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Abstract. A formal treatment of Killing 1-form and 2-Killing 1-form on Riemannian Poisson manifold,
Riemannian Poisson warped product space are presented. In this way, we obtain Bochner type results on
compact Riemannian Poisson manifold, compact Riemannian Poisson warped product space for Killing
1-form and 2-Killing 1-form. Finally, we give the characterization of a 2-Killing 1-form on (R2, 1,Π).

1. Introduction

To provide the example of Riemannian spaces having negative curvature Bishop and O’Neill [1] intro-
duced the notion of warped space. From then on original and generalized forms of warped product spaces
have been widely discussed by both mathematicians and physicists [2–9].

Let (M̃1, 1̃1) and (M̃2, 1̃2) are two pseudo-Riemannian manifolds with positive smooth function f on M̃1.
Let π1 : M̃1 × M̃2 → M̃1 and π2 : M̃1 × M̃2 → M̃2 are the projections. The warped product M̃ = M̃1 × f M̃2 is
the product manifold M̃1 × M̃2 endowed with the metric tensor

1̃ f = π∗1(1̃1) + ( f ◦ π1)2π∗2(1̃2),

called warped product and the ordered-pair (M̃, 1̃ f ) known as warped product space. Here M̃1, M̃2 and f
are respectively known as base space, fiber space and warping function of the warped product space (M̃, 1̃ f )
and ∗ stand for pull-back operator.

Killing vector fields are the relevant object for the geometry specially in pseudo-Riemannian geometry
where mathematicians characterized the existence of Killing vector fields. Killing vector fields are also
studied by many physicists in the prospective of general relativity in which these are expounded in the
term of symmetry. Bochner [10–12], studied in detail Killing vector fields and provided various remarkable
results. K. Yano [13, 14], consider a compact orientable Riemannian spaces with boundary and generalized
the Bochner technique to study Killing vector fields on it. S. Yorozu [15, 16], discussed the non-existence of
Killing vector fields on complete Riemannian spaces and also did the same for non-compact Riemannian
spaces with boundary. Generalized forms of Killing vector fields like conformal vector fields, 2-Killing
vector fields have been investigated in [17–22], for ambient spaces. T. Opera [23], introduced the perception
of 2-Killing vector fields and provided the relation between curvature, monotone vector fields and 2-Killing
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vector fields on Riemannian spaces. Moreover, characterized the 2-Killing vector field on Rn. S. Shenawy
and B. Ünal [24], provided some results of 2-Killing vector field for warped product space and apply these
results to characterize it on some famous warped space time model. Z. Erjavec [25], currently characterized
proper conformal Killing vector fields and determine some proper 2-Killing vector fields in Sol space.

Poisson [26], introduced a bracket as a tool for classical dynamics and Lie [27], explored the geometry of
this bracket. In [28, 29], authors adopted the Poisson structure and provided the notion of Poisson manifold.
The geometric notions like connection, curvatures, metric etc., were discussed in [30–33], on Poisson
manifold. In [34], authors formulated several concepts on product manifold like product Poisson tensor
and product Riemannian metric . In [35], authors discussed the some geometric notions like contravariant
Levi-Civita connection, Riemann and Ricci curvatures on the product of two pseudo-Riemannian spaces
which is associated with the product Poisson structure, warped bivector field.

The aim of this article is to provide the notions of Killing 1-form and 2-Killing form and try to study
these two notions on Riemannian Poisson manifold and Riemannian Poisson warped product space.

The outline of this article is as follows. In Section 2, we look back on some classical notions like cometric,
curvatures, contravariant Levi-Civita connection on Poisson manifold and give the definition of Riemannian
Poisson manifold (M̃, 1,Π). Moreover, we provide the explicit form of cometric 1 f and contravariant Levi-
Civita connectionD on (M = M̃1 × f M̃2, 1 f ). In Section 3, we characterize the Killing 1-form on Riemannian
Poisson manifold and Riemannian Poisson warped product space (M = M̃1 × f M̃2, 1 f ,Π). Moreover, we
introduce the concept of parallel 1-form and provide Bochner type results on compact Riemannian Poisson
manifold and Riemannian Poisson warped product space in Theorems 3.10, 3.11. In Section 4, we study
2-Killing 1-form and characterize 2-Killing 1-form on R2 in Theorem 4.8.

2. Preliminaries

2.1. Geometric structure on Poisson manifold
Lots of basic terms and consequence related to Poisson manifold presented in [28]. Let M̃ be a manifold.

A Lie bracket map {., .} : C∞(M̃) × C∞(M̃) → C∞(M̃) is said to be Poisson bracket on M̃ if it follows the
Leibniz identity i.e.,

{ϕ1, ϕ2ϕ3} = {ϕ1, ϕ2}ϕ3 + ϕ2{ϕ1, ϕ3}, ∀ ϕ1, ϕ2, ϕ3 ∈ C
∞(M̃).

The pair (M̃, {., .}) is said to be Poisson manifold.
Let (M̃, {., .}) be Poisson manifold and ϕ1 ∈ C

∞(M̃) then we can find a unique vector field Xϕ1 on M̃ associate
to ϕ1 such that

Xϕ1 (ϕ2) = {ϕ2, ϕ1}, ∀ ϕ2 ∈ C
∞(M̃).

The vector field Xϕ1 is said to be Hamiltonian vector field of the function ϕ1. If

Xϕ1 (ϕ2) = 0, ∀ ϕ2 ∈ C
∞(M̃),

then ϕ1 ∈ C
∞(M̃) is called Casimir function. The Leibniz identity also guarantee the existence of a bivector

field Π ∈ X2(M̃) = Γ(Λ2TM̃) such that

{ϕ1, ϕ2} = Π(dϕ1, dϕ2), ∀ ϕ1, ϕ2 ∈ C
∞(M̃).

A bracket [., .]S on (M̃, {., .}) considered to be Schouten bracket associated with bivector field Π if

1
2

[Π,Π]S(dϕ1, dϕ2, dϕ3) = {{ϕ1, ϕ2}, ϕ3} + {{ϕ2, ϕ3}, ϕ1} + {{ϕ3, ϕ1}, ψ2}.

