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Abstract. The question of the basis property of a system of eigenfunctions of one spectral problem for a
discontinuous second-order differential operator with a spectral parameter under discontinuity conditions
is considered in the weighted grand-Lebesgue spaces Lp),ρ(0, 1), 1 < p < +∞, with a general weight ρ(·).
These spaces are non-separable and therefore it is necessary to define its subspace associated with differential
equation. In this paper, using the shift operator, a subspace Gp),ρ(0, 1) is considered, in which the basis
property of exponentials and trigonometric systems of sines and cosines is established when the weight
function ρ(·) satisfies the Muckenhoupt condition. It is proved that the system of eigenfunctions and
associated functions of the discontinuous differential operator corresponding to the given problem forms
a basis in the weighted space Gp),ρ(0, 1) ⊕ C,1 < p < +∞ with the weight ρ(·) satisfying the Muckenhoupt
condition. The question of the defect basis property of the system of eigenfunctions and associated functions
of the given problem in the weighted spaces Gp),ρ(0, 1),1 < p < +∞, is considered.

1. Introduction

Consider the following discontinuous spectral problem in weighted grand-Lebesgue spaces Lp),ρ(0, 1), 1 <
p < +∞, with a general weight ρ(·)

y′′(x) + λy(x) = 0, x ∈ (0, 1) , (1)

y(0) = y(1) = 0,
y( 1

3 − 0) = y( 1
3 + 0),

y′( 1
3 − 0) − y′( 1

3 + 0) = λmy( 1
3 ),m , 0,

 (2)
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where λ is a spectral parameter, m is a nonzero complex number. Note that discontinuous spectral problems
of the form (1), (2) arise in the study of problems of oscillation of a loaded string, one or both ends of which
are fixed. These problems have important applications in mathematics, mechanics, physics, and other fields
of science. More details about such problems can be found in monographs [1, 2]. The basis properties of the
system of eigenfunctions of problem (1), (2) in Lebesgue spaces were studied by various methods in [3–7].
In [3], using the method of the theory of close bases, the basis property of the system of eigenfunctions and
associated functions of problem (1), (2) in the spaces Lp(0, 1) is proved.

In [4, 5] the authors showed that, the problem (1), (2) has two series of eigenvalues λ1,n = (ρ1,n)2,n ∈N,
and λ2,n = (ρ2,n)2,n ∈N ∪ {0}, where

ρ1,n = 3πn, ρ2,n =
3πn

2
+

2 + (−1)n

πmn
+O

( 1
n2

)
,

the corresponding eigenfunctions are expressed by the formulas

y1,n(x) = sin 3πnx, x ∈ [0, 1], n ∈N, (3)

y2,n(x) =
{

sinρ2,n(x − 1
3 ) + sinρ2,n(x + 1

3 ), x ∈ [0, 1
3 ]

sinρ2,n(1 − x), x ∈ [ 1
3 , 1]

. (4)

Problem (1), (2) in weighted Lebesgue spaces with power weights was studied in [7]. Spectral problems
with a discontinuity point and with a spectral parameter in the boundary conditions were also studied in
[8–12].

Recently, in connection with important applications in various areas of mathematics, such as the theory
of partial differential equations, approximation theory, interpolation theory, harmonic analysis, etc., interest
in non-standard function spaces has increased greatly. Among such spaces, we can mention the Lebesgue
space with variable summability exponent, Morrey space, grand-Lebesgue space, etc. Many classical facts
of harmonic analysis, namely, the questions of the boundedness of a singular operator with the Cauchy
kernel, maximal function, Hilbert transforms are studied in non-standard spaces. Numerous articles, survey
papers and monographs of various mathematicians are known in this direction (see [13–26]). Taking into
account the non-separability of the grand-Lebesgue space, when studying problems of differential equations
in them, one has to consider their appropriate subspaces (see [20]) dictated by differential equations. This
idea was applied to problem (1) and (2) in Morrey-type spaces in [13, 15, 34–36].

The presented work is devoted to the study of the question of the basis property of the system of
eigenfunctions of the spectral problem (1) and (2) in weighted spaces Lp),ρ(0, 1), 1 < p < +∞, with a
general weight ρ(·). Section 2 provides the necessary information from the theory of bases and the grand-
Lebesgue space. In Section 3, we prove the basis property of the system of exponentials and the system
of eigenfunctions of the spectral problem (1) and (2) in the weighted spaces Gp),ρ(0, 1) ⊕ C, 1 < p < +∞,
when the weight function ρ(·) satisfies the Muckenhoupt condition. Finally, in Section 4, we study the basis
property of the system of eigenfunctions and associated functions of problem (1), (2) with a finite defect in
the spaces Gp),ρ(0, 1), 1 < p < +∞.

