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Abstract. In this paper, a study is made on two well-known operator matrices; the Rhaly operator Ra

and the generalized difference operator ∆ab. Firstly, some compactness results for the operators Ra and ∆ab,
whose purpose is to help in describing their spectra, are derived. Next, general results on investigating
the spectra of such operators on a large class of Banach sequence spaces are established. These results give
a complete description of the spectra. The obtained results unify, extend and improve many comparable
results in the existing literature.

1. Introduction

We denote by ℓ∞, c and c0 the classical Banach spaces of all bounded, convergent and null sequences,
respectively. Further, let ℓp

(
1 ≤ p < ∞

)
denote the Banach space of absolutely p−summable sequences with

the ℓp-norm. By bs we denote the Banach space of all sequences x = (xk) = (xk)∞k=0 for which
(∑n

k=0 xk

)
is

bounded with the usual norm

∥x∥bs = supn

∣∣∣∣∑n

k=0
xk

∣∣∣∣ .
The space cs =

{
x = (xk) = (xk)∞k=0 :

∑
∞

k=0 xk converges
}

is a Banach space with the bs−norm. Also, we consider
the Banach space bv of all sequences x = (xk) = (xk)∞k=0 of bounded variation with the norm

∥x∥bv = |limk→∞ xk| + |x0| +
∑
∞

k=1
|xk − xk−1| .

The bv0 denotes bv0 = bv∩ c0; a Banach space with the bv−norm. The Banach space h of all null sequences
x = (xk) = (xk)∞k=0, for which the following norm

∥x∥h =
∑
∞

k=0
(k + 1) |xk+1 − xk|

is finite, is called Hahn sequence space; cf. [32].
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For a fixed sequence (ak) of real numbers, the Rhaly operator Ra is defined on a Banach sequence space
µ by

Rax :=
(
ak

∑k

n=0
xn

)∞
k=0
, x = (xk) = (xk)∞k=0 ∈ µ. (1)

The operator Ra is represented by an infinite lower triangular matrix with constant row-segments. For the
particular choice of (ak) = (1/ (k + 1))∞k=0 we obtain the well-known classical Cesàro operator C1. A question
that has been of recent interest (Brown, Halmos and Shields [12]) is: can one obtain the spectrum and its
subdivision of the Cesàro matrix as operator on certain sequence space? Brown, Halmos and Shields started
the investigation of such problems in their paper [12], where they investigated and solved the problem in
the case of the Cesàro matrix C1 as an operator on the Hilbert space ℓ2. More papers by different authors
were devoted to the spectral problem of C1 on the Banach spaces c [25], c0 [25, 33], ℓp (1 < p < ∞) [15, 25],
ℓ∞ [25, 31], bv0 [28], bv [29], the Bachelis space Np (1 < p < ∞) [16] and the weighted ℓp (1 ≤ p < ∞) spaces
[5, 6]. Motivated by the paper [12], in [35], Rhoades started to consider the spectral problems associated
with certain classes of Hausdorffmatrices.

The Rhaly operator Ra, as a generalization of the Cesàro operator C1, and its boundedness and compact-
ness on classical sequence spaces have been investigated deeply in [26]. Further results on the boundedness,
the compactness and the spectra of Ra acting on the Banach spaces c0 [46, 48], c [46, 52], ℓp (1 < p < ∞) [47],
bv0 [50, 51] and bv [49, 51] have been investigated in both compact and noncompact cases of the operator
Ra. In [27], a generalization of the Rhaly matrix as operator on H2 Hardy spaces has been given, where its
spectrum was calculated.

The spectra of the Rhaly operator Ra are quite similar to those of the generalized difference operator ∆ab,
which is defined on a Banach sequence space µ by

∆abx := (akxk + bk−1xk−1)∞k=0 , x = (xk) = (xk)∞k=0 ∈ µ, b−1 = x−1 = 0, (2)

for fixed sequences (ak) and (bk) of real numbers [1]. The spectra of the generalized difference operator ∆ab,
in various Banach sequence spaces, have attracted a lot of attention. For example, we mention the works
in ℓ1 [3, 21, 41, 42], ℓp

(
1 ≤ p < ∞

)
[4, 11], c [1, 2, 7], c0 [7, 19], bv0 [20], h [20] and cs [18, 37].

This paper appeals for a more in-depth investigation of the boundedness and compactness of the
operators Ra and ∆ab in various Banach sequence spaces, where the main purpose is to investigate the
spectra of such operators (in their compactness case) in a large class of Banach sequence spaces including
the spaces c0, c, ℓp

(
1 ≤ p ≤ ∞

)
, bv0, bv, cs and h. It is noted that we are led to similar results for the different

spectral problems. This is due to the common properties of the considered spaces that mainly control the
spectral problem. So, we seek studying the problem in general in order to avoid repeating the same results
by changing the considered space.

In fact, the natural technique for investigating spectral problems of infinite matrices involves standard
operator theory and summability theory. However, for a general infinite matrix, there is no known method
for obtaining its spectrum. In fact, such problems have in common that the methods of proof are closely
adapted to the matrix operator and the sequence spaces under consideration. That is, the methods of proof
are ad hoc.

It is worth mentioning that infinite matrices, in general, and their associated spectral problems play an
important role in many branches of mathematics such as integral equations, difference equations, infinite
systems of linear algebraic or differential equations and the theory of summability of sequences and series.
For example, Hilbert studied the eigenvalues of integral operators by viewing the operators as infinite
matrices [24, p. 1063]. Further, it is known that infinite system of linear equations can be represented
alternatively by infinite ”coefficient“ matrix. In [38] Shivakumar and Wong discussed infinite systems for
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algebraic equations, while Chew, Shivakumar and Williams [13] discussed systems of differential equations.
In [39], Shivakumar, Williams and Rudraiah discussed eigenvalues of infinite matrices as operators acting
on ℓ1 and ℓ∞. A detailed study about infinite matrices is given by Bemkopf [10], while for concepts and a
history of infinite matrices we refer to Cooke [14], and we refer to Shivakumar and Sivakumar [40] for a
brief review.

We structure the remaining part of this paper as follows: preliminary facts and results, which are needed
for our study, are included in Section 2. The boundedness and compactness of both the Rhaly operator Ra
and the generalized difference operator ∆ab are derived in Section 3. Solvability of the spectral problem
associated with the compact Rhaly operator Ra in various sequence spaces is presented in Subsection 4.1.
The spectral problem associated with the compact generalized difference operator ∆ab is investigated in
Subsection 4.2. The conclusion of this paper is summarized in Section 5.

2. Preliminaries

To fix terminology and notation, we will throughout the paper denote byN,N0 andC the sets of natural
numbers, nonnegative integers and complex numbers. By convention, any term with negative index is
equal to zero and

∑m
k=n ck = 0, for any n,m ∈ N0 with n > m. The zero vector is denoted by 0 = (0, 0, 0, . . .).

An operator T : X −→ X is a bounded linear operator on an infinite dimensional complex Banach space X,
and the set of all such is B (X). The symbol R (T) denotes the range of T. Also,N (T) denotes the kernel of T.
Write Tλ = T − λI, where λ ∈ C and I is the identity operator.