A bivector field Π on M̃ is called Poisson tensor if [Π,Π]S = 0.

Remark 2.1. Many authors assume (M̃,Π) as a Poisson manifold when Π is a Poisson tensor. Here, we consider
same notion.
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Let us assume that if M̃ is a manifold with a bivector field Π then there is a natural homomorphism
♯Π : T∗M̃→ TM̃ corresponding to Π given by

η(♯Π(ω)) = Π(ω, η), ∀ ω, η ∈ T∗M̃,

called sharp map(anchor map).
If Π is a bivector field on M̃, then it give rise to a bracket [., .]Π on smooth 1-forms Γ(T∗M̃) is said to be

Koszual bracket defined by

[ω, η]Π = L♯Π(ω)η − L♯Π(η)ω − d(Π(ω, η)).

Let (M̃,Π) be a Poisson manifold where Π is a Poisson tensor on M̃ then Koszual bracket [., .]Π convert
into usual Lie bracket.

If ♯Π is the sharp map on Poisson manifold (M̃,Π), then there is a Lie algebra homomorphism ♯Π :
Γ(T∗M̃)→ Γ(TM̃), such that

♯Π([ω, η]Π) = [♯Π(ω), ♯Π(η)],

where [., .] is the usual Lie bracket on Γ(TM̃).

Let (M̃,Π) be a Poisson manifold. In [30], authors introduced the concept of contravariant connection
D on M̃. The torsion and curvature tensors corresponding to this connectionD are given by

T (ω, η) = Dωη −Dηω − [ω, η]Π,
R(ω, η)γ = DωDηγ −DηDωγ −D[ω,η]Πγ,

where T is (2, 1)-type tensor and R is (3, 1)-type tensor. HereD is said to be torsion-free if T = 0 and flat if
R = 0.

Let (M, 1̃) be a pseudo-Riemannian manifold. The bundle isomorphism
♭1̃ : TM→ T∗M is a map such that X 7→ 1̃(X, .) and its inverse map

♯1̃ :T∗M→ TM
ω 7→ ♯1̃(ω)

such that ω(X) = 1̃(♯1̃(ω),X). The metric 1 on the cotangent bundle T∗M is defined by

1(ω, η) = 1̃(♯1̃(ω), ♯1̃(η)).

This metric 1 is said to be cometric of the metric 1̃.
Let (M̃,Π) be a Poisson manifold and 1 is cometric then there exists a unique contravariant connection

D on M̃ characterized by

21(Dωη, γ) = ♯Π(ω)1(η, γ) + ♯Π(η)1(ω, γ) − ♯Π(γ)1(ω, η)
+ 1([ω, η]Π, γ) − 1([η, γ]Π, ω) + 1([γ,ω]Π, η), (1)

for any ω, η, γ ∈ Ω1(M̃), and follows the following two conditions

(i).Dωη −Dηω = [ω, η]Π(Torsion-free),
(ii). ♯Π(ω)1(η, γ) = 1(Dωη, γ) + 1(η,Dωγ)(Metric condition),

for any ω, η, γ ∈ Ω1(M̃). Contravariant connectionD with properties (i) and (ii) is said to be contravariant
Levi-Civita connection associated to pair (1,Π) on M̃.
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Let (M̃,Π) be a n-dimensional Poisson manifold with connectionD and p is any point on M̃. The Ricci
curvature Ricp and scalar curvature at p corresponding to the local orthonormal coframe {θ1, ..., θn} of T∗pM̃,
given by

Ricp(ω, η) =
n∑

i=1

1p(Rp(ω, θi)θi, η), (2)

Sp =

n∑
i=1

Ricp(θi, θi), (3)

for any ω, η ∈ T∗pM̃.

Let (M̃,Π) be a Poisson manifold with connection D and f ∈ C∞(M̃) then D f = d f ◦ ♯Π ∈ X1(M̃), de-
fined by

(D f )(ω) = Dω f = ♯Π(ω)( f ) = d f (♯Π(ω)),

for any ω ∈ Ω1(M̃).

Let (M̃,Π) be a Poisson manifold with connectionD satisfiesDΠ = 0 i.e.,

♯Π(ω)Π(η, γ) −Π(Dωη, γ) −Π(η,Dωγ) = 0,

for any ω, η, γ ∈ Ω1(M), then triplet (M̃, 1,Π) called Riemannian Poisson manifold.
Let (M̃,Π) be a Poisson manifold with cometric 1, then field endomorphism

J : T∗M̃→ T∗M̃

provides

Π(ω, η) = 1(Jω, η) = −1(ω, Jη),

for any ω, η ∈ T∗M̃.
Let (M̃, 1,Π) be a Riemannian Poisson manifold and J is a field endomorphism on M̃ thenDJ = 0 i.e.,

Dω(Jη) = JDωη,

for any ω, η ∈ T∗M̃.

2.2. Cometric and contravariant Levi-Civita connection on warped product space
The explicit form of the warped metric

1̃ f = π∗(1̃1) + ( f h)2σ∗(1̃2),

on (M̃1, 1̃1) and (M̃2, 1̃2) is given by
1̃ f (Xh

1,Y
h
1) = 1̃1(X1,Y1)h,

1̃ f (Xh
1,Y

v
2) = 1̃1(Xv

2,Y
h
1) = 0,

1̃ f (Xv
2,Y

v
2) = ( f h)21̃2(X2,Y2)v,

(4)

for any X1,Y1 ∈ Γ(TM̃1) and X2,Y2 ∈ Γ(TM̃2). Here f ◦π = f h is horizontal lift of f from M̃1 to M̃1 × M̃2. For
more detail of horizontal and vertical lifts on product space see in ([34, 36, 37]).
As a consequence of the Proposition 3.3 of ([36],p. 23), one has the following proposition which provides
explicit form to the cometric

1 f = 1h
1 +

1
( f h)2

1v
2,

of warped metric 1̃ f .
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Proposition 2.2. Let two pseudo-Riemannian manifolds be (M̃1, 1̃1) and (M̃2, 1̃2) and a smooth function be f :
M̃1 → R+. Then cometric 1 f of the metric 1̃ f is explicitly can be written as

1 f (ωh
1, η

h
1) = 11(ω1, η1)h,

1 f (ωh
1, η

v
2) = 11(ωv

2, η
h
1) = 0,

1 f (ωv
2, η

v
2) = 1

( f h)2 12(ω2, η2)v,
(5)

for anyω1, η1 ∈ Γ(T∗M̃1) andω2, η2 ∈ Γ(T∗M̃2). Where 11 and 12 are the cometric of the metric 1̃1 and 1̃2 respectively.

