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Abstract. Our main aim is to investigate the approximation properties of the summation integral type
operators in a statistical sense. In this regard, we prove the statistical convergence theorem using well
known Korovkin theorem and the degree of approximation is determined. Also using the weight function,
the weighted statistical convergence theorem with the help of the Korovkin theorem is obtained. The
statistical rate of convergence in the terms of modulus of continuity and function belonging to the Lipschitz
class is determined. To support the convergence results of the proposed operators to the function, graphical
representations take place and a comparison is shown with Szász-Mirakjan-Kantorovich operators through
examples. The last section deals with, a bivariate extension of the proposed operators to determine the
approximation of the function of two variables, additionally, the rate of convergence is estimated as well as
the convergence of the bivariate operators is shown by graphical representations.

1. Introduction

Approximating the high-order polynomial curves and curved surfaces with the low-order ones plays
an important role in data compression, data transmission, data exchange, etc., in geometric modeling tasks.
Approximation theory basically deals with the approximation of functions by simpler functions or more eas-
ily calculated functions. Broadly it is divided into theoretical and constructive approximation. Weierstrass
approximation theorem [1] was first developed in regard to the approximation of function and constructive
proof of this theorem was given by S.N. Bernstein by constructing polynomials using probabilistic interpo-
lation, thus these polynomials are said to be Bernstein polynomials. Similarly, computer-aided geometric
design (CAGD) is a discipline that deals with computational aspects of geometric objects. And the cause
of that it plays an important role in the mathematical development of curves and surfaces such that they
become compatible with computers.
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In recent years, the research on Bézier curve approximation with degree reduction attracts lots of
attention. Current algorithms for Bézier Curve degree reduction can be summarized into two categories.
The first category is based on the base function conversion. For instance, in reference (Lu, and Wang [2])
proposes to utilize the Chebyshev Polynomials for base function conversion. Sánchez-Reyes [3] uses the S
power base to accurately represent the Bernstein base function. Several famous programs are utilized with
the help of Bernstein polynomials like font imaging systems such as postscript, Adobe’s illustrator, and
flash to form Bézier curves [4]. Moving forward in the theory of approximation, one more property has
been established, and that is statistical study. The present article deals with the properties of linear positive
operators in a statistical sense.

First of all, Fast [5] introduced statistical convergence and further investigated by Steinhaus [6], in that
order, Schoenberg [7] reintroduced as well as gave some basics properties and studied the summability
theory of the statistical convergence. Nowadays, statistical convergence has become an area, which is
broad and also very active, even though it has been introduced over fifty years ago and is being used
very frequently in many areas, we refer to some citations as [8–13]. Also, this area is being concerned to
investigate the approximation properties of quantum calculus. Some statistical approximation properties
have been determined by researchers in their research articles [14–23] and [24–26, 28–31]. In 2003, Duman
[32], studied the A-statistical convergence of the linear positive operators for function belonging to the
space of all 2π-periodic and continuous functions on the whole real line, where A represents a non-negative
regular summability matrix. Since, statistical type study has vast applications in several fields of research
like as functional analysis, real analysis, etc. and of course, is being done in the theory of approximation as
well.

So, the main objective of this paper is to investigate the statistical convergence properties of the sequence
of linear positive operators in the theory of approximation. Here the Korovkin theory is considered to deal
with the approximation of function 1 by the operators {S̃∗n,a(1; x)} [33] for the summation integral type
operators, which are as follows.

S̃∗n,a(1; x) = n
∞∑

k=0

sa
n(x)

k+1
n∫

k
n

1(u) du, ∀ x ∈ [0,∞),n ∈N, (1)

where sa
n(x) = x log a(

−1+a
1
n

)
n

, 1 ∈ C[0,∞). The authors studied the summation integral type operators (Szász-

Mirakjan-Kantorovich type operators) along with their rate of convergence in the sense of local approx-
imation results with the help of modulus of smoothness, second-order modulus of continuity, Peetre’s
K-functional, and functions belonging to the Lipschitz class. Further, for computing the order of approxi-
mation of the operators, we discuss the weighted approximation properties by using the weighted modulus
of continuity and prove the theorem. The operators (1) are a generalized version of the Szász-Mirakjan type
operators, defined in [34].

Here it is considered some Lemmas those will be useful in the further study of the theorem. Consider
the function ei = xi, i = 0 · · · 4, we have

Lemma 1.1. [33] For each x ∈ [0,∞) and a > 1 fixed, we have

1. S̃∗n,a(e0; x) = 1,

2. S̃∗n,a(e1; x) =
1

2n
+

x log a(
−1 + a

1
n

)
n
,

3. S̃∗n,a(e2; x) =
1

3n2 +
2x log a(
−1 + a

1
n

)
n2
+

x2(log a)2(
−1 + a

1
n

)2
n2
,
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4. S̃∗n,a(e3; x) =
1

4n3 +
7
2

x log a(
−1 + a

1
n

)
n3
+

9
2

x2(log a)2(
−1 + a

1
n

)2
n3
+

x3(log a)3(
−1 + a

1
n

)3
n3
.