2. Preliminaries and Auxiliary Facts

Throughout the paper,N is the set of natural numbers, Z+ = {0} ∪N is the set of non-negative integers,
R+ is the set of non-negative real numbers, C is the set of complex numbers, δnk is the Kronecker symbol,
|I| is the Lebesgue measure on the line of the set I.

Let us present some concepts and facts concerning the theory of grand Lebesgue spaces. By Lp)(a, b), 1 <
p < +∞, we denote the grand-Lebesgue space of measurable on [a, b] functions f satisfying the condition

∥∥∥ f
∥∥∥

Lp)(a,b)
= sup

0<ε<p−1

(
ε

b − a

∫ b

a
| f (t)|p−εdt

) 1
p−ε

< +∞.



Y. Zeren et al. / Filomat 36:17 (2022), 6037–6050 6039

The space Lp)(a, b) is a non-separable Banach space with the norm
∥∥∥ f

∥∥∥
Lp)(a,b)

(see [26]).
We define a separable subspace of the space Lp)(a, b) as follows. Consider for ∀δ > 0 the shift operator

Tδ f (x) =
{

f (x + δ), x + δ ∈ [a, b],
0, x + δ ∈ R\[a, b], f ∈ Lp)(a, b),

and denote by G̃p)(a, b) the linear manifold of functions f ∈ Lp)(a, b) satisfying the condition

∥∥∥Tδ f − f
∥∥∥

p)
→ 0, δ→ 0.

Let Gp)(a, b) be the closure of G̃p)(a, b) in Lp)(a, b). There is a continuous embedding Lp(a, b) ⊂ Gp)(a, b), and the
inclusion is strict, that is, Gp)(a, b)\Lp(a, b) , ∅. The space Gp)(a, b) is separable in which the set of infinitely
differentiable functions with compact support on the interval [a, b] is dense (see [27, 28]).

Let us present some concepts and facts from the theory of bases in Banach spaces.

Definition 2.1. A system {ϕi}i∈N of a Banach space X is called a basis with parentheses in X if there is a sequence of
integers {nk}k∈Z+ ,n0 = 0,nk < nk+1, k ∈ Z+, such that for ∀x ∈ X there is a unique decomposition

x =
+∞∑
k=0

nk+1∑
i=nk+1

ciϕi.

Obviously, a basis with parentheses for which nk = k, k ∈ Z+ is an ordinary basis.
We need the following theorem.

Theorem 2.2. ([3]) Let the system {ukn}k=(1,m),n∈N form a basis in the space X with the biorthogonal system

{vkn}k=1,m,n∈N and assume An =
(
an

ik

)
i,k=1,m,n∈N

,n ∈N, is a matrix of scalars such that

∆n = det An , 0.

Then the system {ϕkn}k=1,m,n∈N given by the equality

ϕkn =

m∑
i

a(n)
ik uin, k = 1,m, n ∈N,

forms a basis with parentheses in X. In addition, if the conditions

sup
n
{∥An∥ ,

∥∥∥A−1
n

∥∥∥} < +∞, sup
n
{∥ukn∥X , ∥vkn∥X∗ } < +∞,

then the system {ϕkn}k=1,m,n∈N is an ordinary basis in X, ∥An∥ is some norm of the matrix An.

Let the system {ûn}n∈N form a basis in the space X ⊕ Cm with the biorthogonal system {v̂n}n∈N and

ûn =
(
un;α(n)

1 , α
(n)
2 , . . . , α

(n)
m

)
, v̂n =

(
vn; β(n)

1 , β
(n)
2 , . . . , β

(n)
m

)
. (5)

In the following statement, for an arbitrary set J = {n1,n2, ...,nm} of m numbers, we study the basis property
of the system {un}n∈N\J in X obtained from the system {un}n∈N excluding vectors un1 ,un2 , . . . ,unm .

Theorem 2.3. ([29]) Let the system {ûn}n∈N) form a basis in the space X⊕Cm with the biorthogonal system {v̂n}n∈N,
and equalities (5) hold. Let J = {n1,n2, ...,nm} be an arbitrary collection of m natural numbers. Then the system
{un}n∈N\J forms a basis in X if and only if the condition

δ = δ(J) = det
(
βnk

i

)
i
, 0, k = 1,m. (6)
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Moreover, the system {un}n∈N\J has the following biorthogonal system

v∗n =
1
δ

∣∣∣∣∣∣∣∣∣∣∣∣
vn vn1 . . . vnm

β(n)
1 β(n1)

1 . . . β(nm)
1

...
... . . .