2.1. Spectra of bounded linear operators

The resolvent set of an operator T is the set ρ(T,X) of all λ ∈ C such that Tλ has a bounded inverse in
B (X). For λ ∈ ρ(T,X), the operator T−1

λ is called the resolvent operator. The spectrum of T is the set σ(T,X) of
all complex numbers not in ρ(T,X). The spectrum σ(T,X) is nonempty and compact.

The spectrum σ(T,X) can be divided into subsets in many different ways, depending on the possible
behaviors of R(Tλ) and Tλ−1 as follows (cf. [45]):

(1) The point spectrum σp(T,X) is the set of all scalars λ ∈ σ(T,X) such that N(Tλ) , {0}. In this case, λ is
called an eigenvalue of T and any x ∈ N(Tλ), where x , 0, is an eigenvector of T for λ and satisfies
Tx = λx.

(2) The residual spectrum σr(T,X) is the set of all scalars λ ∈ σ(T,X) such that λ is not an eigenvalue but
R(Tλ) is not dense.

(3) The continuous spectrum σc(T,X) is the set of all scalars λ ∈ σ(T,X) such that λ is not an eigenvalue and
R(Tλ) is dense but T−1

λ is unbounded.

(4) The defect spectrum σδ(T,X) (or surjectivity spectrum) is the set of all scalars λ ∈ C such that R(Tλ) , X.

(5) The compression spectrum σco(T,X) is the set of all scalars λ ∈ C such that R(Tλ) is not dense in X.

(6) The approximate point spectrumσap (T,X) is defined to be the set of all scalarsλ ∈ C such that lim
k→∞
∥Tλxk∥ = 0

for some sequence (xk) in X such that ∥xk∥ = 1 for all k ∈N0.

Another classification of the spectrum is also considered. Following Taylor and Halberg [44], Tλ is
classified I, II or III, according as its range, R(Tλ), is all of X; is not all of X, but is dense in X; or is not dense
in X. In addition Tλ is classified 1, 2 or 3 according as Tλ is boundedly invertible; Tλ is invertible but not



S. R. El-Shabrawy / Filomat 36:17 (2022), 5913–5933 5916

boundedly; or Tλ is not invertible. The state of an operator is the combination of its Roman and Arabic
numerical classifications and is denoted by the Roman numeral with the Arabic numeral as a subscript.
Then, the operator Tλ ∈ I2 if R(Tλ) is all of X and Tλ is invertible but not boundedly, and so on.

Clearly, λ ∈ ρ (T,X) (the resolvent set) if and only if Tλ ∈ I1; otherwise λ ∈ σ (T,X). So, the spectrum is
subdivided into I3, II2, II3, III1, III2 and III3. We usually use the notation I3σ (T,X), II2σ (T,X), II3σ (T,X),
III1σ (T,X), III2σ (T,X) and III3σ (T,X). It is clear from the definition that

σp (T,X) = I3σ (T,X) ∪ II3σ (T,X) ∪ III3σ (T,X) ,
σr (T,X) = III1σ (T,X) ∪ III2σ (T,X)

and

σc (T,X) = II2σ (T,X) . (3)

Further, from the definition, we learn

σδ(T,X) = σ(T,X) \ I3σ(T,X). (4)

The following relation holds

σap(T,X) = σ(T,X) \ III1σ(T,X); (5)

cf. [45, p. 282]. Observe also:

σr (T,X) = σp (T∗,X∗) \ σp(T,X); (6)

cf. [9, Relation 1.56 and Proposition 1.3(e)]. A non-disjoint spectral decomposition of an infinite matrix
(approximate point spectrum, defect spectrum and compression spectrum) has been discussed for the first
time in [8] and [17]. Next, many authors have made similar studies of different classes of infinite matrices.

We give the following Lemma, which is needed in the sequel:

Lemma 2.1. [22, Theorems 3.3 and 4.2], [23, Corollaries 2.2 and 2.3] Let T be a bounded linear operator on a complex
Banach space X. Then III1σ(T,X) and I3σ(T,X) are open sets.

2.2. Matrix transformations between sequence spaces

For an infinite matrix A = (an,k) of complex entries and for a sequence x = (xk), we put

Ax = ((Ax)n) =

 ∞∑
k=0

an,kxk


if this expression exists. Now, if µ1 and µ2 are sequence spaces, then the matrix A = (an,k) is identified with
the linear operator A : µ1 −→ µ2 if Ax ∈ µ2 for every x ∈ µ1. The class

(
µ1 : µ2

)
is defined as(

µ1 : µ2
)
=

{
A = (an,k) : Ax ∈ µ2 for every x ∈ µ1

}
.

If A ∈
(
µ1 : µ2

)
, then A is called a matrix transformation (or summability method) from µ1 into µ2.

It is worthwhile to mention that the study of bounded linear operators between sequence spaces is so
related to matrix transformations. Precisely, in many cases, the most general linear operator transforming
one sequence space into another determines and is determined by an infinite matrix. So, we sometimes are
interested in infinite matrices instead of general bounded linear operators.

Next, we invoke some results from summability theory which are needed for our study.
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Lemma 2.2. [43, Formula (45)] Let A = (an,k) be an infinite matrix. Then A ∈ (cs : cs) if and only if:

(1)
∑
∞

n=0 an,k converges for all k ∈N0.

(2) supN
∑
∞

n=0

∣∣∣∑N
k=0(ak,n − ak,n−1)

∣∣∣ < ∞.

Lemma 2.3. [32, Proposition 10] Let A = (an,k) be an infinite matrix. Then A ∈ (h : h) if and only if:

(1) limn→∞ an,k = 0, for all k ∈N0.

(2)
∑
∞

n=0 (n + 1)
∣∣∣an,k − an+1,k

∣∣∣ < ∞, for all k ∈N0.

(3) supN
1

N+1

∑
∞

n=0 (n + 1)
∣∣∣∑N

k=0(an,k − an+1,k)
∣∣∣ < ∞.

Lemma 2.4. [43, Formula (77)] Let A = (an,k) be an infinite matrix. Then A ∈
(
ℓ1 : ℓ1

)
if and only if ∥A∥ =

sup
k

∑
∞

n=0

∣∣∣an,k

∣∣∣ < ∞.

Lemma 2.5. [43, Formula (111)] Let A = (an,k) be an infinite matrix. Then A ∈ (bv0 : bv0) if and only if:

(1) limn→∞ an,k = 0, for all k ∈N0.

(2) supN
∑
∞

n=0

∣∣∣∑N
k=0(an,k − an−1,k)

∣∣∣ < ∞.

3. Compactness criteria for Ra and ∆ab

3.1. Compactness of Ra

In this subsection we deal with the following main question: for what conditions on (ak) is Ra a compact
operator?. Partial answers for this question have been settled in the Banach spaces c0 [46], c [46], ℓp

(1 < p < ∞) [26], bv0 [51] and bv [51]. Here, we give new compactness criteria for the operator Ra on the
Banach spaces cs, h and ℓ1, in which it is shown that boundedness and compactness of the operator Ra are
equivalent. For completeness, we give some modifications to the recent results for the compactness of Ra
in c0, c, ℓp (1 < p ≤ ∞), bv0 and bv.