The ordered pair (M̃ = M̃1 × f M̃2, 1 f ) is said to be contravariant warped product space of warped space
(M̃ = M̃1 × f M̃2, 1̃ f ).

Contravariant Levi-Civita connection D associated with pair (1 f ,Π) (where 1 f = 1h
1 +

1
( f h)2 1

v
2 and Π =

Π1 +Π2) on (M̃ = M̃1 × f M̃2, 1 f ) is given by proposition:

Proposition 2.3. For any ω1, η1 ∈ Γ(T∗M̃1) and ω2, η2 ∈ Γ(T∗M̃2), we have

(i).Dωh
1
βh

1 = (D1
ω1
η1)h,

(ii).Dωv
2
ηv

2 = (D2
ω2
η2)v
−

1
( f h)3

12(ω2, η2)v(J1d f )h,

(iii).Dωh
1
ηv

2 = Dηv
2
ωh

1 =
1
f h
11(J1d f , ω1)hηv

2.

If we assume that, Π = Π1 +Π2 in Theorem 5.2 of ([35],p. 294) then we conclude that:

Theorem 2.4. Let f be a Casimir function. Then both (M̃1, 11,Π1) and (M̃2, 12,Π2) are Riemannian Poisson
manifolds if and only if the triplet (M̃ = M̃1 × f M̃2, 1 f ,Π) is a Riemannian Poisson warped product space.

3. Killing 1-form

Let (M̃, 1,Π) be a Riemannian Poisson manifold. In ( [30],p. 5), author define the Lie derivative on the
space of k-vector fields Xk(M̃) = Γ(∧kTM̃). Let T ∈ Xk(M̃), then the Lie derivative of T in the direction of
1-form α ∈ Ω1(M̃) is a map Lα : Xk(M̃)→ Xk(M̃) such that

(LαT)(α1, ..., αk) = ♯Π(α)(T(α1, ..., αk)) −
k∑

i=1

T(α1, ..., [α, αi]Π, ..., αk), (6)

where α1, ..., αk ∈ Ω
1(M).

A 1-form η ∈ Ω1(M̃) on (M̃, 1,Π) is said to be Killing 1-form corresponding to the cometric 1 if

Lη1 = 0,

where Lη is Lie derivative on M̃ with respect to 1-form η.
In the following two propositions, we will find the expression of Lie derivative Lη with respect to

cometric 1 f on contravariant warped product space (M̃ = M̃1 × f M̃2, 1 f ) and Riemannian Poisson warped
product space (M = M̃1 × f M̃2, 1 f ,Π). Here we will consider η = ηh

1 + η
v
2, α = αh

1 + α
v
2 and β = βh

1 + β
v
2.

Proposition 3.1. Let (M̃ = M̃1 × f M̃2, 1 f ) be a contravariant warped product space and D is the contravariant
Levi-Civita connection associated with pair (1 f ,Π) on M̃. Then for any η ∈ Ω1(M̃), we have

(Lη1 f )(α, β) =
[
(L1

η1
11)(α1, β1)

]h
+

1
( f h)2

[
(L2

η2
12)(α2, β2)

]v
+
(11(J1d f , η1)

f 3

)h
12(α2, β2)v,

for any α, β ∈ Ω1(M̃).
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Proof. From equation (6), we conclude that

(Lη1 f )(α, β) = ♯Π(η)(1 f (α, β)) − 1 f ([η, α]Π, β) − 1 f (α, [η, β]Π)

=
[
♯Π1 (η1)(11(α1, β1))

]h
+
[
♯Π1 (η1)

]h
(

1
( f h)2

12(α2, β2)v)

+
1

( f h)2

[
♯Π2 (η2)(12(α2, β2))

]v
+
[
11([η1, α1]Π1 , β1)

]h
+

1
( f h)2

[
12([η2, α2]Π2 , β2)

]v
+
[
11(α1, [η1, β1]Π1 )

]h
+

1
( f h)2

[
12(α2, [η2, β2]Π2 )

]v
=
[
(L1

η1
11)(α1, β1)

]h
+

1
( f h)2

[
(L2

η2
12)(α2, β2)

]v
+
[
♯Π1 (η1)

]h
(

1
( f h)2

12(α2, β2)v).

Since,[
♯Π1 (η1)

]h
(

1
( f h)2

12(α2, β2)v) =
(11(J1d f , η1)

f 3

)h
12(α2, β2)v.

Thus the result follows.

Proposition 3.2. Let (M̃ = M̃1 × f M̃2, 1 f ,Π) be a Riemannian Poisson warped product space and f is a Casimir
function on M̃1. Then for any η ∈ Ω1(M̃), we have

(Lη1 f )(α, β) =
[
(L1

η1
11)(α1, β1)

]h
+

1
( f h)2

[
(L2

η2
12)(α2, β2)

]v
,

for any α, β ∈ Ω1(M̃).

Proof. As, f is Casimir function if and only if J1d f = 0. After applying this criterion in Proposition 3.1
provides the result.

The following proposition is a another characterization of Killing 1-form.

Proposition 3.3. Let (M̃, 1,Π) be a Riemannian Poisson manifold. A 1-form η ∈ Ω1(M̃) is a Killing 1-form if and
only if

1(Dαη, α) = 0, (7)

for any 1-form α ∈ Ω1(M̃).