To find central moments for the defined operators, we have

Lemma 1.2. [33] For each x ≥ 0, we have

1. S̃∗n,a(ξx(u); x) = −
(−1 + 2nx)

2n
+

x log a

n(−1 + a
1
n )
,

2. S̃∗n,a(ξ2
x(u); x) =

(1 − 3nx + 3n2x2)
3n2 −

2(−1 + a
1
n )(−1 + nx)x log a(
−1 + a

1
n

)2
n2

+
x2(log a)2(
−1 + a

1
n

)2
n2
,

3. S̃∗n,a(ξ3
x(u); x) = −

(−1 + 4nx − 6n2x2 + 4n3x3)
4n3 +

x(7 − 12nx + 6n2x2) log a

2
(
−1 + a

1
n

)
n3

−
3x2(−3 + 2nx)(log a)2 + 4x3(log a)3

2
(
−1 + a

1
n

)2
n3

,

4. S̃∗n,a(ξ4
x(u); x) =

1

5
(
−1 + a

1
n

)4
n4

( (
−1 + a

1
n

)4
(1 − 5nx + 10n2x2

− 10n3x3 + 5n4x4)

−10
(
−1 + a

1
n

)3
x(−3 + 7nx − 6n2x2 + 2n3x3) log a

+15
(
−1 + a

1
n

)2
x2(5 − 6nx + 2n2x2)(log a)2

−20
(
−1 + a

1
n

)
x3(−2 + nx)(log a)3 + 5x4(log a)4

)
,

where ξx(t) = (u − x)i, i = 1, 2, 3 · · ·

2. Korovkin and Weierstrass type statistical theorem

If {On(1; x)} is a sequence of linear positive operators such that the sequence {On(1; x)}, {On(t; x)}, {On(t2; x)}
converge uniformly to 1, x, x2 respectively in the defined interval [a, b], then it implies that the sequence
{On(1; x)} converges to the function 1 uniformly provided 1 is bounded and continuous in the interval [a, b].

Before proceeding to statistical convergence, here a brief concept of statistical convergence is considered.

Definition 2.1. Consider a set K ⊆ N, such that Kn = {k ∈ K : k ≤ n}, where n ∈ N. Then the natural density
d(K ) of a setK is defined as

lim
n→∞

1
n
|Kn|, (2)

provided the limit exists. Here |Kn| represents the cardinality of the set Kn.

Definition 2.2. Let p ∈ R, a sequence {xk} is said to be convergent statistically to p, if for each ϵ > 0, we have

d({k ≤ n : |xk − p| ≥ ϵ}) = 0, (3)

i.e.,

lim
n

1
n
|{k ≤ n : |xk − p| ≥ ϵ}| = 0. (4)
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By using the properties of statistical convergence, here we shall prove the Korovkin theorem and the
Weierstrass type approximation theorem.

In [35], it is proved that the classical Korovkin theorem, according to that theorem, let An(1; x) be linear
positive operators defined on the set of all continuous and bounded function CB[a, b] to C[a, b], be set of all
continuous function defined on [a, b] for which, the conditions

lim
n
∥An(ei; x) − ei∥C[a,b] = 0, where ei = xi, i = 0, 1, 2,

satisfy, then for any function 1 ∈ C[a, b],

lim
n
∥Sn(1; x) − 1(x)∥C[a,b] = 0, as n→∞.

Theorem 2.3. [36] Let Pn be a sequence of positive linear operators defined on CB[a, b] to C[a, b] and if it satisfies the
conditions

st − lim
n
∥Pn(ei; x) − ei∥C[a,b] = 0, where i = 0, 1, 2,

then for each function 1 ∈ CB[a, b], we have

st − lim
n
∥Pn(1; x) − 1(x)∥C[a,b] = 0.

With these correlations, we have

Theorem 2.4. Let {S̃∗n,a} be the sequence of linear positive operators defined by (1). Then for every 1 ∈ CB[0, l], l > 0,
we have

st − lim
n
∥S̃∗n,a(1; x) − 1(x)∥ = 0,

where CB[0, l] is the space of all continuous and bounded function defined on [0, l] with the norm

∥1∥ = sup
0≤x≤l
|1(x)|.

Proof. By (1) of Lemma 1.1, we easily get

st − lim
n
∥S̃∗n,a(e0; x) − e0∥ = 0 (5)

Now by (2) of Lemma 1.1, we have

|Sn(e1; x) − x∥ = ∥
1

2n
+

x(
−1 + a

1
n

)
n

log a − x∥

≤

∣∣∣∣∣ 1
2n

∣∣∣∣∣ +
∣∣∣∣∣∣∣
 1(
−1 + a

1
n

)
n

log a − 1

 l

∣∣∣∣∣∣∣ ,
define the sets, for any ϵ > 0 as:

O = {n : ∥S̃∗n,a(e1; x) − x∥ ≥ ϵ}

and

O′ =
{
n :