...

β(n)
m β(n1)

m . . . β(nm)
m

∣∣∣∣∣∣∣∣∣∣∣∣ .
For δ = 0, the system {un}n∈N\J is not complete and not minimal in X.

It is known that the closeness in a certain sense of a system to a basis under certain conditions ensures
its isomorphic basis property. Let us give the concepts of basis and p−close systems.

Definition 2.4. Systems {ϕi}i∈N and {ψi}i∈N of vectors of the space X are called p-close if the condition

+∞∑
i=1

∥∥∥ϕi − ψi

∥∥∥p

X < +∞.

Definition 2.5. A basis {ui}i∈N of a space X is called a p -basis in X if there exists a number M > 0 such that ∀x ∈ X
satisfies the relation +∞∑

i=1

|< x, vi >|
p


1
p

≤M ∥x∥X ,

where {vi}i∈N is a biorthogonal system to {ui}i∈N.

The next statement gives equivalent conditions when a system p−close to a basis forms a basis isomorphic
to it.

Theorem 2.6. Let the system {ϕi}i∈N form a p−basis in X, the system {ψi}i∈N ⊂ X is q-close to {ϕi}i∈N, where
1
p +

1
q = 1. Then the following properties are equivalent:

1. the system {ψi}i∈N is complete in X;
2. the system {ψi}i∈N is minimal in X;
3. the system {ψi}i∈N forms a basis isomorphic to {ϕi}i∈N.

More details about these and other facts can be found in [30].
We also need the following theorem on the relation between the Lebesgue space function Lp(a, b) and

its Fourier coefficients with respect to the system of functions ϕi(t), i ∈ N, orthonormal and uniformly
bounded on the interval (a, b):

|ϕi(t)| ≤M, t ∈ (a, b), i ∈N.

Theorem 2.7. (F.Riesz)([31]) Let 1 < p ≤ 2, 1
p +

1
q = 1. Then

1. if f ∈ Lp(a, b), then the Fourier coefficients ci =
∫ b

a f (t)ϕi(t)dt of the function f satisfy the inequality +∞∑
i=1

|ci|
q


1
q

≤M
2−p

p
∥∥∥ f

∥∥∥
Lp(a,b)

;

2. if
∑+∞

i=1 |ci|
p < +∞ holds for a sequence of numbers ci, then there exists a function f ∈ Lq(a, b), such that

ci =
∫ b

a f (t)ϕi(t)dt and

∥∥∥ f
∥∥∥

Lq(a,b)
≤M

2−p
p

 +∞∑
i=1

|ci|
p


1
p

.
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3. On the basis property of a system of exponentials and trigonometric systems in weighted grand
Lebesgue spaces

Let ρ : [a, b]→ R+ be some weight function. Ap(a, b), 1 < p < +∞, denotes the Muckenhoupt class, that
is, the class of weight functions ρ(t) satisfying the condition

sup
I⊂[a,b]

1
|I|

∫
I
ρp(t)dt

(
1
|I|

∫
I
ρ(t)−

p
p−1 dt

)p−1

< +∞.

Let Lp),ρ(a, b) be the weighted grand-Lebesgue Banach space of measurable functions f on [a, b] with
finite norm∥∥∥ f

∥∥∥
Lp),ρ(a,b)

=
∥∥∥ fρ

∥∥∥
Lp)(a,b)

,

and W2
p),ρ(a, b), 1 < p < +∞ be the weighted grand-Sobolev space of measurable functions on [a, b] with

finite norm

∥ f ∥W2
p),ρ(a,b) = ∥ρ f ∥W2

p)(a,b),

where W2
p)(a, b) shows grand-Sobolev space of the functions f ∈ Lp)(a, b) such that f ′′ ∈ Lp)(a, b).

We need the following

Lemma 3.1. Let the weight function ρ belong to the class Ap(0, 1), 1 < p < +∞. Then there is a number r0 ∈ (1,+∞)
such that for ∀r ∈ (1, r0) there is a continuous embedding Lp),ρ(0, 1) ⊂ Lr(0, 1).

Proof. To begin with, we prove the theorem for the case of the space Lp,ρ(0, 1). From the known result on
the class Ap(0, 1), there is a number 0 < ε < p − 1, which is true for the inclusion ρ ∈ Ap−ε(0, 1).