Proof. Since η ∈ Ω1(M̃) andD is the contravariant Levi-Civita connection, then

(Lη1)(α, β) = 1(Dαη, β) + 1(α,Dβη), (8)

for any α, β ∈ Ω1(M̃). Putting α = β in (8), we have

(Lη1)(α, α) = 21(Dαη, α),

for any α ∈ Ω1(M). Thus the result follows.

In the preceding two propositions, we will provide a result on contravariant warped product space (M̃ =
M̃1 × f M̃2, 1 f ) and Riemannian Poisson warped product space (M̃ = M̃1 × f M̃2, 1 f ,Π), which are helpful to
describe the Killing 1-form. Here we will consider η = ηh

1 + η
v
2 and α = αh

1 + α
v
2.
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Proposition 3.4. Let (M̃ = M̃1 × f M̃2, 1 f ) be a contravariant warped product space and D is the contravariant
Levi-Civita connection associated with pair (1 f ,Π) on M̃. Then for any η, α ∈ Ω1(M̃), we have

1 f (Dαη, α) = 11(D1
α1
η1, α1)h +

(11(J1d f , η1)
f 3

)h
(||α2||

2
2)v +

1
( f h)2

12(D2
α2
η2, α2)v.

Proof. From Proposition 2.3, for any η, α ∈ Ω1(M), we have

Dαη = (D1
α1
η1)h +

(11(J1d f , α1)
f

)h
ηv

2 +
(11(J1d f , η1)

f

)h
αv

2

−
1

( f h)3
12(α2, η2)v(J1d f )h + (D2

α2
η2)v. (9)

Since 1 f (Dαη, α) = 1 f (Dαη, αh
1) + 1 f (Dαη, αv

2), thus from (5) and (9), the result follows.

Proposition 3.5. Let (M̃ = M̃1 × f M̃2, 1 f ,Π) be a Riemannian Poisson warped product space and f is a Casimir
function on M̃1. Then for any η, α ∈ Ω1(M), we have

1 f (Dαη, α) = 11(D1
α1
η1, α1)h +

1
( f h)2

12(D2
α2
η2, α2)v. (10)

Proof. As, f is Casimir function if and only if J1d f = 0. After applying this criterion in Proposition 3.4,
provides the result.

In the following theorem, we have to prove the necessary and sufficient conditions for Killing 1-form on
Riemannian Poisson warped product space.

Theorem 3.6. Let (M̃ = M̃1 × f M̃2, 1 f ,Π) be a Riemannian Poisson warped product space and f is a Casimir
function on M̃1. Then 1-form η ∈ Ω1(M) is Killing 1-form if and only if the following conditions holds:
(1). η1 is a Killing 1-form on M̃1.
(2). η2 is a Killing 1-form on M̃2.

Proof. The if” part is obvious. For the ”only if part”, let η ∈ Ω1(M̃) is Killing 1-form. Putting η = ηh
1 and

η = ηv
2 in (10), provide (1) and (2) respectively.

3.1. Parallel 1-form
Let (M̃n,Π) be the n-dimensional Poisson manifold and D is the contravariant Levi-Civita connection

associated to (1,Π), then
(i) In ([35],eqn. 5), authors provided contravariant derivative of a multivector field P of degree r i.e.,
P ∈ Xr(M̃) = Γ(ΛrTM̃) with respect to 1-form α ∈ Ω1(M̃), given by

(DαP)(α1, ..., αr) = ♯Π(α)(P(α1, ..., αr)) −
r∑

i=1

Q
(
α1, ...,Dααi, ..., αr

)
, (11)

where α1, ..., αr ∈ Ω
1(M̃).

(ii) Let Q be any tensor field on M̃. In ([33],p. 9), author provided contravariant Laplacian operator
corresponding toD over Q by

∆D(Q) := −
n∑

i=1

D
2
θi,θi

Q, (12)

where {θ1, ..., θn} is any local coframe field on M̃, and

D
2
α,β = DαDβ −DDαβ,

is the second order contravariant derivative.
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Definition 3.7. LetD be the contravariant Levi-Civita connection associated to (Π, 1) on Poisson manifold (M̃,Π).
A tensor field S is said to be parallel with respect to contravariant Levi-Civita connectionD if

DS = 0. (13)

Remark 3.8. If we take S = 1, then it is always parallel.

From Corollary 4.2, Lemma 4.3 and Corollary 4.7 of [33], we conclude the following lemma. This will be
useful later on.

Lemma 3.9. Let (M̃n, 1,Π) be a compact Riemannian Poisson manifold and a smooth function f on M̃ satisfies
∆D( f ) ≥ 0, then ∆D( f ) = 0.

Bochner [10], provided a result for compact oriented Riemannian manifold M̃, that if Ricci curvature of M̃
is non-positive then every Killing vector field on M̃ is parallel. Later H. H. Wu studied this result in detail
(see, [38],p. 324). Now we will prove similar result for Killing 1-form on compact Riemannian Poisson
manifold.

Theorem 3.10. Let η is a Killing 1-form on n-dimensional compact Riemannian Poisson manifold (M̃n, 1,Π) with
vanishingDηη. If Ric(η, η) ≤ 0, then η is parallel.