1
2n
≥
ϵ
2

}
O′′ =

{
n :

 log a(
−1 + a

1
n

)
n
− 1

 l ≥
ϵ
2

}
,
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here it can be observed that O ⊆ O′ ∪O′′ and it can be expressed as

d
{
n ≤ k : ∥S̃∗n,a(e1; x) − x∥ ≥ ϵ

}
≤ d

{
n ≤ k :

1
2n
≥
ϵ
2

}
+ d

n ≤ k :

 log a(
−1 + a

1
n

)
n
− 1

 l ≥
ϵ
2

 . (6)

But since

st − lim
n

( 1
2n

)
= 0 and st − lim

n

 log a(
−1 + a

1
n

)
n
− 1

 = 0,

hence, by Inequality 6, it follows

st − lim
n
∥Sn(e1; x) − x∥ = 0. (7)

Similarly,

∥S̃∗n,a(e2; x) − e2∥ = ∥
1

3n2 +
2x log a(
−1 + a

1
n

)
n2
+

x2(log a)2(
−1 + a

1
n

)2
n2
− x2
∥

≤

∣∣∣∣∣ 1
3n2

∣∣∣∣∣ +
∣∣∣∣∣∣∣ 2 log a(
−1 + a

1
n

)
n2

∣∣∣∣∣∣∣ l +

∣∣∣∣∣∣∣∣
 (log a)2(
−1 + a

1
n

)2
n2
− 1


∣∣∣∣∣∣∣∣ l2

≤ m2

 1
3n2 +

2 log a(
−1 + a

1
n

)
n2
+

( (log a)2(
−1 + a

1
n

)2
n2
− 1

) ,
where m2 = max{1, l, l2}, i.e.,

∥S̃∗n,a(e2; x) − e2∥ ≤ m2

 1
3n2 +

2 log a(
−1 + a

1
n

)
n2
+

 1(
−1 + a

1
n

)2
n2

(log a)2
− 1


 . (8)

Again by defining the following sets for any ϵ > 0, one can get

P = {n : ∥S̃∗n,a(e2; x) − e2∥ ≥ ϵ} (9)

P1 = {n :
1

3n2 ≥
ϵ

3m2 }, (10)

P2 = {n :
2 log a(
−1 + a

1
n

)
n2
≥
ϵ

3m2 } (11)

P3 =

n :


 log a(
−1 + a

1
n

)
n


2

− 1

 ≥ ϵ

3m2

 , (12)

where P ⊆ P1 ∪ P2 ∪ P3, and it gives

d{n ≤ k : ∥S̃∗n,a(e2; x) − e2∥ ≥ ϵ} ≤ d
{
n ≤ k :

1
3n2 ≥

ϵ

3m2

}
+ d

n ≤ k :
2 log a(
−1 + a

1
n

)
n2
≥
ϵ

3m2


+d

n ≤ k :


 log a(
−1 + a

1
n

)
n


2

− 1

 ≥ ϵ

3m2

 . (13)
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Hence

st − limαn = 0 = st − lim βn = st − limγn, (14)

where

αn =
1

3n2 , βn =
2 log a(
−1 + a

1
n

)
n2
, γn =


 log a(
−1 + a

1
n

)
n


2

− 1

 .
So by 13 and 14, we have

st − lim ∥S̃∗n,a(e2; x) − e2∥ = 0 (15)

Hence proof is completed.

Now, there is an example that satisfies Theorem 2.4, but not the classical Korovkin theorem.

Example 2.5. Consider a sequence of linear positive operators Tn(1; x) which are defined on CB[0, l] by Tn(1; x) =
(1+un)S̃∗n,a, where S̃∗n,a be the sequence positive linear operators and un is unbounded statistically convergent sequence.

Since S̃∗n,a is statistically convergent and also un is statistically convergent but not convergent so one can observe
that the sequence Tn satisfies the Theorem 2.4, but not the classical Korovkin theorem.

Definition 2.6. Let ξk be a sequence that converges statistically to ξ, having degree β ∈ (0, 1), if for each ϵ > 0, we
have

lim
n

{k ≤ n : |ξk − ξ| ≥ ϵ}

n1−β = 0

In this case, we can write

ξk − ξ = st − o(k−β), k→∞.

Theorem 2.7. Let {S̃∗n,a} be a sequence defined by (1) that satisfies the conditions

st − lim
n→∞
∥S̃∗n,a(e0; x) − e0∥ = st − o(n−ζ1 ), (16)

st − lim
n→∞
∥S̃∗n,a(e1; x) − e1∥ = st − o(n−ζ2 ), (17)

st − lim
n→∞
∥S̃∗n,a(e2; x) − e2∥ = st − o(n−ζ3 ), (18)

as n→∞. Then for each 1 ∈ CB[0, l], we have

st − lim
n→∞

S̃∗n,a(1; x) − 1(x)∥ = st − o(n−ζ), as n→∞,

where ζ = min{ζ1, ζ2, ζ3}.