Now we choose r0 ∈ (1, p) : 1
r0
= 1 + 1

p −
1

p−ε . Then

p − ε
p − ε − 1

=
pr0

p − r0
. (7)

From (7) we obtain
p − ε

p − ε − 1
>

pr
p − r

∀r ∈ (1, r0). (8)

Since the inclusion ρ−1
∈

(
Lp−ε(0, 1)

)∗
is valid, it follows from (8) that the inclusion ρ−r

∈

(
L p

r
(0, 1)

)∗
also

holds for ∀r ∈ (1, r0). Then for ∀ f ∈ Lp,ρ(0, 1) from | f (t)|r = | f (t)ρ(t)|rρ−r(t), belonging to | f (t)ρ(t)|r ∈ L p
r
(0, 1)

and ρ−r
∈

(
L p

r
(0, 1)

)∗
it follows that f ∈ Lr(0, 1), for ∀r ∈ (1, r0). Indeed, using Hölder’s inequality with

exponent p
r , we obtain

(∫ 1

0
| f (t)|rdt

) 1
r

=

(∫ 1

0
| f (t)ρ(t)|rρ−r(t)dt

) 1
r

≤ cp,r(ρ)
(∫ 1

0
| f (t)ρ(t)|pdt

) 1
p

< +∞, (9)

where cp,r(ρ) =
(∫ 1

0 ρ(t)−
pr

p−r dt
) p−r

pr

< +∞.

Further, let the number 0 < ε < p − 1, be such that the inclusion ρ ∈ Ap−ε(0, 1) is true. Moreover, let a
number such that the inclusion is true. By what was proved, there exists r0 ∈ (1,+∞) such that for∀r ∈ (1, r0),
the embedding Lp−ε,ρ(0, 1) ⊂ Lr(0, 1) takes place. Thus, according to the embedding Lp),ρ(0, 1) ⊂ Lp−ε,ρ(0, 1),
we obtain the embedding Lp),ρ(0, 1) ⊂ Lr(0, 1). Finally, taking into account (9), we obtain∥∥∥ f

∥∥∥
Lr(0,1)

≤ cp,r(ρ)
∥∥∥ f

∥∥∥
Lp−ε,ρ(0,1)

≤ cp,r(ρ)ε−
1

p−ε
∥∥∥ f

∥∥∥
Lp),ρ(0,1)

,

that is, the embedding is continuous.
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Let Gp),ρ(a, b) denote the subspace of the space Lp),ρ(a, b) of functions f such that ρ f ∈ Gp)(a, b). Let us
prove that the classical system of exponentials is a basis in the spaces Gp),ρ(−1, 1).

Theorem 3.2. Let the weight function ρ belong to the class Ap(−1, 1). Then the system of exponentials {einπx
}n∈Z

forms a basis in the space Gp),ρ(−1, 1), 1 < p < +∞.

Proof. It is easy to show that the system of functionals {vn}n∈Z given by the equality

< f , vn >=
1
2

∫ 1

−1
f (x)e−inπxdx, n ∈ Z,

is a biorthogonal system of the system {einπx
}n∈Z. It is known ([32, 33]) that if ρ ∈ Ap(−1, 1) belongs, the

system of exponentials {einπx
}n∈Z forms a basis in the space Lp,ρ(−1, 1). Then from the density of Lp,ρ(−1, 1)

in Gp),ρ(−1, 1), taking into account the continuous embedding of Lp,ρ(−1, 1) ⊂ Gp),ρ(−1, 1), we obtain that the
system {einπx

}n∈Z is complete in Gp),ρ(−1, 1). Indeed, let f ∈ Gp),ρ(−1, 1) and δ > 0. Then from the density
Lp,ρ(−1, 1) in Gp),ρ(−1, 1) there exists 1 ∈ Lp,ρ(−1, 1) such that∥∥∥ f − 1

∥∥∥
Lp),ρ(−1,1)

<
δ
2
. (10)

Since the system {einπx
}n∈Z is complete in Lp,ρ(−1, 1), there exists an h ∈ span{einπx

}n∈Z such that∥∥∥1 − h
∥∥∥

Lp,ρ(−1,1)
<
δ
2c
, (11)

where the number c > 0 is such that
∥∥∥ f

∥∥∥
Lp),ρ(−1,1)

≤ c
∥∥∥ f

∥∥∥
Lp,ρ(−1,1)

, f ∈ Lp,ρ(−1, 1). Then using (10) and (11) we
obtain∥∥∥ f − h

∥∥∥
Lp),ρ(−1,1)

≤

∥∥∥ f − 1
∥∥∥

Lp),ρ(−1,1)
+

∥∥∥1 − h
∥∥∥

Lp),ρ(−1,1)
< δ,

i.e. {einπx
}n∈Z is complete in Gp),ρ(−1, 1). It remains to show that the sequence of projectors