Proof. Since η is a Killing 1-form, equation (8) implies that

1(Dαη, β) + 1(Dβη, α) = 0, (14)

for any α, β ∈ Ω1(M̃). Let {θ1, ..., θn} is any local coframe field on M, then from (12), we have

∆D
(
−

1
2
|η|2
)
=

n∑
i=1

{Dθi (Dθi1(η, η)) −DDθiθi (1(η, η))}

=

n∑
i=1

{Dθi (1(Dθiη, η)) − 1(DDθiθiη, η)}

= |Dη|2 − 1(∆D(η), η), (15)

where |Dη|2 =
∑n

i=1 1(Dθiη,Dθiη). Now we will calculate the second term of (15). For any i ∈ {1, ....,n}, we
have

1(D2
θi,θi

η, η) = 1(DθiDθiη, η) − 1(DDθiθiη, η). (16)

The second term of L. H. S. of the above equation equal to −1(Dηη,Dθiθi) by (14), and vanishes as Dηη.
Hence (16), conclude that

1(D2
θi,θi

η, η) = 1(DθiDθiη, η)

= 1(DθiDηθi, η) + 1(Dθi [θi, η]Π, η)
= 1(DθiDηθi, η) + ♯Π(θi)1([θi, η]Π, η) − 1([θi, η]Π,Dθiη). (17)

Since, α is Killing 1-form therefore

1([θi, η]Π, η) = −♯Π(η)1(θi, η) (18)

and

1([θi, η]Π,Dθiη)
(14)
= −1(θi,D[θi,η]Πη)
= −♯Π([θi, η]Π)1(η, θi) + 1(η,D[θi,η]Πθi). (19)
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After using (18) and (19) in (17), we obtain

1(D2
θi,θi

η, η) = 1(DθiDηθi, η) + {−♯Π(θi)♯Π(η) + ♯Π([θi, η]Π)}1(η, θi)

− 1(D[θi,η]Πθi, η)
(2.1)
= 1(DθiDηθi, η) − ♯Π(η)♯Π(θi)1(η, θi) − 1(D[θi,η]Πθi, η). (20)

The second term of (20), follows by vanishing ofDηη

♯Π(η)♯Π(θi)1(η, θi) = ♯Π(η){1(Dθiη, θi) + 1(η,Dθiθi)}
(14)
= ♯Π(η)1(η,Dθiθi)
= 1(DηDθiθi, η). (21)

Using equation (21) in (20), yields

1(D2
θi,ηi

η, η) = 1(R(θi, η)θi, η).

After taking summation both sides of the above equation conclude that

1(∆D(η), η) = Ric(η, η). (22)

Now using (22) in (15), we have

∆D
(
−

1
2
|η|2
)
= |Dη|2 − Ric(η, η). (23)

Since Ric(η, η) ≤ 0 then the right hand side of (23) is non-negative and hence vanishes by Lemma 3.9. It
conclude that |Dη|2 = 0. This is equivalent to η being parallel.

In the following theorem, we will prove the above result for compact Riemannian Poisson warped product
space.

Theorem 3.11. Let (M̃ = M̃1 × f M̃2, 1 f ,Π) be a compact Riemannian Poisson warped product space and f is a
Casimir function on M̃1 also let 1-form η = ηh

1 + η
v
2 ∈ Ω

1(M̃). Then
(1). η = ηh

1 + η
v
2 is parallel if the 1-form ηi is a Killing 1-form, Rici(ηi, ηi) ≤ 0 andDi

ηi
ηi vanishes, i = 1, 2.

(2). η = ηh
1 is parallel if the 1-form η1 is a Killing 1-form, Ric1(η1, η1) ≤ 0 andD1

η1
η1 vanishes.

(3). η = ηv
2 is parallel if the 1-form η2 is a Killing 1-form, Ric2(η2, η2) ≤ 0 andD2

η2
η2 vanishes.

Proof. Let U1 and U2 are two open subset of M̃1 and M̃2 respectively. Assume that {dx1, ..., dxn1 } is a local
11-coframe on U1 and {dy1, ..., dyn2 } is a local 12-coframe on U2, then

{dxh
1, ..., dxh

n1
, f hdyv

1, ..., f hdyv
n2
}

is a local 1 f -coframe on open subset U1 ×U2 of M̃1 × M̃2. Thus for any 1-forms η ∈ Ω1(M̃), we have

|Dη|2 =
n1∑
i=1

1 f (Ddxh
i
η,Ddxh

i
η) + ( f h)2

n2∑
j=1

1 f (Ddyv
j
η,Ddyv

j
η). (24)

Using the condition of Casimir function f in (9) the first term of (24), is given by
n1∑
i=1

1 f (Ddxh
i
η,Ddxh

i
η) =

n1∑
i=1

1 f (Ddxh
i
ηh

1,Ddxh
i
ηh

1)

=

n1∑
i=1

1 f ((D1
dxi
η1)h, (D1

dxi
η1)h)

(5)
=

n1∑
i=1

11(D1
dxi
η1,D

1
dxi
η1)h

= (|D1η1|
2)h, (25)
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and the second term of (24), is given by

( f h)2
n2∑
j=1

1 f (Ddyv
j
η,Ddyv

j
η) = ( f h)2

n2∑
j=1

1 f (Ddyv
j
ηv

2,Ddyv
j
ηv

2)

= ( f h)2
n2∑
j=1

1 f ((D2
dy j
η2)v, (D2

dy j
η2)v)

(5)
=

n2∑
j=1

12(D2
dy j
η2,D

2
dy j
η2)v

= (|D2η2|
2)v. (26)

After using (25) and (26) in (24), provide that

|Dη|2 = (|D1η1|
2)h + (|D2η2|

2)v. (27)

Thus from Theorem 3.10 and equation (27), follows the result.

4. 2-Killing 1-form

A 1-form η ∈ Ω1(M̃) on a Riemannian Poisson manifold (M̃, 1,Π) is said to be 2-Killing 1-form with
corresponding to the metric 1 if

LηLη1 = 0, (28)

where Lη is the Lie derivative on M̃ corresponding to 1-form η.
The following proposition is alike to the Proposition 3.1 of ([24],p. 6).

Proposition 4.1. Let (M̃, 1,Π) be a Riemannian Poisson manifold and 1-form η ∈ Ω1(M̃). Then

(LηLη1)(α, β) = 1(DηDαη −D[η,α]Πη, β)
+ 1(DηDβη −D[η,β]Πη, α) + 21(Dαη,Dβη), (29)

for any α, β ∈ Ω1(M̃).

The following proposition is helpful to describe the definition of 2-Killing 1-form on the Riemannian Poisson
manifold.

Proposition 4.2. Let (M̃, 1,Π) be a Riemannian Poisson manifold and 1-form η ∈ Ω1(M̃). Then η is 2-Killing
1-form if and only if

R(η, α, α, η) = 1(Dαη,Dαη) + 1(DαDηη, α), (30)

for any α ∈ Ω1(M̃).