Let µ ∈
{
cs,h, ℓ1

}
. For the next proofs, define the operator Rm

a : µ −→ µ, where m ∈N0, by

Rm
a x = Ra

((
χ[0,m] (k) xk

)∞
k=0

)
, x = (xk) ∈ µ.

Then Rm
a is finite rank since its range is spanned by {Ra (ek) : k = 0, 1, 2, ...,m}, where ek’s are the standard

unit vectors. So Rm
a is compact for every m ∈ N0. Let Ra be represented by the matrix

(
an,k

)
, where an,k = 0

for all n < k and an,k = an for all n ≥ k. Then the operator Rm
a is represented by the matrix

(
χ[0,m] (k) an,k

)
, and

so Ra − Rm
a is represented by

(
χ[m+1,∞] (k) an,k

)
.

Let us give the first main result:

Theorem 3.1. The following are equivalent:

(1) The operator Ra is bounded on cs.

(2) The assumption that (ak) ∈ ℓ1 holds.

(3) The operator Ra is compact on cs.
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Proof. (1)−→(2) We need to applying the result in Lemma 2.2. Indeed, the boundedness of Ra implies that
supN AN < ∞, where

AN =
∑
∞

n=1

∣∣∣∣∣∑N

k=0

(
ak,n − ak,n−1

)∣∣∣∣∣ , N ∈N0.

An arithmetic shows

supN AN =
∑
∞

n=0
|an| ,

which is finite thanks to Lemma 2.2. Thus (ak) ∈ ℓ1.

(2)−→(3) Let m be a positive integer. Then, for every x = (xk) ∈ cs, we have

∥∥∥(Ra − Rm
a
)

x
∥∥∥

cs
= supN≥0

∣∣∣∣∣∑N

n=0

(∑
∞

k=0
χ[m+1,∞] (k) an,kxk

)∣∣∣∣∣
≤ supN≥0

∑N

n=m+1
|an|

∣∣∣∣∑n

k=m+1
xk

∣∣∣∣
≤ 2 ∥x∥cs

∑
∞

n=m+1
|an| .

That is∥∥∥Rm
a − Ra

∥∥∥ ≤ 2
∑
∞

n=m+1
|an| −→ 0

as m→∞. Then Ra is compact, as it is the norm limit of a sequence of compact operators.

(3)−→(1) Follows immediately.

Next, we prove that the boundedness and compactness of the operator Ra are also equivalent in the
Banach space h.

Theorem 3.2. The following are equivalent:

(1) The operator Ra is bounded on h.

(2) The assumption that (ak) ∈ h holds.

(3) The operator Ra is compact on h.

Proof. (1)−→(2) We apply the result in Lemma 2.3. Indeed, the boundedness of Ra implies

limn→∞ an,k = limn→∞ an = 0, for all k ∈N0.

Then a = (ak) ∈ c0. Further

Ak =
∑
∞

n=0
(n + 1)

∣∣∣an+1,k − an,k

∣∣∣
converges, for all k ∈N0. Thus, A0 =

∑
∞

n=0 (n + 1) |an+1 − an| is finite, and so, a = (ak) ∈ h. Alternatively,
the result follows immediately since Ra (1, 0, 0, ...) = (a0, a1, a2, ...) ∈ h.
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(2)−→(3) For m ∈N, we have∥∥∥(Ra − Rm
a
)

x
∥∥∥

h
=

∑
∞

n=0
(n + 1)

∣∣∣∣∑∞

k=0
χ[m+1,∞] (k) an+1,kxk −

∑
∞

k=0
χ[m+1,∞] (k) an,kxk

∣∣∣∣
=

∑
∞

n=0
(n + 1)

∣∣∣∣∣an+1

∑n+1

k=m+1
xk − an

∑n

k=m+1
xk

∣∣∣∣∣
≤ (m + 1) |am+1| |xm+1| +

∑
∞

n=m+1
(n + 1)

∣∣∣∣∑n

k=m+1
(an+1 − an) xk

∣∣∣∣ +
+

∑
∞

n=m+1
(n + 1) |an+1| |xn+1|

≤ (m + 1) |am+1| |xm+1| +

+ supn≥m+1

∣∣∣∣∑n

k=m+1
xk

∣∣∣∣∑∞

n=m+1
(n + 1) |an+1 − an| +

+ supn≥m+1 (n + 1) |xn+1|

∑
∞

n=m+1
|an+1|

≤ ∥x∥h
(
|am+1| + 2

∑
∞

n=m+1
(n + 1) |an+1 − an| +

∑
∞

n=m+1
|an+1|

)
,

for all x = (xk) ∈ h. Therefore∥∥∥Ra − Rm
a

∥∥∥ ≤ |am+1| + 2
∑
∞

n=m+1
(n + 1) |an+1 − an| +

∑
∞

n=m+1
|an+1|

−→ 0

as m→∞, where we used the fact that, for (ak) ∈ h,

|am+1| ≤ (m + 1) |am+1| ≤

∑
∞

n=m+1
(n + 1) |an+1 − an| −→ 0

as m→∞. Thus Ra is compact.

(3)−→(1) Follows immediately.

Now, we give the following result, which improves the result in [26, Proposition 3.4]:

Theorem 3.3. The following are equivalent:

(1) The operator Ra is bounded on ℓ1.

(2) The assumption that (ak) ∈ ℓ1 holds.

(3) The operator Ra is compact on ℓ1.

Proof. (1)−→(2) Follows immediately since Ra (1, 0, 0, ...) = (a0, a1, a2, ...) ∈ ℓ1.

(2)−→(3) Again, it can be shown that the operator Ra is the limit in B
(
ℓ1

)
of the sequence

(
Rm

a
)

of operators
of finite rank. Thus Ra is compact.

(3)−→(1) Follows immediately.

Remark 3.4. Theorems 3.1, 3.2 and 3.3 assert the fact that the well known Cesàro operator C1 is not well defined on
cs, h or ℓ1. The same assertion was declared in [36].
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Now, let η ∈ {c0, c, ℓp, bv0, bv} ,where 1 < p ≤ ∞. To the end of this section, we comment on some recent
results related to the compactness of the operator Ra on η. It is well known that the Rhaly matrix has the
factorization

Ra = D ◦ C1,

where C1 is the Cesàro matrix and D is the diagonal matrix diag ((k + 1) ak). Since C1 is bounded on every
sequence space in η [15, 25, 28, 29, 31, 33], then the compactness of the operator Ra follows from that of D.
Depending on this fact, many authors tried to find sufficient conditions for the compactness of D, and so
for Ra. Consider the following result:

Theorem 3.5. [26, Proposition 3.1(b)] The operator Ra is compact on ℓp (1 < p < ∞) if ((k + 1) ak) ∈ c0.

However, in [26, Example 2], it is shown that the condition ((k + 1) ak) ∈ ℓ∞ is not a necessary condition
for the boundedness of the operator Ra on ℓ2. Furthermore, in [34, Corollary 2.2], a result on the compactness
of the operator Ra on ℓ2 has been given by Rhaly. A similar result can be obtained as follows:

Theorem 3.6. Let (ak) be a strictly decreasing sequence of positive real numbers and ((k + 1) ak) ∈ c. Then, the
operator Ra is compact on ℓp (1 < p < ∞) if and only if ((k + 1) ak) ∈ c0.