Sm( f )(x) =
m∑

n=−m

< f , vn > einπx,∀ f ∈ Gp),ρ(−1, 1),m ∈ Z+,

is uniformly bounded. Since {einπx
}n∈Z is basis in the space Lp,ρ(−1, 1), there exists a cp > 0 such that∥∥∥Sm( f )

∥∥∥
Lp,ρ(−1,1)

≤ cp

∥∥∥ f
∥∥∥

Lp,ρ(−1,1)
. (12)

Since ρ ∈ Ap, there exists an ε0 ∈ (0, p − 1) such that ρ ∈ Ap−ε0 . Then there is cp−ε0 > 0 such that∥∥∥Sm( f )
∥∥∥

Lp−ε0 ,ρ(−1,1)
≤ cp−ε0

∥∥∥ f
∥∥∥

Lp−ε0 ,ρ(−1,1)
. (13)

Using (12) and (13) according to the Riesz-Thorin theorem for ε : ε0 ≤ ε < p − 1 we get∥∥∥Sm( f )
∥∥∥

Lp−ε,ρ(−1,1)
≤ c1(p, ε0)

∥∥∥ f
∥∥∥

Lp−ε,ρ(−1,1)
. (14)

In other case for ε : 0 < ε < ε0, using Hölder’s inequality and (12), we have∥∥∥Sm( f )
∥∥∥

Lp−ε,ρ(−1,1)
≤ c2(p, ε0)

∥∥∥ f
∥∥∥

Lp−ε0 ,ρ(−1,1)
. (15)

Therefore, taking into account (14) and (15), we obtain∥∥∥Sm( f )
∥∥∥

Lp),ρ(−1,1)
≤ sup
ε0≤ε<p−1

ε
1

p−ε
∥∥∥Sm( f )

∥∥∥
Lp−ε,ρ(−1,1)

+ sup
0<ε<ε0

ε
1

p−ε
∥∥∥Sm( f )

∥∥∥
Lp−ε,ρ(−1,1)

≤

≤ c1(p, ε0)
∥∥∥ f

∥∥∥
Lp),ρ(−1,1)

+ c3(p, ε0)
∥∥∥ f

∥∥∥
Lp),ρ(−1,1)

= c(p, ε0)
∥∥∥ f

∥∥∥
Lp),ρ(−1,1)

,

i.e. ∥Sm∥ ≤ c(p, ε0). The theorem is proved.
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Now let us establish the basicity of trigonometric systems of sines and cosines in the weighted grand-
Lebesgue spaces.

Theorem 3.3. Let the weight function ρ belong to the class Ap(0, 1). Then the system of sines {sinπnx}n∈N and
cosines {cosπnx}n∈Z+ form a basis in the space Gp),ρ(0, 1), 1 < p < +∞.

Proof. Let θ(x) be an even extension of the function ρ(x) to [−1, 1], that is,

θ(x) =
{
ρ(t), t ∈ [0, 1]
ρ(−t), t ∈ [−1, 0] .

Let us show that from ρ ∈ Ap(0, 1) it follows that θ ∈ Ap(−1, 1). For an arbitrary interval I ⊂ [−1, 1], I = I1∪ I2,
where I1 = I ∩ [0, 1] and I2 = I ∩ [−1, 0], consider the set

I+ =
{

I1, |I2| ≤ |I1|

I2, |I1| ≤ |I2|
.

Let J = I+ ∪ I−, where I− is the set of numbers opposite to the numbers in the set I+. It is obvious that
I ⊂ J ⊂ [−1, 1]. We have

sup
I⊂[−1,1]

1
|I|

∫
I
θp(t)dt

(
1
|I|

∫
I
θ(t)−

p
p−1 dt

)p−1

≤ sup
I⊂[−1,1]

1
|I+|

∫
J
θp(t)dt

(
1
|I+|

∫
J
θ(t)−

p
p−1 dt

)p−1

=

= sup
I⊂[−1,1]

2
|I+|

∫
I+
θp(t)dt

(
2
|I+|

∫
I+
θ(t)−

p
p−1 dt

)p−1

= 2p sup
I⊂[0,1]

1
|I|

∫
I
ρp(t)dt

(
1
|I|

∫
I
ρ(t)−

p
p−1 dt

)p−1

< +∞.

Let us take an arbitrary function f ∈ Gp),ρ(0, 1) and extend it in an odd way, namely, let

F(t) =
{

f (t), t ∈ [0, 1]
− f (t), t ∈ [−1, 0] .

