|y, z)
is given (23).

The partial derivative L(t) = cL(T − t,St) is given as

cL(T − t, x) = −e−r(T−t)
∫
∞

ln L
x−

(
r− σ22

)
(T−t)+Iz(T−t)+y+z

f (u|y, z)du, (40)

where f (u|y, z) is given in (12).
Moreover, Greeks of the European call option satisfies the conditions

∆(t) = cx∓(T − t,St) ≥ 0,

Γ(t) = cxx∓(T − t,St) ≥ 0,

R(t) = cr(T − t,St) ≥ 0,

and
L(t) = cL(T − t,St) ≤ 0,

and coincide with the Greeks given in Zhu and He [20].
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Proof. Using the payoff H(ST) = (ST − L)+ in (22), we express the value function c(T − t, x) as

c(T − t, x)

= e−r(T−t)
∫
∞

−∞

(
xe

(
r− σ

2
2

)
(T−t)−Iz(T−t)−y−z+u

− L
)+

f (u|y, z)du

= e−r(T−t)
∫
∞

ln L
x−

(
r− σ22

)
(T−t)+Iz(T−t)+y+z

(
xe

(
r− σ

2
2

)
(T−t)−Iz(T−t)−y−z+u

− L
)

f (u|y, z)du,

(41)

where f (u|y, z) is given in (12). This gives the required result.
As the value function (41) is the same as the value function (20) of Zhu and He [20]. Thus the Greeks of

the option calculated from (41) must be the same as in Zhu and He [20].

4. Conclusion

In this work, we studied European style option, with arbitrary payoff which includes both put and call
options, on an asset whose price evolves as geometric Itô-McKean skew Brownian motion with Azzalini
skew-normal distribution. It is found that this motion is not generally a martingale, it is a martingale
under certain conditions. Next, we priced the option and find that if the payoff function is convex then
so is the price function. It is also found that if the payoff is finite then the price function satisfies a partial
differential equation with respect to time. Further, we found that the price function satisfies a Feymann-Kac
type equation if and only if the motion is a martingale. We also show that the price function satisfies a
Black-Scholes type equation, give expressions for the delta hedge and the Greeks of the option. Last, we
compared some of our results with the results found in the literature.
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