Proof. It suffices to prove the necessity of the condition. Indeed, if ((k + 1) ak) < c0, then, the spec-

trum σ (Ra, ℓp) contains the set
{
λ ∈ C :

∣∣∣∣λ − qL
2

∣∣∣∣ ≤ qL
2

}
[47, Theorem 3.3], where q is the dual of p and

L = limk→∞ (k + 1) ak. That is, Ra is not compact since it has uncountable spectrum.

The following is a weak, but important, result about the compactness of the operator Ra on the ℓp spaces;
it is nothing but the result in [26, Corollary 3.5].

Theorem 3.7. Let (ak) be a decreasing sequence of positive real numbers. Then, the operator Ra is compact on ℓp

(1 < p < ∞) if (ak) ∈ ℓ1.

Proof. The result follows immediately by applying the well known classical Olivier’s result about the speed
of convergence to zero of the terms of a convergent series with positive and decreasing terms. So, it remains
to apply Theorem 3.5.

It should be observed that, if (ak) is a decreasing sequence of positive real numbers, then the condition
(ak) ∈ ℓ1 is not necessary for the compactness of Ra in ℓ2. For example, let (ak) be such that

a0 = 2, ak =
1

(k + 1) log (k + 1)
, for all k ∈N.

Then, using the result in [26, Proposition 4.2], the operator Ra will be compact on ℓ2. Indeed,∑
∞

k=0
(k + 1) |ak|

2 = 4 +
∑
∞

k=1

1

(k + 1)
(
log (k + 1)

)2 ,

which is convergent. Alternatively, we can use Theorem 3.6. On the other hand, (ak) < ℓ1.

Remark 3.8. It can be shown that, in general, the condition (ak) ∈ c0 is necessary but not sufficient for the compactness
of Ra in ℓp (1 < p < ∞). So far, to the author’s knowledge, there are no conditions on the matrix Ra have been given
which are necessary as well as sufficient for the compactness of the corresponding operator in ℓp (1 < p < ∞). However,
while this may be of concern for those interested in summability theory, it will definitely not affect our study of the
spectra of the operator Ra.
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Next, we recall the following result.

Theorem 3.9. [46, Theorems 2 and 9] Let (ak) be a strictly decreasing sequence of positive real numbers such that
((k + 1) ak) ∈ c0. Then the operator Ra is compact on both c0 and c.

We observed that, for every x = (xk) ∈ c0,∥∥∥(Ra − Rm
a
)

x
∥∥∥

c0
≤ ∥x∥c0

supn≥m+1 (n + 1) |an| .

So, it appears that the result in Theorem 3.9 remains true if we omit the conditions that (ak) be a strictly
decreasing sequence of positive real numbers. Much more surprisingly, in the following theorem, it can
be proved that the condition ((k + 1) ak) ∈ c0 is actually necessary and sufficient for the compactness of the
operator Ra on both c0 and c, so that we have the following important theorem.

Theorem 3.10. The following hold:

(1) The operator Ra is compact on c0 if and only if ((k + 1) ak) ∈ c0.

(2) The operator Ra is compact on c if and only if ((k + 1) ak) ∈ c0.

Proof. (1) The sufficiency of the condition ((k + 1) ak) ∈ c0 is clear from the above argument, and the necessity
can be proved as follows: suppose that Ra is a compact operator and consider the bounded sequence(
y j

)
, where y j =

(
χ[0, j] (k)

)∞
k=0

. Suppose, to the contrary, that lim j→∞
(
j + 1

)
a j , 0. Then, there exists

κ > 0 so that
(
j + 1

)
|a j| > 2κ for infinitely many j. Let us write J for the set of all such j. Then if

j, j′ ∈ J satisfies j′ > j, we have

∥Ra

(
y j

)
− Ra

(
y j′

)
∥c0 >

(
j′ − j

) ∣∣∣a j′
∣∣∣ .

Then, for j′ = 2 j + 1, we obtain

∥Ra

(
y j

)
− Ra

(
y j′

)
∥c0 >

1
2

( j′ + 1)
∣∣∣a j′

∣∣∣ > κ.

This proves that the sequence
(
Ra

(
y j

))
has no Cauchy subsequence, and so, it has no convergent

subsequence. This contradicts the compactness of Ra, where
(
y j

)
is a bounded sequence.

(2) Similar to the proof of statement (1).

As the following result shows, the condition ((k + 1) ak) ∈ c0 is also necessary and sufficient for the
compactness of the operator Ra on ℓ∞.

Theorem 3.11. The operator Ra is compact on ℓ∞ if and only if ((k + 1) ak) ∈ c0.

Proof. The result can be proved by adopting the method presented in the proof of Theorem 3.10 to the space
ℓ∞.

Finally, we recall the following result:

Theorem 3.12. [51, Theorems 2.3 and 3.2] If an
an−1
< n

n+1 and ((k + 1) ak) ∈ c0, then Ra is compact on both bv0 and
bv.
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The conditions in Theorem 3.12 means that the sequence ((k + 1) ak) is a strictly decreasing sequence
of positive real numbers with the zero limit. Accordingly, we observe that, by applying the result in [36,
Lemma 3.3], the operator D will be compact on both bv0 and bv. Thus, the boundedness of C1 together
with the compactness of D imply the compactness of Ra. This gives alternative proof of Theorem 3.12. On
the contrary, this proof can not be adapted in the spaces cs, h or ℓ1. In fact, the Cesàro operator C1 is not
well defined on cs, h or ℓ1.

Under the assumptions that ((k + 1) ak) is a strictly decreasing sequence of positive real numbers, it can
be shown that the condition ((k + 1) ak) ∈ c0 is necessary and sufficient for the compactness of the operator
Ra on both bv0 and bv. Thus we can conclude the following result, where the proof is omitted as it is easy.

Theorem 3.13. Let ((k + 1) ak) be a strictly decreasing sequence of positive real numbers. Then, the following hold:

(1) The operator Ra is compact on bv0 if and only if ((k + 1) ak) ∈ c0.

(2) The operator Ra is compact on bv if and only if ((k + 1) ak) ∈ c0.

3.2. Compactness of ∆ab

In view of the main purpose of the current study, necessary and sufficient conditions for the boundedness
and compactness of the operator ∆ab in the sequence spaces bv0, cs, h, c0, c and ℓ1 appeared to be important
results.

Define the operator ∆m
ab, where m ∈N0, by

∆m
abx = ∆ab

((
χ[0,m] (k) xk

)∞
k=0

)
, x = (xk) ∈ µ,

where µ ∈ {bv0, cs,h, c0, c}. Then ∆m
ab is finite rank, and so is compact. Further, let ∆ab be represented by the

matrix
(
bn,k

)
, where bn,n = an, bn+1,n = bn, for all n ∈ N0 and bn,k = 0, otherwise. Then ∆m

ab is represented by
the matrix

(
χ[0,m] (k) bn,k

)
, and so ∆ab − ∆

m
ab is represented by

(
χ[m+1,∞] (k) bn,k

)
.