Proof. One can write the inequality (13) of Theorem 2.4 as:

|{n ≤ p : ∥S̃∗n,a(1; x) − 1(x)∥ ≥ ϵ}|

p1−ζ
≤

∣∣∣∣{n ≤ p : 1
3n2 ≥

ϵ
3m2

}∣∣∣∣
p1−ζ1

p1−ζ1

p1−ζ
+

∣∣∣∣∣∣∣
n ≤ p : 2 log a(

−1+a
1
n

)
n2
≥

ϵ
3m2


∣∣∣∣∣∣∣

p1−ζ2

p1−ζ2

p1−ζ

+

∣∣∣∣∣∣∣
n ≤ p :


 log a(
−1+a

1
n

)
n

2

− 1

 ≥ e
3m2


∣∣∣∣∣∣∣

p1−ζ3

p1−ζ3

p1−ζ
.

By letting ζ = min{ζ1, ζ2, ζ3} and as n→∞, the desired result can be achieved.
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3. Weighted Statistical Convergence

Next, we introduce the convergence properties of the proposed operators (1) using Korovkin type
theorem , recall from [37, 38], here the weight function is w(x) = 1 + γ2(x), where γ : R+ → R+ is an
unbounded strictly increasing continuous function for which, there exists a constant M > 0 and α ∈ (0, 1]
such that:

|x − y| ≤M|γ(x) − γ(y)|, ∀ x, y ≥ 0.

By letting the weighted function w(x) = 1 + x2, consider some class of functions spaces Bw[0,∞) be the
space defined by:

Bw[0,∞) =

{
1 : [0,∞)→ R | |1(x)| ≤M1w(x) with ∥1∥w = sup

x≥0

1(x)
w(x)

}
Cw[0,∞) = {1 ∈ Bw[0,∞), 1 is continuous},

Ck
w[0,∞) =

{
1 ∈ Cw[0,∞), lim

x→∞

1(x)
w(x)

= k1 < +∞
}
,

M1 and k1 both are constants and depend on 1. We can move towards the main theorem by considering
the functions from defined spaces.

Theorem 3.1. Let S̃∗n,a1 be a linear positive operators defined by (1). Then for each 1 ∈ Ck
w[0,∞), we have

st − lim
n→∞
∥S̃∗n,a(1; x) − 1(x)∥w = 0.

Proof. Using the Lemma 1.1, we have S̃∗n,a(e0; x) = 1, and then it is obvious that

∥S̃∗n,a(e0; x) − 1∥w = 0.

Now we have

∥S̃∗n,a(e1; x) − e1)∥w = sup
x≥0

 1
2n
+

 1(
−1 + a

1
n

)
n

log a − 1

 x

 1
1 + x2

= sup
x≥0

 1
2n

1
1 + x2 +

x log a(
−1 + a

1
n

)
n

1
1 + x2 −

x
1 + x2


= sup

x≥0

 1
2n

1
1 + x2 +

 log a(
−1 + a

1
n

)
n
− 1

 x
1 + x2


≤

 1
2n
+

 log a(
−1 + a

1
n

)
n
− 1


 .

Now for any ϵ > 0, on defining the following sets:

P =
{
n : ∥S̃∗n,a(e1; x) − e1)∥w ≥ ϵ

}
P′ =

{
n :

1
2n
≥
ϵ
2

}
P′′ =

n :

 log a(
−1 + a

1
n

)
n
− 1

 ≥ ϵ2
 ,
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where P ⊆ P′ ∪ P′′, it follows

d
{
n ≤ m : ∥S̃∗n,a(e1; x) − e1)∥w ≥ ϵ

}
≤ d

{
n ≤ m :

1
2n
≥
ϵ
2

}
+ d

n ≤ m :

 log a(
−1 + a

1
n

)
n
− 1

 ≥ ϵ2
 . (19)

Right hand side of inequality (19) is statistically convergent, hence

st − lim
n
∥S̃∗n,a(e1; x) − e1)∥w = 0. (20)

Similarly,

∥S̃∗n,a(e2; x) − e2∥w = sup
x≥0

 1
3n2 +

2x log a{
−1 + a

1
n

}
n2
+

x2(log a)2{
−1 + a

1
n

}2
n2
− x2

 1
1 + x2

≤

 1
3n2 +

2 log a(
−1 + a

1
n

)
n2
+

 (log a)2(
−1 + a

1
n

)2
n2
− 1


 .

Similarly, for any ϵ > 0, again define the following sets

H =
{
n : ∥S̃∗n,a(e2; x) − e2∥w ≥ ϵ

}
H′ =

{
n :

1
3n2 ≥

ϵ
3

}
H′′ =

n :
2 log a(
−1 + a

1
n

)
n2
≥
ϵ
3


H′′′ =

n :

 (log a)2(
−1 + a

1
n

)2
n2
− 1

 ≥ ϵ3
 ,

where H ⊆ H′ ∪H′′ ∪H′′′, it follows

d{n ≤ m : ∥S̃∗n,a(e2; x) − e2∥w ≥ ϵ} = 0 (21)

d

n ≤ m :
2 log a(
−1 + a

1
n

)
n2
≥
ϵ
3

 = 0 (22)

d

n ≤ m :

 (log a)2(
−1 + a

1
n

)2
n2
− 1

 ≥ ϵ3
 = 0. (23)