We have

∥F∥Lp),θ(−1,1) = sup
0<ε<p−1

(
ε
2

∫ 1

−1
|F(t)θ(t)|p−εdt

) 1
p−ε

= sup
0<ε<p−1

(
ε

∫ 1

0
| f (t)ρ(t)|p−εdt

) 1
p−ε

=
∥∥∥ f

∥∥∥
Lp),ρ(0,1)

< +∞

i.e. F ∈ Lp),θ(−1, 1). It follows immediately that F ∈ Gp),θ(−1, 1) (see Lemma 2.3, [27]). Then F can be
expanded in the basis {einπx

}n∈Z in the form

F(x) =
+∞∑

n=−∞

cneinπx.

For the coefficients cn we have

cn =
1
2

∫ 1

−1
F(t)e−inπtdt =

1
2

∫ 1

0
f (t)e−inπtdt −

1
2

∫ 1

0
f (t)einπtdt =

= −
1
2

∫ 1

0
f (t)

(
einπt
− e−inπt

)
dt =

1
i

∫ 1

0
f (t) sinπntdt =

1
2i
< f , 1n >,n ∈N

where < f , 1n >= 2
∫ 1

0 f (x) sinπnxdx. It is clear that the system {1n}n∈N is a biorthogonal system to the
system {sinπnt}n∈N. Taking into account the equality c−n = −cn, n ∈N, and c0 = 0 for ∀m ∈N, we obtain

m∑
n=−m

cneiπnt =

m∑
n=1

cneiπnt
−

m∑
n=1

cne−iπnt =

m∑
n=1

cn

(
eiπnt
− e−iπnt

)
=
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= 2i
m∑

n=1

cn sinπnt =
m∑

n=1

< f , 1n > sinπnt.

It is easy to show that F(t) −
∑m

n=−m cneint is an odd extension of f (t) −
∑m

n=1 < f , 1n > sinπnt to [−1, 1].
Therefore, as m→∞, we obtain∥∥∥∥∥∥∥ f −

m∑
n=1

< f , 1n > sinπnt

∥∥∥∥∥∥∥
Lp),ρ(0,1)

=

∥∥∥∥∥∥∥F −
m∑

n=−m

cneiπnt

∥∥∥∥∥∥∥
Lp),θ(−1,1)

→ 0,

that is, the system {sinπnt}n∈N forms a basis in the space Gp),ρ(0, 1).
The system of cosines {cosπnt}n∈Z+ in the space Gp),ρ(0, 1) is proved in a similar way. The theorem is

proved.

Remark 3.4. i) Let the weight function ρ belong to the class Ap(−1, 1). Then there exists a number r > 2 such
that the system of exponentials {einπx

}n∈Z forms an r-basis in the space Gp),ρ(−1, 1), 1 < p < +∞.
ii) Let the weight function ρ belong to the class Ap(0, 1). Then there is a number r > 2 such that the trigonometric

systems {sinπnx}n∈N and {cosπnx}n∈Z+ form an r−basis in the space Gp),ρ(0, 1), 1 < p < +∞.

Indeed, by Lemma 3.1, there exists a number r > 2 such that there is a continuous embedding Gp),ρ(0, 1) ⊂
Lr′ (0, 1), r′ = r

r−1 .
Therefore, by the Hausdorff-Young Theorem, for ∀ f ∈ Gp),ρ(0, 1), the following inequality holds:∑

n∈Z

|cn|
r


1
r

≤ c
∥∥∥ f

∥∥∥
Lr′ (0,1)

≤M
∥∥∥ f

∥∥∥
Lp),ρ(0,1)

,

where cn =
1
2

∫ 1

−1 f (x)e−inπxdx. Therefore, the system {einπx
}n∈Z is an r−basis in Gp),ρ(0, 1). The r−basicity of

systems of sines and cosines in Gp),ρ(0, 1) is established similarly.

4. On the basis property of the system of eigenfunctions of the differential operator of the corresponding
problem (1),(2)

Let GW2
p)(a, b), 1 < p < +∞ denote the grand-Sobolev subspace of the space W2

p)(a, b) (see [29]) of the
functions f ∈W2

p)(a, b) for which f ′′ ∈ Gp)(a, b). Consider the following direct sum

GW2
p)

((
0,

1
3

)
∪

(1
3
, 1

))
= GW2

p)

(
0,

1
3

)
⊕ GW2

p)

(1
3
, 1

)
.