One can check that

M1 = sup j≥0

∑
∞

n=1

∣∣∣∣∣∑ j

k=0

(
bn,k − bn−1,k

)∣∣∣∣∣
= sup j≥0

(∣∣∣b j

∣∣∣ + ∣∣∣a j − b j + b j−1

∣∣∣ +∑ j−1

k=0
|ak+1 − ak + bk − bk−1|

)
;

see [20]. IfM1 is finite, then the operator ∆ab : bv0 −→ bv0 is well defined, and so is bounded. This follows
immediately by applying Lemma 2.5. Indeed, for every x = (xk) ∈ bv0, it can be shown that

∥∆abx∥bv0
=

∣∣∣∣∑∞

k=0
b0,kxk

∣∣∣∣ +∑
∞

n=1

∣∣∣∣∑∞

k=0
bn,kxk −

∑
∞

k=0
bn−1,kxk

∣∣∣∣
≤ |a0x0| +

(
sup j≥0

∑
∞

n=1

∣∣∣∣∣∑ j

k=0

(
bn,k − bn−1,k

)∣∣∣∣∣)∑∞

j=0

∣∣∣x j − x j+1

∣∣∣
= |a0x0| +M1

∑
∞

j=1

∣∣∣x j − x j−1

∣∣∣
≤ M1

(
|x0| +

∑
∞

j=1

∣∣∣x j − x j−1

∣∣∣)
≤ M1 ∥x∥bv0

.

Consider now the following result:
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Theorem 3.14. The following hold:

(1) The ∆ab is bounded on bv0 if and only if

sup j

(∣∣∣b j

∣∣∣ + ∣∣∣a j − b j + b j−1

∣∣∣ +∑ j−1

k=0
|ak+1 − ak + bk − bk−1|

)
< ∞.

(2) The ∆ab is compact on bv0 if and only if∑
∞

k=0
|ak+1 − ak + bk − bk−1| < ∞ and (ak) , (bk) ∈ c0.

Proof. (1) We can argue as follows:

Consider the isomorphism

U : (xk) ∈ ℓ1 7→
(∑

∞

j=k
x j

)
∈ bv0

and its inverse

U−1 : (xk) ∈ bv0 7→ (xk − xk+1) ∈ ℓ1.

Define the operator K := U−1
◦ ∆ab ◦U on ℓ1. Then, for every x = (xk) ∈ ℓ1, we have

Kx = U−1
◦ ∆ab ◦Ux

=
(
ak

∑
∞

j=k
x j + bk−1

∑
∞

j=k−1
x j − ak+1

∑
∞

j=k+1
x j − bk

∑
∞

j=k
x j

)
.

Then K is a linear operator given by

Kx =
(
bk−1xk−1 + (ak − ak+1 + bk−1 − bk)

∑
∞

j=k+1
x j + (ak − bk + bk−1)xk

)
.

Clearly ∆ab is bounded on bv0 if and only if K is bounded on ℓ1. Then, applying Lemma 2.4 to the
operator K, we obtain the desired result.

(2) Let the conditions in statement (2) be satisfied and m ∈N0. Then

∥∆ab − ∆
m
ab∥ ≤ sup j≥m+1

∣∣∣b j

∣∣∣ + sup j≥m+1

∣∣∣a j − b j + b j−1

∣∣∣ + |bm| + |am+1| +

+ sup j≥m+1

∑ j

k=m+1
|ak+1 − ak + bk − bk−1| + |bm|

−→ 0

as m→∞. So ∆ab is a compact operator.

Conversely, assume that ∆ab is a compact operator. Then the condition in statement (1) holds, so that
we have∑

∞

k=0
|ak+1 − ak + bk − bk−1| < ∞.

Now, consider the bounded sequence
(
e j

)
, where e j is the j-th elementary vector. Suppose, to the

contrary, that lim j→∞ a j , 0 or lim j→∞ b j , 0. Then, there exists κ > 0 so that either |a j| > κ for
infinitely many j or |b j| > κ for infinitely many j. Let us write J for the set of all such j. If j, j′ ∈ J
satisfies j + 2 < j′, then

∥∆ab

(
e j

)
− ∆ab(e j′ )∥bv0 = ∥a je j + b je j+1 − a j′e j′ − b j′e j′+1∥bv0 > κ.

This contradicts the assumption that ∆ab is compact.
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The result in Theorem 3.14 improves and extends the recent result in [20, Corollary 2.2].

Next, we consider the operator ∆ab : cs −→ cs. Let

M2 = sup j≥1

(∣∣∣a j

∣∣∣ + ∣∣∣a j − a j−1 − b j−1

∣∣∣ +∑ j−2

k=0
|ak+1 − ak + bk+1 − bk|

)
.

If M2 is finite, then the operator ∆ab : cs −→ cs is well defined and is bounded; see [37, Corollary 3.1].
Indeed, for every x = (xk) ∈ cs, it has been shown that ∥∆abx∥cs ≤ M2 ∥x∥cs.

The following theorem gives necessary and sufficient conditions for the boundedness and compactness
of the operator ∆ab on cs, which improves and extends the result in [37, Corollary 3.1].

Theorem 3.15. The following hold:

(1) The ∆ab is bounded on cs if and only if

sup j

(∣∣∣a j

∣∣∣ + ∣∣∣a j − a j−1 − b j−1

∣∣∣ +∑ j−2

k=0
|ak+1 − ak + bk+1 − bk|

)
< ∞.

(2) The ∆ab is compact on cs if and only if∑
∞

k=0
|ak+1 − ak + bk+1 − bk| < ∞ and (ak) , (bk) ∈ c0.

Proof. (1) See [37, Corollary 3.1]. Alternatively, by applying Lemma 2.2, we obtain the desired result.

(2) Let the conditions in statement (2) be satisfied and m ∈N0. Then, for all x = (xk) ∈ cs, we have

∥∆ab − ∆
m
ab∥ ≤ sup j≥m+1

∣∣∣a j

∣∣∣ + sup j≥m+1

∣∣∣a j − a j−1 − b j−1

∣∣∣ + |am + bm| +

+ |am+1 + bm+1| + sup j≥m+1

∑ j

k=m+1
|ak+1 − ak + bk+1 − bk|

−→ 0

as m→∞. So, ∆ab is a compact operator.
Conversely, assume that ∆ab is a compact operator. Then the condition∑

∞

k=0
|ak+1 − ak + bk+1 − bk| < ∞

holds. Now, consider the bounded sequence
(
e j

)
. Suppose, to the contrary, that lim j→∞ a j , 0 or

lim j→∞

(
a j + b j

)
, 0. Then, there exists κ > 0 so that either |a j| > κ for infinitely many j or |a j + b j| > κ

for infinitely many j. If J is the set of all such j and j, j′ ∈ J satisfies j + 2 < j′, then∥∥∥∥∆ab

(
e j

)
− ∆ab(e j′ )

∥∥∥∥
cs
= ∥a je j + b je j+1 − a j′e j′ − b j′e j′+1∥cs > κ.

The last inequality holds for infinitely many j and j′. This contradicts the assumption that ∆ab is
compact.

Finally, we consider the operator ∆ab : h −→ h. Let

M3 = sup j

(
1

j + 2

∑ j

k=0
(k + 1) |ak+1 − ak + bk − bk−1|

)
.

IfM3 is finite, then the operator ∆ab : h −→ h is well defined and is bounded; cf., [20, Corollary 3.1].