By relations (21-23), it yields:

st − lim
n→∞
∥S̃∗n,a(e2; x) − e2∥w = 0. (24)

Hence

|S̃∗n,a(1; x) − 1(x)∥w ≤ ∥S̃∗n,a(e0; x) − e0)∥w + ∥S̃∗n,a(e1; x) − e1)∥w + ∥S̃∗n,a(e2; x) − e2)∥w, (25)

and we get

st − lim
n→∞
∥S̃∗n,a(1; x) − 1(x)∥w ≤ st − lim

n→∞
∥S̃∗n,a(e0; x) − e0)∥w + st − lim

n→∞
∥S̃∗n,a(e1; x) − e1)∥w (26)

+ st − lim
n→∞
∥S̃∗n,a(e2; x) − e2)∥w,
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which implies that

st − lim
n→∞
∥S̃∗n,a(1; x) − 1(x)∥w = 0.

Hence proved.

4. Rate of Statistical Convergence

In this section, we shall introduce the order of approximation of the operators by means of the modulus
of continuity and function belonging to the Lipschitz class.

Let 1 ∈ CB[0,∞), the space of all continuous and bounded functions defined on the interval [0,∞) and
for any x ≥ 0, the modulus of continuity of 1 is defined by

ω(1; δ) = sup
|u−x|≤δ

|1(u) − 1(x)|, u ∈ [0,∞),

and for any δ > 0 and each x, u ∈ [0,∞), we have

|1(u) − 1(x)| ≤ ω(1; δ)
(
|u − x|
δ
+ 1

)
(27)

Next theorem deals with error estimation using the modulus of continuity:

Theorem 4.1. Let 1 ∈ CB[0,∞) be a non-decreasing function. Then we have

|S̃∗n,a(1; x) − 1(x)| ≤ 2ω
(
1;

√
δn,a

)
, x ≥ 0,

where

δn,a =

(
(1 − 3nx + 3n2x2)

3n2 −
2(−1 + a

1
n )(−1 + nx)x log a(
−1 + a

1
n

)2
n2

+
x2(log a)2(
−1 + a

1
n

)2
n2

)
.

Proof. With the linearity and positivity properties of the defined operators (1), it can be expressed as

|S̃∗n,a(1; x) − 1(x)| ≤ S̃∗n,a(|1(u) − 1(x)|; x)

= n
∞∑

k=0

sa
n(x)

k+1
n∫

k
n

|1(u) − 1(x)| du. (28)

By using property (27) in above inequality, we can write:

|S̃∗n,a(1; x) − 1(x)| ≤ n
∞∑

k=0

sa
n(x)

k+1
n∫

k
n

ω(1; δ)
(
|u − x|
δ
+ 1

)
du

= ω(1; δ)
{
1 +

n
δ

∞∑
k=0

sa
n(x)

k+1
n∫

k
n

|u − x| du
}

≤ ω(1; δ)
{
1 +

n
δ

(( ∞∑
k=0

sa
n(x)

k+1
n∫

k
n

(u − x)2 du
) 1

2

= ω(1; δ)
{
1 +

1
δ

√
S̃∗n,a(ξ2

x(u); x)
}
.
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Now, we choose δ = δn,a, where

δn,a =

(
(1 − 3nx + 3n2x2)

3n2 −
2(−1 + a

1
n )(−1 + nx)x log a(
−1 + a

1
n

)2
n2

+
x2(log a)2(
−1 + a

1
n

)2
n2

)
. (29)

Hence, the required result can be obtained.

Remark 4.2. With the help of (29), one can get

st − lim
n
δn,a = 0, (30)

and by (27), it can be obtained

st − lim
n
ω(1; δn,a) = 0, (31)

and hence the pointwise rate of convergence of the operators S̃∗n,a(1; x) can be determined.

Theorem 4.3. [33] For 1 ∈ CB[0,∞) and if 1 ∈ Lip
M

(α), α ∈ (0, 1] holds, that is the inequality

|1(u) − 1(x)| ≤ M|u − x|α, u, x ∈ [0,∞), where M is a positive constant,

then for every x ≥ 0, we have

|S̃∗n,a(1; x) − 1(x)| ≤ Mδ
α
2
n,a,

where δn,a = S̃∗n,a((u − x)2; x).

Proof. Since, we have 1 ∈ CB[0,∞) ∩ Lip
M

(α), so

|S̃∗n,a(1; x) − 1(x)| ≤ S̃∗n,a(|1(u) − 1(x)|; x)

≤ MS̃∗n,a(|u − x|α; x) =M
(
n
∞∑

k=0

sa
n(x)

k+1
n∫

k
n

|u − x|α du
)
.

Now, by applying Hölder inequality with p = 2
α and q = 2

2−α , we have

|S̃∗n,a(1; x) − 1(x)| ≤ M

n
∞∑

k=0

sa
n(x)

{ k+1
n∫

k
n

(u − x)2 du,
} α

2

 ≤ M(S̃∗n,a(ξ2
x(u); x))

α
2

= Mδ
α
2
n,a.

Hence proved.