Consider the operator L in the space Gp)(0, 1) ⊕ C by the formula

L(ŷ) =
(
−y′′; y′

(1
3
− 0

)
− y′

(1
3
+ 0

))
, (16)

which domain Dp)(L) consists of

ŷ =
(
y; my

(1
3

))
∈ GW2

p)

((
0,

1
3

)
∪

(1
3
, 1

))
⊕ C

satisfying the conditions

y(0) = y(1) = 0, y
(1

3
− 0

)
= y

(1
3
+ 0

)
.
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It follows from the results of [3, 4] that the operator L defined by equality (16) with the domain Dp(L)
consisting of ŷ =

(
y,my

(
1
3

))
such that

y ∈W2
p

((
0,

1
3

)
∪

(1
3
, 1

))
, y(0) = y(1) = 0, y

(1
3
− 0

)
= y

(1
3
+ 0

)
is a closed densely defined operator in the space Lp(0, 1) ⊕ C, with a compact resolvent. Moreover, the
eigenvalues of the operator L and problem (1), (2) coincide, and the system {ŷn}n∈N of eigenfunctions
and associated functions of the operator L are expressed by the system of eigenfunctions and associated
functions {yn}n∈Z+ of problem (1), (2) in the form

ŷn =
(
yn; myn

(1
3

))
. (17)

These facts also hold for the operator L, with the domain of definition Dp)(L) in the space Gp)(0, 1) ⊕ C. The
following takes place.

Theorem 4.1. Let L be an operator defined in Gp)(0, 1) ⊕C, 1 < p < +∞ by formula (16) with domain Dp)(L). Then
the operator L is a closed densely defined operator in the space Gp)(0, 1)⊕C, with a compact resolvent. The eigenvalues
of the operator L and problem (1),(2) coincide, and the corresponding eigenvectors are

ŷ1,n(x) =
(
y1,n(x); my1,n

(1
3

))
, n ∈N

ŷ2,n(x) =
(
y2,2n(x); my2,2n

(1
3

))
, n ∈ Z+ (18)

ŷ3,n(x) =
(
y2,2n−1(x); my2,2n−1

(1
3

))
, n ∈N

where the systems {y1,n}n∈N and {y2,n}n∈Z+ are expressed by formulas (3) and (4), respectively.

Proof. Obviously, there is a continuous embedding

Dp(L) ⊂ Dp)(L) ⊂ Dp−ε(L), ε ∈ (0, p − 1)

Take arbitrary ŷ ∈ Gp)(0, 1) ⊕ C and a positive number δ > 0. Due to the density Lp(0, 1) ⊕ C in Gp)(0, 1) ⊕ C,
there exists û ∈ Lp(0, 1) ⊕ C such that∥∥∥ŷ − û

∥∥∥
Lp)(0,1)⊕C

< δ. (19)

Since Dp(L) is dense in Lp(0, 1) ⊕ C, there exists v̂ ∈ Dp(L) such that

∥û − v̂∥Lp(0,1)⊕C < δ.

The continuity of the embedding Lp(0, 1) ⊂ Lp)(0, 1) implies that there exists a number c > 0 such that

∥û − v̂∥Lp)(0,1)⊕C ≤ c ∥û − v̂∥Lp(0,1)⊕C < cδ. (20)

Therefore, from (19) and (20) we obtain∥∥∥ŷ − v̂
∥∥∥

Lp)(0,1)⊕C
≤

∥∥∥ŷ − û
∥∥∥

Lp)(0,1)⊕C
+ ∥û − v̂∥Lp)(0,1)⊕C < δ + cδ = (1 + c)δ.

Hence, taking into account Dp(L) ⊂ Dp)(L), we conclude that ŷ ∈ Dp)(L).
Let us establish the closedness of the operator L in Gp)(0, 1) ⊕ C. Let the sequences x̂n ∈ Dp)(L) and

L(x̂n) = ẑn converge in Gp)(0, 1)⊕C to x̂ ∈ Gp)(0, 1)⊕C and ẑ ∈ Gp)(0, 1)⊕C, respectively. Let us fix a number
ε ∈ (0, p − 1). From x̂n ∈ Dp−ε(L) and the continuity of the embedding Dp)(L) ⊂ Dp−ε(L) we obtain that x̂n
converges to x̂ in Lp−ε(0, 1) ⊕ C. Since the operator L is closed (see [4]) in Lp−ε(0, 1) ⊕ C, we obtain that
x̂ ∈ Dp−ε(L) and L(x̂) = ẑ. It follows from ẑ ∈ Gp)(0, 1) ⊕ C and L(x̂) = ẑ that x′′ ∈ Gp)(0, 1), and therefore
x̂ ∈ Dp)(L), that is, the operator L is closed in Gp)(0, 1) ⊕ C. The rest of the proof is clear. The theorem is
proved.
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As is known ([4]), the system of eigenvectors and associated vectors of the operator L with domain Dp(L)
forms a basis in the space Lp(0, 1) ⊕ C and its biorthogonally conjugate system has the form