The following theorem gives necessary and sufficient conditions for the boundedness and compactness
of the operator ∆ab on h.
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Theorem 3.16. The following hold:

(1) The ∆ab is bounded on h if and only if

sup j

(
1

j + 2

∑ j

k=0
(k + 1) |ak+1 − ak + bk − bk−1|

)
< ∞.

(2) The ∆ab is compact on h if and only if

((k + 1) ak) , ((k + 1) bk) ∈ c0.

Proof. (1) See [20, Corollary 3.1].

(2) Let the conditions in statement (2) be satisfied. Then

lim j→∞
(
j + 1

) ∣∣∣a j+1 − a j + b j − b j−1

∣∣∣ = 0.

Then, its corresponding sequence of arithmetic mean converges to zero;

lim j→∞

(
1

j + 1

∑ j

k=0
(k + 1) |ak+1 − ak + bk − bk−1|

)
= 0.

Therefore, we obtain

∥∆ab − ∆
m
ab∥ ≤ (m + 1) |am+1| sup j≥m+1

1
j + 1

+ (m + 2) |bm| sup j≥m+2
1

j + 1
+

+ sup j≥m+1

(
1

j + 2

∑ j

k=m+1
(k + 1) |ak+1 − ak + bk − bk−1|

)
≤ (m + 1) |am+1| + (m + 2) |bm| +

+ sup j≥m+1

(
1

j + 2

∑ j

k=0
(k + 1) |ak+1 − ak + bk − bk−1|

)
−→ 0

as m→∞. So, ∆ab is a compact operator.

Conversely, assume that ∆ab is a compact operator and consider the bounded sequence
(
e j

)
. Suppose,

to the contrary, that

lim j→∞
(
j + 1

)
a j , 0 or lim j→∞

(
j + 1

)
b j+1 , 0.

Then, there exists κ > 0 so that either
∣∣∣( j + 1

)
a j

∣∣∣ > κ for infinitely many j or |
(
j + 1

)
b j| > κ for infinitely

many j. If J is the set of all such j and j, j′ ∈ J satisfies j + 2 < j′, then∥∥∥∥∆ab

(
e j

)
− ∆ab(e j′ )

∥∥∥∥
h
= ∥a je j + b je j+1 − a j′e j′ − b j′e j′+1∥h > κ.

This contradicts the assumption that ∆ab is compact.

Using similar arguments, we can derive the following theorem:

Theorem 3.17. The following hold:

(1) The ∆ab is bounded on c0 if and only if (|ak| + |bk−1|) ∈ ℓ∞.
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(2) The ∆ab is compact on c0 if and only if (ak) , (bk) ∈ c0.

(3) The ∆ab is bounded on c if and only if

(|ak| + |bk−1|) ∈ ℓ∞ and (ak + bk−1) ∈ c.

(4) The ∆ab is compact on c if and only if (ak) , (bk) ∈ c0.

(5) The ∆ab is bounded on ℓ1 if and only if (|ak| + |bk|) ∈ ℓ∞.

(6) The ∆ab is compact on ℓ1 if and only if (ak) , (bk) ∈ c0.

Finally, we recall the following result which is a special case of [30, Theorem 3.2].

Theorem 3.18. Let 1 < p < ∞. The operator ∆ab is compact on ℓp if and only if (ak) , (bk) ∈ c0.

4. Spectra of the compact operators Ra and ∆ab

Throughout this section, we assume that (ak) and (bk) are two sequences of nonzero real numbers such
that the operators Ra and ∆ab are compact in the sequence spaces under consideration.

We shall determine the spectrum of Ra in two stages: in the first it is shown that the eigenvalues of R∗a,
the adjoint operator of Ra, contains the set {an : n ∈N0}, while the latter set contains the eigenvalues of Ra;
in the second it is shown that, due to the compactness of the operator Ra, the spectrum is precisely the set
{an : n ∈N0} ∪ {0}. The spectrum of ∆ab can be obtained with similar argument.

The main results in this section are Theorems 4.5, 4.8, 4.13 and 4.15.

4.1. Spectra of Ra

Recall the following lemma, which is analogy to [53, Lemma 3.6].

Lemma 4.1. [36, Lemma 2.2] Let T be a linear operator on a Banach sequence space X that has a lower triangular
matrix representation A = (an,k). Then the point spectrum of T on X satisfies σp(T,X) ⊆

{
an,n : n ∈N0

}
.

Now consider the following general result for the Rhaly operator Ra.

Lemma 4.2. Let X be a Banach sequence space that contains c00; the subspace of sequences with finite support. Then,
the point spectrum of RT

a , the transpose of Ra, on X satisfies

{an : n ∈N0} ⊆ σp(RT
a ,X) and 0 < σp(RT

a ,X).

Proof. Suppose that RT
a f = λ f for f =

(
fk
)
∈ X. Then

(an − λ) fn +
∑
∞

k=n+1
ak fk = 0, n ∈N0. (7)

If λ = 0, then we obtain

a0 f0 + a1 f1 +
∑
∞

k=2
ak fk = 0

and

a1 f1 +
∑
∞

k=2
ak fk = 0.
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We deduce

a0 f0 = 0.

Therefore f0 = 0 since a0 , 0. Going through a similar argument, by induction, we can prove that fn = 0 for
all n ∈N0. Therefore f = 0. So, 0 < σp(RT

a ,X).
Furthermore, if λ = an0 for some n0 ∈N, then, from Eq. (7), we have two cases:

(i) If an0 , ak, for all k < n0, then f =
(

f0, f1, f2, . . . , fn0 , 0, 0, . . .
)
∈ c00 ⊆ X is an eigenvector associated with

the eigenvalue λ = an0 , where all other fk (k = 1, 2, . . . ,n0) can be inductively calculated in terms of
f0 = 1.

(ii) If an0 = ak, for some k < n0, then f =
(

f0 = 1, f1, f2, . . . , fk0 , 0, 0, . . .
)

is an eigenvector associated with the
eigenvalue λ = an0 , where k0 = min

{
k ≤ n0 : ak = an0

}
.

Recall the following lemma.

Lemma 4.3. [45, Problem 7, p. 233] Let X be a Banach sequence space with the standard countable basis (ek).
Suppose that T is a bounded linear operator on X into itself that has a matrix representation A = (an,k). Then, the
adjoint operator T∗ is represented by the transpose AT = (ak,n).

It will be of some interest to combine Lemmas 4.1, 4.2 and 4.3, so that we obtain the following general
result for the Rhaly operator Ra, which will be the key tool to derive the spectra of Ra.

Proposition 4.4. Let X be a Banach sequence space with the standard countable basis (ek) and Ra ∈ B (X). If X∗, the
dual space of X, contains c00, then R∗a is represented by the transpose RT

a and

σp(Ra,X) ⊆ {an : n ∈N0} ⊆ σp(R∗a,X
∗) and 0 < σp(R∗a,X

∗).

We are now in a position to give the first main result in this section.

Theorem 4.5. Let X be a complex infinite dimensional Banach sequence space. In addition to the conditions in
Proposition 4.4, let the operator Ra : X −→ X be compact. Then the following hold:

(1) σ(Ra,X) = {an : n ∈N0} ∪ {0}.