Proof. The symmetry of (29) implies that, η is 2-Killing 1-form if and only if (LηLη1)(α, α) = 0, for any
α ∈ Ω1(M̃). Therefore, we have

1(DηDαη, α) + 1(D[α,η]Πη, α) + 1(Dαη,Dαη) = 0, (31)

for any α ∈ Ω1(M̃). The curvature tensor R, is given by

R(η, α, α, η) = R(α, η, η, α)
= 1(R(α, η)η, α)
= 1(DαDηη, α) − 1(DηDαη, α) − 1(D[α,η]Πη, α). (32)

After using (31) in (32), provides the result (30).
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There is another characterization for a 2-Killing 1-form η on Riemannian Poisson manifold (M̃, 1,Π)

2R(η, α, β, η) = 21(Dαη,Dβη) + 1(DαDηη, β) + 1(DβDηη, α), (33)

for any α, β ∈ Ω1(M̃).
In the following two theorems, we will provide Bochner-type results for 2-Killing 1-form on compact

Riemannian Poisson manifold and compact Riemannian Poisson warped product space.

Theorem 4.3. Let η is a 2-Killing 1-form on n-dimensional compact Riemannian Poisson manifold (M̃, 1,Π) with
vanishingDηη. If Ric(η, η) ≤ 0, then η is parallel.

Proof. Assume that {dx1, ..., dxn} is a local 1-coframe on an open subset U of M̃, then from Proposition 4.2,
we obtain

n∑
i=1

R(η, dxi, dxi, η) =
n∑

i=1

1(Ddxiη,Ddxiη) +
n∑

i=1

1(DdxiDηη, dxi).

AsDηη vanishes and R is a curvature tensor therefore the last equation implies that

Ric(η, η) = |Dη|2 ≤ 0.

This follows the result.

Theorem 4.4. Let (M = M̃1 × f M̃2, 1 f ,Π) be a compact Riemannian Poisson warped product space and f is a
Casimir function on B also let 1-form η = ηh

1 + η
v
2 ∈ Ω

1(M̃). Then
(1). η = ηh

1 + η
v
2 is parallel if the 1-form ηi is a 2-Killing 1-form, Rici(ηi, ηi) ≤ 0 andDi

ηi
ηi vanishes, i = 1, 2.

(2). η = ηh
1 is parallel if the 1-form η1 is a 2-Killing 1-form, Ric1(η1, η1) ≤ 0 andD1

η1
η1 vanishes.

(3). η = ηv
2 is parallel if the 1-form η2 is a 2-Killing 1-form, Ric2(η2, η2) ≤ 0 andD2

η2
η2 vanishes.

Proof. Proof is similar to the Theorem 3.11.

In the following two propositions, we will find the expression for 2-Killing 1-form.

Proposition 4.5. Let (M̃ = M̃1 × f M̃2, 1 f ) be a contravariant warped product space and D is the contravariant
Levi-Civita connection associated with pair (1 f ,Π) on M̃. Then for any 1-forms η ∈ Ω1(M̃), we have

(LηLη1 f )(α, β) =
[
(L1

η1
L

1
η1
11)(α1, β1)

]h
+

1
( f h)2

[
(L2

η2
L

2
η2
12)(α2, β2)

]v
+ 2
(
D

1
η1

(
11(J1d f , η1)

f 3 ) +
211(J1d f , η1)2

f 4

)h
12(α2, β2)v

+ 2
(D1

η1
( f )11(J1d f , β1)

f 4 +
11(J1d f , β1)11(J1d f , η1)

f 4

)h
12(α2, η2)v

+ 2
(D1

η1
( f )11(J1d f , α1)

f 4 +
11(J1d f , α1)11(J1d f , η1)

f 4

)h
12(β2, η2)v

+ 4
(11(J1d f , η1)

f 3

)h(
(L2

η2
12)(α2, β2)

)v
+ 2
(11(J1d f , α1)

f 3

)h
12(η2,D

2
β2
η2)v

+ 2
(11(J1d f , β1)

f 3

)h
12(η2,D

2
α2
η2)v + 4

(11(J1d f , α1)11(J1d f , β1)
f 4

)h
(||η2||

2
2)v,

for any 1-forms α, β ∈ Ω1(M̃).

Proof. See Appendix.
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Proposition 4.6. Let (M̃ = M̃1 × f M̃2, 1 f ,Π) be a Riemannian Poisson warped product space and f is a Casimir
function on M̃1. Then for any 1-forms η ∈ Ω1(M̃), we have

(LηLη1 f )(α, β) =
[
(L1

η1
L

1
η1
11)(α1, β1)

]h
+

1
( f h)2

[
(L2

η2
L

2
η2
12)(α2, β2)

]v
,

for any α, β ∈ Ω1(M̃).

Proof. Using the property of Casimir function f in Proposition 4.5, provides this result.

In the following theorem, we will provide necessary and sufficient conditions for 2-Killing 1-form on
Riemannian Poisson warped product space.

Theorem 4.7. Let (M̃ = M̃1 × f M̃2, 1 f ,Π) be a Riemannian Poisson warped product space and f is a Casimir
function on M̃1. Then 1-form η ∈ Ω1(M̃) is 2-Killing 1-form if and only if the following conditions holds:
(1). η1 is a 2-Killing 1-form on M̃1.
(2). η2 is a 2-Killing 1-form on M̃2.

Proof. The if” part is obvious. For the ”only if part”, let η ∈ Ω1(M̃) is 2-Killing 1-form. Putting η = ηh
1 and

η = ηv
2 in Proposition 4.6 provide (1) and (2) respectively.