Remark 4.4. Similarly, by equation (29), we can justify

st − lim
n
δn,a = 0, (32)

and it can be seen that the rate of statistical convergence of the operators 1 to 1(x) is estimated by means of a function
belonging to the Lipschitz class.
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5. Graphical approach

Based upon the defined operators (1), we will show the convergence rate by some graphical represen-
tations.

Example 5.1. Consider the function f (x) = e−2x and choose the values of n = 5, 10 for which the corresponding
operators are S̃∗5,a( f ; x), S̃∗10,a( f ; x) respectively. We can observe that the error is minimum for large value of n and it
can be seen by set of Figures 1.

f HxL = Exp@-2 xD

S
�*

n,aH f ; xL for n = 5

S
�*

n,aH f ; xL for n = 10

a = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

f HxL = Exp@-2 xD

S
�*

n,aH f ; xL for n = 500

S
�*

n,aH f ; xL for n = 1000

a = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Convergence of operators S̃∗n,a( f ; x) to f (x)

In fact, in Figure 1, as the value of n increases, the operator S̃∗n,a( f ; x) approaches towards the function
f (x) = e−2x keeping a = 1.5 fixed.

Example 5.2. Consider the function f (x) = x and choose the value n = 100, 500, the convergence can be seen by
graphical representation, given by Figure 2.

f HxL = x

S
�*

n,aH f ; xL for n = 100

S
�*

n,aH f ; xL for n = 500

a = 1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Convergence of operators S̃∗n,a( f ; x) to f (x)

Example 5.3. For the convergence of the proposed operators (1) to the function f (x) =
(
x − 1

2

) (
x − 1

3

) (
x − 1

4

)
, choose

n = 15, 30, 500, 1000 and then the errors can be observed by the given Figures 3.
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f HxL = Jx- 1

2
N Jx- 1

3
N Jx- 1

4
N

S
�*

n,aH f ; xL for n = 15

S
�*

n,aH f ; xL for n = 30

a = 1.5

0.0 0.1 0.2 0.3 0.4 0.5

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

f HxL = Jx- 1

2
N Jx- 1

3
N Jx- 1

4
N

S*n,aH f ; xL for n = 500

S*n,aH f ; xL for n = 1000

a = 1.5

0.0 0.1 0.2 0.3 0.4 0.5

-0.04

-0.03

-0.02

-0.01

0.00

Figure 3: Convergence of operators S̃∗n,a( f ; x) to f (x)

Concluding Remark: We have seen the approach of the proposed operators by all the above figures,
for large value of n, the approximation is good. Moreover, one can observe by Figure 2, as the value of n is
increased, the operators S̃∗n,a( f ; x) converge to the function f (x) = x and in Figure 3, it can be seen that the
operator S̃∗n,a(t; x) converges to the function f (x) =

(
x − 1

2

) (
x − 1

3

) (
x − 1

4

)
for large value of n.

5.1. A comparison with Szász-Mirakjan-Kantorovich operators
In 1983, V. Totik [39] introduced the Kantorovich variant of the Szász-Mirakjan operators in Lp-space for

p > 1, which is as follows:

Kn(1; x) = ne−nx
∞∑

k=0

(nx)k

k!

k+1
n∫

k
n

1(u) du. (33)

Now we shall show a comparison of the proposed operators (1) with the operators (33) by graphical
representation.

In Figure 4, one can see that the said operators have a better rate of convergence as compared to the
operators (33).

Example 5.4. For the same degree of approximation of the operators S̃∗n,a( f ; x) and Kn( f ; x) to the function f (x) = x3,
comparison is shown by Figure 4.

f HxL = x3

S
�*

n,aH f ; xL for n = 25

KnH f ; xL for n = 25

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.05

0.10

0.15

Figure 4: Comparison of operators S̃∗n,a( f ; x) and Kn( f ; x)

Example 5.5. Comparison of convergence can be seen for the operators S̃∗n,a( f ; x) and Kn( f ; x) to the function in the
given Figures 5.
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f HxL =
1

x+1

S
�*

n,aH f ; xL for n = 4, a = 1.5

KnH f ; xL for n = 4

0.0 0.1 0.2 0.3 0.4 0.5

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

f HxL =
1

x+1

S
�*

n,aH f ; xL for n = 20, a = 1.5

KnH f ; xL for n = 20

0.0 0.1 0.2 0.3 0.4 0.5

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 5: Comparison of operators S̃∗n,a( f ; x) and Kn( f ; x)

So, from Figure 5, it can be observed that the summation-integral-type operators (1) are approaching
more faster than Szász-Mirakjan-Kantorovich operators to the function f (x) = 1

1+x .

6. An extension in sense of bivariate operators

To discuss the approximation of the function of two variables, we generalize the defined operators S̃∗n,a as
an extension into bivariate operators in the space of integral functions to investigate the rate of convergence
with the help of statistical convergence. Let 1 : C[0,∞)×C[0,∞)→ C[0,∞)×C[0,∞), we define the operators
with one parameter as follows:

Y∗m,m,a(1; x, y) = m2
∞∑

k1=0

∞∑
k2=0

sa
m,m(x, y)

k2+1
m∫

k2
m

k1+1
m∫

k1
m

1(u, v) du dv, (34)

where sa
m,m(x, y) = a

(
−x−y

−1+a
1
m

)
xk1 yk2 (log a)k1+k2

(−1+a
1
m )k1+k2 k1!k2!