(2) σp(R∗a,X∗) = {an : n ∈N0}.

(3) σp(Ra,X) = {an : n ∈N0}.

(4) σr(Ra,X) = ∅.

(5) σc(Ra,X) = {0}.

(6) II2σ(Ra,X) = {0}.

(7) III3σ(Ra,X) = {an : n ∈N0}.

(8) σδ(Ra,X) = {an : n ∈N0} ∪ {0}.

(9) σco(Ra,X) = {an : n ∈N0}.

(10) σap(Ra,X) = {an : n ∈N0} ∪ {0}.



S. R. El-Shabrawy / Filomat 36:17 (2022), 5913–5933 5928

Proof. (1) Applying Proposition 4.4, we obtain

{an : n ∈N0} ⊆ σp(R∗a,X
∗) ⊆ σ(R∗a,X

∗) = σ(Ra,X).

Further, since the space X is infinite dimensional and Ra is compact, we learn that 0 ∈ σ(Ra,X). Hence

{an : n ∈N0} ∪ {0} ⊆ σ(Ra,X).

Again, since Ra is compact, then

σ(Ra,X) ⊆ σp(Ra,X) ∪ {0} ⊆ {an : n ∈N0} ∪ {0} .

The required result follows.

(2) The result follows by applying Proposition 4.4 and statement (1). Indeed, we have

{an : n ∈N0} ⊆ σp(R∗a,X
∗) ⊆ σ(Ra,X) = {an : n ∈N0} ∪ {0}

and

0 < σp(R∗a,X
∗).

(3) Since Rax = 0 implies x = 0, then we obtain that 0 < σp(Ra,X). Now, using Proposition 4.4 and the fact
that all non-zero spectral values are eigenvalues, we obtain

{an : n ∈N0} ⊆ σp(Ra,X) ⊆ {an : n ∈N0} .

The desired result follows.

(4) Observe that σr(Ra,X) ∪ σc(Ra,X) = {0}. Since 0 < σp(R∗a,X∗), then, using relation (6), we obtain that
0 < σr(Ra,X). Thus σr(Ra,X) = ∅.

(5) Observe that σc(Ra,X) = σ(Ra,X)\
(
σp(Ra,X) ∪ σr(Ra,X)

)
. It remains to apply statements (3) and (4).

(6) The result follows from relation (3) with the application of statement (5); II2σ(Ra,X) = σc(Ra,X) = {0}.

(7) It is known that

σp(Ra,X) = I3σ(Ra,X) ∪ II3σ(Ra,X) ∪ III3σ(Ra,X)
= {an : n ∈N0} .

But, using statements (2) and (3), for any λ ∈ {an : n ∈N0}, we have λ ∈ σp(Ra,X) ∩ σp(R∗a,X∗). This
shows that (Ra − λI)−1 does not exist and R∗a − λI is not one to one. Using [44, Theorem 1], we obtain
further that R (Ra − λI) is not dense. That is λ ∈ III3σ(Ra,X).

(8) Observe that I3σ(Ra,X) ⊆ σp(Ra,X). Then I3σ(Ra,X) = ∅ since it is open; Lemma 2.1. It follows
immediately from relation (4) that

σδ(Ra,X) = σ(Ra,X).

It remains to apply statement (1).

(9) It is known that σco(Ra,X) = σp(R∗a,X∗); cf. [9, Proposition 1.3(e), p. 28]. Then, the result follows by using
statement (2).
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(10) Observe that ∅ = σr(Ra,X) = III1σ(Ra,X) ∪ III2σ(Ra,X). Then III1σ(Ra,X) = ∅. Therefore, the desired
result follows from relation (5);

σap(Ra,X) = σ(Ra,X)\III1σ(Ra,X),

with the application of statement (1).

By application of Theorem 4.5, we obtain the spectra of the Rhaly operator Ra on the sequence spaces
bv0,h, cs, c0 and ℓp, where 1 ≤ p < ∞ as follows:

Corollary 4.6. Let µ ∈ {bv0,h, cs, c0, ℓp}, where 1 ≤ p < ∞. If the operator Ra : µ −→ µ is compact, then the
following hold:

(1) σ(Ra, µ) = {an : n ∈N0} ∪ {0}.

(2) σp(Ra, µ) = {an : n ∈N0}.

(3) σr(Ra, µ) = ∅.

(4) σc(Ra, µ) = {0}.

(5) II2σ(Ra, µ) = {0}.

(6) III3σ(Ra, µ) = {an : n ∈N0}.

(7) σδ(Ra, µ) = {an : n ∈N0} ∪ {0}.

(8) σco(Ra, µ) = {an : n ∈N0}.

(9) σap(Ra, µ) = {an : n ∈N0} ∪ {0}.

Remark 4.7. An alternative proof of Corollary 4.6(2), in the case where µ = ℓ1, can be based on the case where µ = h.
Indeed, we have

{an : n ∈N0} = σp (Ra, h) ⊆ σp

(
Ra, ℓ

1
)

.

The second inclusion follows by applying Lemma 4.1.
Furthermore, since h is a proper dense subspace of ℓ1, then

σr

(
Ra, ℓ

1
)
⊆ σr (Ra, h) = ∅;

Corollary 4.6(3) with µ = h. Thus σr

(
Ra, ℓ1

)
= ∅. This gives another proof of Corollary 4.6(3) for µ = ℓ1, based on

the case where µ = h.

We observe that the results related to the spectra of the operator Ra on c0, bv0 and ℓp
(
2 ≤ p < ∞

)
, which

have been given in [46, 47, 51], are included in Corollary 4.6. However, in ℓ1, h and cs, the results are
completely new.

By similar arguments with minor changes, the spectra of Ra on ℓ∞ can be established; see the following
theorem:

Theorem 4.8. Let the operator Ra : ℓ∞ −→ ℓ∞ be compact. Then the following hold:

(1) σ(Ra, ℓ∞) = {an : n ∈N0} ∪ {0}.
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(2) σp(Ra, ℓ∞) = {an : n ∈N0}.

(3) σr(Ra, ℓ∞) = {0}.

(4) σc(Ra, ℓ∞) = ∅.

(5) III2σ(Ra, ℓ∞) = {0}.

(6) III3σ(Ra, ℓ∞) = {an : n ∈N0}.

(7) σδ(Ra, ℓ∞) = {an : n ∈N0} ∪ {0}.

(8) σco(Ra, ℓ∞) = {an : n ∈N0} ∪ {0}.

(9) σap(Ra, ℓ∞) = {an : n ∈N0} ∪ {0}.

Proof. We only give the proofs of statements (2) and (3). All other statements can be proved similarly as in
the proof of Theorem 4.5.

(2) Combine Corollary 4.6(2), for µ = c0, and Lemma 4.1, we obtain

{an : n ∈N0} = σp(Ra, c0) ⊆ σp(Ra, ℓ
∞) ⊆ {an : n ∈N0} .

(3) Using statements (1) and (2), we have σr(Ra, ℓ∞) ∪ σc(Ra, ℓ∞) = {0}. Since c0 is a closed subspace of ℓ∞

and

R(Ra) ⊆ c0,

thenR (Ra) ⊆ c0 , ℓ∞. Thus Ra does not have a dense range, and so, 0 ∈ σr(Ra, ℓ∞). Thusσr(Ra, ℓ∞) = {0}.