Now, we will provide a theorem for 2-Killing 1-form. From ([30],eqn. 2.5), Christoffel symbols Γi j
k defined

as

Ddxi dx j = Γ
i j
k dxk. (34)

Theorem 4.8. Let (R2, 1,Π) be a Riemannian Poisson manifold (where g is the cometric of the Riemannian metric
1̃ = (dx1)2 + (dx2)2, Π = Π12 ∂

∂x1 ∧
∂
∂x2 ) and η = η1dx1 + η2dx2

∈ Ω1(R2). Then η is 2- Killing form if and only if

2R(η, dx1, dx2, η) = −
(
2(T1T3 + T2T4) +

∂(T5Π
12)

∂x1 +
∂(T6Π

12)
∂x2

)
,

where

T1 = Π
12 ∂η1

∂x2 + η2
∂Π12

∂x1 , T2 = Π
12 ∂η2

∂x2 − η1
∂Π12

∂x1 ,

T3 = Π
12 ∂η1

∂x1 − η2
∂Π12

∂x2 , T4 = Π
12 ∂η2

∂x1 + η1
∂Π12

∂x2 ,

T5 = η1Π
12 ∂η1

∂x2 − η2Π
12 ∂η1

∂x1 + η1η2
∂Π12

∂x1 + η
2
2
∂Π12

∂x2 ,

T6 = η2Π
12 ∂η2

∂x1 − η1Π
12 ∂η2

∂x2 + η1η2
∂Π12

∂x2 + η
2
1
∂Π12

∂x1 .

Proof. Since {dx1, dx2
} is orthonormal coframe field on R2 therefore (33), implies that

2R(η, dx1, dx2, η) = 21(Ddx1η,Ddx2η) + 1(Ddx1Dηη, dx2) + 1(Ddx2Dηη, dx1). (35)

The local components of 1̃ are given by
1̃11 = 1̃( ∂

∂x1 ,
∂
∂x1 ) = 1,

1̃22 = 1̃( ∂
∂x2 ,

∂
∂x2 ) = 1,

1̃12 = 1̃( ∂
∂x1 ,

∂
∂x2 ) = 0.

(36)

As 1 is the cometric of the metric 1̃ then its local components are given by
111 = 1(dx1, dx1) = 1,
122 = 1(dx2, dx2) = 1,
112 = 1(dx1, dx2) = 0.

(37)
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Now, from ([39],eqn. 6.2), Christoffel symbols Γi j
k (where i, j, k ∈ {1, 2}) defined as

Γ
i j
k =

1
2

∑
l

∑
m

1mk

(
Πil ∂1

jm

∂xl
+Π jl ∂1

im

∂xl
−Πml ∂1

i j

∂xl
− 1li ∂Π

jm

∂xl
− 1l j ∂Π

im

∂xl

)
+

1
2
∂Πi j

∂xk
. (38)

Therefore from (37) and (3.8), we have

Γ11
1 = 0, Γ12

1 =
∂Π12

∂x1 , Γ
21
1 = 0, Γ22

1 =
∂Π12

∂x2 ,

Γ11
2 = −

∂Π12

∂x1 , Γ
12
2 = 0, Γ21

2 = −
∂Π12

∂x2 , Γ
22
2 = 0. (39)

Hence (34) and (39), conclude that

Ddx1 dx1 = −
∂Π12

∂x1 dx2, Ddx1 dx2 =
∂Π12

∂x1 dx1,

Ddx2 dx1 = −
∂Π12

∂x2 dx2, Ddx2 dx2 =
∂Π12

∂x2 dx1. (40)

By the properties of contravariant Levi-Civita connectionD and equation (40), we have

Ddx1η = T1dx1 + T2dx2, (41)

Ddx2η = −T3dx1
− T4dx2, (42)

Dηη = T5dx1
− T6dx2. (43)

Equations (41), (42) and (37), provides

1(Ddx1η,Ddx2η) = −T1T3 − T2T4. (44)

Equations (43) and (37), provides

1(Ddx1Dηη, dx2) = −T5
∂Π12

∂x1 −Π
12 ∂T6

∂x2 , (45)

1(Ddx1Dηη, dx2) = −T6
∂Π12

∂x2 −Π
12 ∂T5

∂x1 . (46)

Using equations (44), (45) and (46) in (35), proves this result.

Appendix. Proof of Proposition 4.5
Equation (29), is given by

(LηLη1)(α, β) = 1(DηDαη, β) + 1(DηDβη, α)
− 1(D[η,α]Πη, β) − 1(D[η,β]Πη, α) + 21(Dαη,Dβη). (47)

Using (5) and Proposition 2.2 in the first term P1 of (47), we have

P1 = 1(DηDαη, β)

= 1(DηDαη, β
h
1) + 1(DηDαη, β

v
2).
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Assume that S1 = DηDαη, therefore

S1 = Dη1
hDαη +Dη2

vDαη

= (D1
η1
D

1
α1
η1)h + (D2

η2
D

2
α2
η2)v
−

(D1
η1

J1d f

f 3

)h
12(α2, η2)v +

(11(J1d f , α1)
f

)h
(D2

η2
η2)v

+
(11(J1d f , η1)

f

)h
(D2

α2
η2 +D

2
η2
α2)v +

[(3(D1
η1

f ) − 11(J1d f , η1)

f 4

)h
12(α2, η2)v

+
(11(J1d f , α1)

f 4

)h
(||η2||

2
2)v
−

1
( f h)3

12(D2
α2
η2, η2)v

−
1

( f h)3

(
D

2
η2
12(α2, η2)

)v]
(J1d f )h

+
[11(J1d f , η1)2

f 2 −

(D1
η1

f )11(J1d f , η1)

f 2 +
D

1
η1
11(J1d f , η1)

f

]h
αv

2 +
[(D1

η1
11(J1d f , α1)

f

)h
+
(11(J1d f ,D1

α1
η1)

f

)h
+
(11(J1d f , α1)11(J1d f , η1)

f 2

)h
−

( (D1
η1

f )11(J1d f , α1)

f 2

)h
−

( ||J1d f ||21
f 4

)h
12(α2, η2)v

]
ηv

2.