= sa
m(x) × sa

m(y).

Define a function ei, j = xiy j, for all x, y ≥ 0, where i, j ∈N ∪ {0} for the following lemma.

Lemma 6.1. For all x, y ≥ 0, bivariate operators (34), satisfy the following equalities:

1. Y∗m,m,a(e00; x, y) = 1

2. Y∗m,m,a(e11; x, y) =
1

4(−1 + a
1
m )m2

{ (
−1 + a

1
n + 2x log a

) (
−1 + a

1
n + 2y log a

) }
3. Y∗m,m,a(e22; x, y) =

1

9(−1 + a
1
m )4m4

{ ((
−1 + a

1
m

)2
+ 6(−1 + a

1
m )x log+3x2(log)2

)
((
−1 + a

1
m

)2
+ 6(−1 + a

1
m )y log+3y2(log)2

) }
4. Y∗m,m,a(e33; x, y) =

1

16
(
−1 + a

1
m

)6
m6

{( (
−1 + a

1
m

)3
+ 14

(
−1 + a

1
m

)2
x log a + 18

(
−1 + a

1
m

)
x2(log a)2

+4x3(log a)3
)( (
−1 + a

1
m

)3
+ 14

(
−1 + a

1
m

)2
y log a + 18

(
−1 + a

1
m

)
y2(log a)2

+4y3(log a)3
)}
.
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Proof. To prove (1) of Lemma 6.1, we put 1(x, y) = e00 = 1 in bivariate operators (34), we have

1. Y∗m,m,a(e00; x, y) = m2
∞∑

k1=0

∞∑
k2=0

sa
m,m(x, y)

k2+1
m∫

k2
m

k1+1
m∫

k1
m

du dv

=

 ∞∑
k1=0

sa
m(x)


 ∞∑

k2=0

sa
m(y)


= 1.

2. Y∗m,m,a(e11; x, y) = m2
∞∑

k1=0

∞∑
k2=0

sa
m,m(x, y)

k2+1
m∫

k2
m

k1+1
m∫

k1
m

uv du dv

=
m2

4

( ∞∑
k1=0

sa
m(x)

(
1

m2 +
2k1

m

) )( ∞∑
k2=0

sa
m(y)

(
1

m2 +
2k2

m

) )
=

1

4(−1 + a
1
m )m2

{ (
−1 + a

1
m + 2x log a

) (
−1 + a

1
m + 2y log a

) }
.

Similarly, it can be proved the other equalities.

Lemma 6.2. For all x, y ≥ 0 and m ∈N, we have

1. Y∗m,m,a((u − x); x, y) = −
(−1 + 2mx)

2m
+

x log a

m(−1 + a
1
m )
,

2. Y∗m,m,a((v − y); x, y) = −
(−1 + 2ny)

2n
+

y log a

n(−1 + a
1
n )
,

3. Y∗m,m,a((u − x)2; x, y) =
(1 − 3mx + 3m2x2)

3m2 −
2(−1 + a

1
m )(−1 +mx)x log a(
−1 + a

1
m

)2
m2

+
x2(log a)2(
−1 + a

1
m

)2
m2
,

4. Y∗m,m,a((v − y)2; x, y) =
(1 − 3ny + 3n2y2)

3n2 −
2(−1 + a

1
n )(−1 + ny)y log a(
−1 + a

1
n

)2
n2

+
y2(log a)2(
−1 + a

1
n

)2
n2
.

Proof. One can easily prove, all equalities with the help of properties, which are proved in [33]. So we omit
the proof.

7. Rate of convergence of bivariate operators

In this section, we find rate of convergence of the bivariate operators (34), for function of two variables.
Now, we define the supremum norm, by letting X = [0,∞) × [0,∞), we have

∥1∥ = sup
x,y∈X
|1(x, y)|, 1 ∈ CB(X).

Consider the modulus of continuity ω(1; δ1, δ2) for the bivariate operators (34), where δ1, δ2 > 0, and is
defined by:

ω(1; δ1, δ2) = {sup |1(u, v) − 1(x, y)| : (u, v), (x, y) ∈ X, and |u − x| ≤ δ1, |v − y| ≤ δ2}. (35)
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Lemma 7.1. If 1 ∈ CB(X), then for δ1, δ2 > 0, we have the following properties of modulus of continuity:
1. For given function 1, ω(1; δ1, δ2)→ 0 as δ1, δ2 → 0.
2. |1(u, v) − 1(x, y)| ≤ ω(1; δ1, δ2)

(
1 + |u−x|

δ1

) (
1 + |v−y|

δ2

)
.

Fore more details, see [40].