Remark 4.9. Theorem 4.8 still valid as well for the space c. This gives a complete description of the spectra of Ra on
c, which was determined in [46]. Under suitable conditions, one can similarly derive the spectra of Ra on bv.

4.2. Spectra of ∆ab

The following lemma is an analogy to Lemma 4.2.

Lemma 4.10. Let X be a Banach sequence space that contains c00. Then, the point spectrum of ∆T
ab, the transpose of

∆ab, on X satisfies

{an : n ∈N0} ⊆ σp(∆T
ab,X).

Proof. The proof is omitted since it is similar to that of Lemma 4.2. In fact, the proof can be easily adapted
to the operator ∆ab.

Combining Lemmas 4.1, 4.3 and 4.10, we obtain the following proposition.

Proposition 4.11. Let X be a Banach sequence space with the standard countable basis (ek) and ∆ab ∈ B (X). If X∗,
the dual space of X, contains c00, then ∆∗ab is represented by the transpose ∆T

ab and

σp(∆ab,X) ⊆ {an : n ∈N0} ⊆ σp(∆∗ab,X
∗).

Remark 4.12. Under the assumptions of Lemma 4.10, unlike for the operator Ra, the element 0 may or may not belong
to σp(∆∗ab,X

∗). In fact, this will depend on the choice of the sequences (ak) and (bk). For example, if ak = 1/(2k + 2)
and bk = 1/(k + 1) for all k ∈N0, then the conditions in Theorem 3.14(2) hold, so that the operator ∆ab is compact on
bv0. So, ∆∗ab = ∆

T
ab is compact on bv∗0 ≃ bs. However, 0 ∈ σp(∆T

ab, bs). Whereas, if ak = 1/(k+ 1) and bk = 1/(2k+ 2)
for all k ∈N0, then 0 < σp(∆T

ab, bs).
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Taking into account Remark 4.12 and Proposition 4.11, we may consider, without no loss of generality,
the case where 0 ∈ σp(∆∗ab,X

∗) since the opposite case, 0 < σp(∆∗ab,X
∗), may be treated similarly. Next, we

give the result about the spectra of ∆ab, where the proof is a routine adaptation of the argument in the proof
of Theorem 4.5.

Theorem 4.13. Let X be a complex infinite dimensional Banach sequence space. In addition to the conditions in
Proposition 4.11, let the operator ∆ab : X −→ X be compact with 0 ∈ σp(∆∗ab,X

∗). Then the following hold:

(1) σ(∆ab,X) = {an : n ∈N0} ∪ {0}.

(2) σp(∆∗ab,X
∗) = {an : n ∈N0} ∪ {0}.

(3) σp(∆ab,X) = {an : n ∈N0}.

(4) σr(∆ab,X) = {0}.

(5) σc(∆ab,X) = ∅.

(6) III2σ(∆ab,X) = {0}.

(7) III3σ(∆ab,X) = {an : n ∈N0}.

(8) σδ(∆ab,X) = {an : n ∈N0} ∪ {0}.

(9) σco(∆ab,X) = {an : n ∈N0} ∪ {0}.

(10) σap(∆ab,X) = {an : n ∈N0} ∪ {0}.

Application of Theorem 4.13 yields the following corollary:

Corollary 4.14. Let µ ∈ {bv0,h, cs, c0, ℓp}, where 1 ≤ p < ∞. If the operator ∆ab : µ −→ µ is compact with
0 ∈ σp(∆∗ab, µ

∗), then the following hold:

(1) σ(∆ab, µ) = {an : n ∈N0} ∪ {0}.

(2) σp(∆ab, µ) = {an : n ∈N0}.

(3) σr(∆ab, µ) = {0}.

(4) σc(∆ab, µ) = ∅.

(5) III2σ(∆ab, µ) = {0}.

(6) III3σ(∆ab, µ) = {an : n ∈N0}.

(7) σδ(∆ab, µ) = {an : n ∈N0} ∪ {0}.

(8) σco(∆ab, µ) = {an : n ∈N0} ∪ {0}.

(9) σap(∆ab, µ) = {an : n ∈N0} ∪ {0}.

For the compactness case of the operator ∆ab : c −→ c, we can prove that σr(∆ab, c) = {0}. Indeed,
R(∆ab) ⊆ c0. Then R (∆ab) ⊆ c0 , c. Thus ∆ab does not have a dense range. Further, in this case, we have
0 ∈ σp(∆∗ab, c

∗), where c∗ ≃ ℓ1. So, we have the following result:

Theorem 4.15. Let the operator ∆ab : c −→ c be compact. Then the following hold:

(1) σ(∆ab, c) = {an : n ∈N0} ∪ {0}.
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(2) σp(∆ab, c) = {an : n ∈N0}.

(3) σr(∆ab, c) = {0}.

(4) σc(∆ab, c) = ∅.

(5) III2σ(∆ab, c) = {0}.

(6) III3σ(∆ab, c) = {an : n ∈N0}.

(7) σδ(∆ab, c) = {an : n ∈N0} ∪ {0}.

(8) σco(∆ab, c) = {an : n ∈N0} ∪ {0}.

(9) σap(∆ab, c) = {an : n ∈N0} ∪ {0}.

5. Conclusion

This paper is a follow-up to the recent articles about the spectra of the operators Ra and ∆ab on Banach
sequence spaces, where the main purpose is to close the gaps to obtain comparable results for the spectra of
such operators in general setting (in a large class of sequence spaces). In fact, a general technique to prove
the spectral results of the operators Ra and ∆ab has been given. However, in particular, we consider, among
other questions, the more precise problem of determining the spectra of Ra and ∆ab in the Hahn sequence
space h, the space of convergent series cs and the sequence space bv0.
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[44] A. E. Taylor, C. J. A. Halberg, Jr., General theorems about a bounded linear operator and its conjugate, J. Reine Angew. Math. 198 (1957)

93–111.
[45] A. E. Taylor, D. C. Lay, Introduction to Functional Analysis, 2nd ed., Robert E. Krieger Publishing Co., Malabar, Florida, 1986.
[46] M. Yıldırım, On the spectrum and fine spectrum of the compact Rhaly operators, Indian J. Pure Appl. Math. 27 (8) (1996) 778–784.
[47] M. Yıldırım, On the spectrum of the Rhaly operators on ℓp, Indian J. Pure Appl. Math. 32 (2) (2001) 191–198.
[48] M. Yıldırım, The fine spectra of the Rhaly operators on c0, Turk. J. Math. 26 (2002) 273–282.
[49] M. Yıldırım, On the spectrum of the Rhaly operators on bv, East Asian Math. J. 18 (1) (2002) 21–41.
[50] M. Yıldırım, On the spectrum of the Rhaly operators on bv0, Commun. Korean Math. Soc. 18 (4) (2003) 669–676.
[51] M. Yıldırım, On the spectrum and fine spectrum of the compact Rhaly operators, Indian J. Pure Appl. Math. 34 (10) (2003) 1443–1452.
[52] M. Yıldırım, The fine spectra of the Rhaly operators on c, East Asian Math. J. 23 (2) (2007) 135–149.
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