Using S1 in P1, provides

P1 = 11(D1
η1
D

1
α1
η1, β1)h +

1
( f h)2

12(D2
η2
D

2
α2
η2, β2)v

−

(11(D1
η1

J1d f , β1)

f 3

)h
12(α2, η2)v

+
(11(J1d f , η1)

f 3

)h
12(D2

α2
η2 +D

2
η2
α2, β2)v +

(11(J1d f , α1)
f 3

)h
12(D2

η2
η2, β2)v

+
[(11(J1d f , α1)

f 4

)h
(||η2||

2
2)v
−

(11(J1d f , η1)
f 4

)h
12(η2, α2)v + 3

(D1
η1

f

f 4

)h
12(α2, η2)v

−
1

( f h)3
12(D2

α2
η2, η2)v

−
1

( f h)3

(
D

2
η2
12(α2, η2)

)v]
11(J1d f , β1)h +

[11(J1d f , η1)2

f 4

−

(D1
η1

f )11(J1d f , η1)

f 4 +
D

1
η1
11(J1d f , η1)

f 3

]h
12(α2, β2)v +

[(D1
η1
11(J1d f , α1)

f 3

)h
+
(11(J1d f ,D1

α1
η1)

f 3

)h
+
(11(J1d f , α1)11(J1d f , η1)

f 4

)h
−

( (D1
η1

f )11(J1d f , α1)

f 4

)h
−

( ||J1d f ||21
f 6

)h
12(α2, η2)v

]
12(η2, β2)v.

After exchanging α and β in the last equation provides the second term P2 of (47), is given by

P2 = 1(DηDαη, β)

= 11(D1
η1
D

1
β1
η1, α1)h +

1
( f h)2

12(D2
η2
D

2
β2
η2, α2)v

−

(11(D1
η1

J1d f , α1)

f 3

)h
12(β2, η2)v

+
(11(J1d f , η1)

f 3

)h
12(D2

β2
η2 +D

2
η2
α2, α2)v +

(11(J1d f , β1)
f 3

)h
12(D2

η2
η2, α2)v

+
[(11(J1d f , β1)

f 4

)h
(||η2||

2
2)v
−

(11(J1d f , η1)
f 4

)h
12(η2, β2)v + 3

(D1
η1

f

f 4

)h
12(β2, η2)v
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−
1

( f h)3
12(D2

β2
η2, η2)v

−
1

( f h)3

(
D

2
η2
12(β2, η2)

)v]
11(J1d f , α1)h +

[11(J1d f , η1)2

f 4

−

(D1
η1

f )11(J1d f , η1)

f 4 +
D

1
η1
11(J1d f , η1)

f 3

]h
12(β2, α2)v +

[(D1
η1
11(J1d f , β1)

f 3

)h
+
(11(J1d f ,D1

β1
η1)

f 3

)h
+
(11(J1d f , β1)11(J1d f , η1)

f 4

)h
−

( (D1
η1

f )11(J1d f , β1)

f 4

)h
( ||J1d f ||21

f 6

)h
12(β2, η2)v

]
12(η2, α2)v.

Again using (5) and Proposition 2.2 in the third term P3 of (47), we have

P3 = 1(D[η,α]Πη, β)

= 1(D[η,α]Πη, β
h
1) + 1(D[η,α]Πη, β

v
2).

Assume that S2 = D[η,α]Πη, therefore

S2 = D[η,α]Πη
h
1 +D[η,α]Πη

v
2

= D[η1,α1]h
Π1
ηh

1 +D[η1,α1]h
Π1
ηv

2 +D[η2,α2]v
Π2
ηh

1 +D[η2,α2]v
Π2
ηv

2

= (D1
[η1,α1]Π1

η1)h + (D2
[η2,α2]Π2

η2)v +
(11(J1d f , η1)

f

)h
[η2, α2]v

Π2

+
(11(J1d f , [η1, α1]Π1 )

f

)h
ηv

2 −
( J1d f

f 3

)h
12(η2, [η2, α2]Π2 )v.

Using S2 in P3, provides

P3 = 11(D1
[η1,α1]Π1

η1, β1)h +
1

( f h)2
12(D2

[η2,α2]Π2
η2, β2)v

+
(11(J1d f , η1)

f 3

)h
12([η2, α2]Π2 , β2)v +

(11(J1d f , [η1, α1]Π1 )
f 3

)h
12(η2, β2)v

−

(11(J1d f , β1)
f 3

)h
12(η2, [η2, α2]Π2 )v.

After exchanging α and β in the last equation provides the fourth term P4 of (47), is given by

P4 = 11(D1
[η1,β1]Π1

η1, α1)h +
1

( f h)2
12(D2

[η2,β2]Π2
η2, α2)v

+
(11(J1d f , η1)

f 3

)h
12([η2, β2]Π2 , α2)v +

(11(J1d f , [η1, β1]Π1 )
f 3

)h
12(η2, α2)v

−

(11(J1d f , α1)
f 3

)h
12(η2, [η2, β2]Π2 )v.

Same as above manipulations the fifth term P5 of (47), is given by

P5 = 11(D1
α1
η1,D

1
β1
η1)h +

1
( f h)2

12(D2
α2
η2,D

2
β2
η2)v +

(11(J1d f , α1)
f 3

)h
12(D2

β2
η2, η2)v

+
(11(J1d f , β1)

f 3

)h
12(D2

α2
η2, η2)v +

( ||J1d f ||21
f 6

)h
12(α2, η2)v12(β2, η2)v

+
(11(J1d f , α1)11(J1d f , β1)

f 4

)h
(||η2||

2
2)v +

(11(J1d f , η1)2

f 4

)h
12(α2, β2)v

+
[11(J1d f , α1)11(J1d f , η1)

f 4 −
11(J1d f ,D1

α1
η1)

f 3

]h
12(β2, η2)v

+
[11(J1d f , β1)11(J1d f , η1)

f 4 −

11(J1d f ,D1
β1
η1)

f 3

]h
12(α2, η2)v
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+
(11(J1d f , η1)

f 3

)h(
12(D2

α2
η2, β2) + 12(D2

β2
η2, α2)

)v
.

Using terms P1, P2, P3, P4 and P5 in (47) and after some manipulations provide the result.
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