Theorem 7.2. If 1 ∈ CB(X) and x, y ∈ [0,∞), then we have

|Y∗m,m,a(1; x, y) − 1(x, y)| ≤ 4ω(1;
√
δm,a,

√
δ′m,a), (36)

where

δm,a =

(
(1 − 3mx + 3m2x2)

3m2 −
2(−1 + a

1
m )(−1 +mx)x log a(
−1 + a

1
m

)2
m2

+
x2(log a)2(
−1 + a

1
m

)2
m2

)
, (37)

δ′m,a =

(
(1 − 3my + 3m2y2)

3m2 −
2(−1 + a

1
m )(−1 +my)y log a(
−1 + a

1
m

)2
m2

+
y2(log a)2(
−1 + a

1
m

)2
m2

)
. (38)

Proof. By using the linearity and the positivity of the defined operators Y∗m,m,a (34) and applying on (2) of
the Lemma 7.1, then for any δ1, δ2 > 0, we have

|Y∗m,m,a(1; x, y) − 1(x, y)|
≤ Y∗m,m,a(|1(t, s) − 1(x, y)|; x, y)

≤ ω(1; δ1, δ2)
(
1 +

1
δ1

Y∗m,m,a(|u − x|; x, y)
)
×

(
1 +

1
δ2

Y∗m,m,a(|v − y|; x, y)
)

≤ ω(1; δ1, δ2)
(
1 +

1
δ1

(
Y∗m,m,a((u − x)2; x, y)

) 1
2
)
×

(
1 +

1
δ2

(
Y∗m,m,a((v − y)2; x, y)

) 1
2
)

(using the Cauchy-Schwartz inequality).

Next one step will complete the proof.

At last, we shall see the rate of convergence of the bivariate operators (34) in the sense of functions belonging
to the Lipschitz class Lip

M
(α1, α2), where α1, α2 ∈ (0, 1] andM ≥ 0 is any constant, and Lipschitz class is

defined by:

|1(u, v) − 1(x, y)| ≤ M|u − x|α1 |v − y|α2 , ∀ x, y,u, v ∈ [0,∞). (39)

Our next approach is to prove the theorem for finding the rate of convergence, when the function is
belonging to the Lipschitz class.

Theorem 7.3. If 1 ∈ Lip
M

(α1, α2), then for each 1 ∈ CB(X), we have

|Y∗m,m,a(1; x, y) − 1(x, y)| ≤ Mδ
α1
2

m,aδ
′
α2
2

m,a ,

where δm,a and δ′m,a are defined by (37) and (38) respectively.

Proof. Since defined bivariate operators Y∗m,m,a(1; x, y) are linear positive and also 1 ∈ Lip
M

(α1, α2), where
α1, α2 ∈ (0, 1], then we have

|Y∗m,m,a(1; x, y) − 1(x, y)| ≤ Y∗m,m,a(|1(t, s) − 1(x, y)|; x, y)|
≤ Y∗m,m,a(M|u − x|α1 |v − y|α2 ; x, y)|
=MY∗m,m,a(|u − x|α1 ; x, y)| × Y∗m,m,a(|v − y|α2 ; x, y)|
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Applying the Hölder inequality with p′ = 2
α1
, q′ = 2

2−α1
and p′′ = 2

α2
, q′′ = 2

2−α2
, we have

|Y∗m,m,a(1; x, y) − 1(x, y)| ≤ M(Y∗m,m,a(u − x)2; x, y))
α1
2 × (Y∗m,m,a(v − y)2; x, y))

α2
2

=Mδ
α1
2

m,aδ
′
α2
2

m,a .

Thus, the proof is completed.

7.1. Graphical approach of bivariate operators
Now we shall see that, the convergence of the bivaiate operators (34) to the function 1(x, y) by graphical

representation.

Example 7.4. Let 1 ∈ C(X) and choose m = 5 10, 20, a = 3 (fixed), the convergence of Y∗m,m,a(1; x, y) to the
function 1(x, y) (blue) takes place and is illustrated in Figure 6. For different values of m, the corresponding operators
Y∗5,5,a(1; x, y), Y∗10,10,a(1; x, y) and Y∗20,20,a(1; x, y) represent red, green and magenta colors respectively.

Figure 6: Convergence of operators Y∗m,m,a(1; x) to 1(x, y)

Again for the same function 1(x, y), but for large value of m = 100, 500, the corresponding operators are
Y∗100,100,a(1; x, y) (red) and Y∗500,500,a(1; x, y) (green), which almost overlap to the function 1(x, y) (blue), and that is
illustrated in Figure 7.

Concluding remark: The convergence of the bivariate operators Y∗m,m,a(1; x) to the function 1(x, y) is taking
place as if we increase the value of m, i.e., for the large value of m, the bivariate operators converge to the
function.
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Figure 7: Convergence of operators Y∗m,m,a(1; x) to 1(x, y)

Conclusion: Convergence of the proposed operators 1 via statistical sense and order of approximation
have been determined, moreover; weighted statistical convergence properties and the rate of statistical
convergence have been investigated in some sense of approximation results with the help of modulus of
continuity. To support the approximation results, the graphical representations took place and along with
these, a comparison has been shown for the proposed operators (1). An extension is given to determine the
rate of convergence in bivariate sense as well as some graphical analysis has been given.
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