ẑn =
(
zn; mzn

(1
3

))
, (21)

where {zn}n∈Z+ is the system of eigenfunctions of the corresponding adjoint spectral problem

z′′(x) + λz(x) = 0, x ∈
(
0,

1
3

)
∪

(1
3
, 1

)
,

z(0) = z(1) = 0,

z
(1

3
− 0

)
= z

(1
3
+ 0

)
,

z′
(1

3
− 0

)
− z′

(1
3
+ 0

)
= λmz

(1
3

)
.

The system {zn}n∈Z+ is determined by the formulas

z1,n(x) = 2 sin 3πnx x ∈ [0, 1], n ∈N. (22)

z2,n(x) =

 c2,n

(
sin 3πn

2

(
x − 1

3

)
+ sin 3πn

2

(
x + 1

3

))
+O

(
1
n

)
, x ∈

[
0, 1

3

]
c2,n sin 3πn

2 (1 − x) +O
(

1
n

)
, x ∈

[
1
3 , 1

] ,n ∈ Z+ (23)

where c2,n are normalizing numbers for which the asymptotic relations are valid

c2,n =
2 + (−1)n

3
+O

(1
n

)
, n ∈ Z+.

Let us prove that a similar fact holds for the operator L with domain Dp)(L) in the space Gp),ρ(0, 1) ⊕ C.

Theorem 4.2. Let the weight function ρ belong to the class Ap(0, 1). Then the system {ŷn}n∈Z+ of eigenvectors and
associated vectors of the operator L forms a basis in the space Gp),ρ(0, 1) ⊕ C, 1 < p < +∞.

Proof. It follows from Theorem 4.1 that the system {ŷn}n∈Z+ of eigenvectors and associated vectors of the
operator L is defined by formulas (17) and (18). It is not difficult to show that the system {ẑn}n∈Z+ is also a
biorthogonal system for {ŷn}n∈Z+ in Gp)(0, 1) ⊕ C. Consider the following system of functions

u1,n(x) = sin 3πnx, x ∈ [0, 1], n ∈N,

u2,n(x) =

 2(−1)n sin 3πnx, x ∈
[
0, 1

3

]
sin 3πnx, x ∈

[
1
3 , 1

] , n ∈N, (24)

u3,n(x) =

 0, x ∈
[
0, 1

3

]
− cos 3π

(
n − 1

2

)
x, x ∈

[
1
3 , 1

] , n ∈N.

Comparing formulas (4) and (24), we obtain

y,n(x) = u1,n(x) +O
(1

n

)
, n ∈N,

y2,2n(x) = u2,n(x) +O
(1

n

)
, n ∈N, (25)
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y2,2n−1(x) = u3,n(x) +O
(1

n

)
, n ∈N.

We put

e1,n(x) =

 sin 3πnx, x ∈
[
0, 1

3

]
0, x ∈

[
1
3 , 1

] ,

e2,n(x) =

 0, x ∈
[
0, 1

3

]
sin 3πnx, x ∈

[
1
3 , 1

] ,

e3,n(x) =

 0, x ∈
[
0, 1

3

]
− cos 3π

(
n − 1

2

)
x, x ∈

[
1
3 , 1

] .

Theorem 3.3 immediately implies that the system {sin 3πnx}n∈N forms a basis in Gp),ρ

(
0, 1

3

)
. Changing the

variable in the form t = 3x−1
2 , the basis property of the system {sin 3πnx;− cos 3π

(
n − 1

2

)
}n∈N in Gp),ρ

(
1
3 , 1

)
reduces to the basis property of the system {sinπnt}n∈N in Gp),ρ(0, 1). Therefore, the system {ei,n}i=1,3,n∈N
forms a basis in Gp),ρ(0, 1). According to (24), the system {ui,n}i=1,3,n∈N is transformed through the system
{ei,n}i=1,3,n∈N by the formula

ui,n(x) =
3∑

j=1

a(n)
i j e j,n(x), i = 1, 2, 3, n ∈N. (26)

The matrix of transformation coefficients (26) has the form

An =

 1 1 0
2(−1)n 1 0

0 0 1

 ,
and det An = 1− 2(−1)n , 0. Hence, by Theorem 2.2, the system {ui,n}i=1,3,n∈N also forms a basis in Gp),ρ(0, 1).
Then it is obvious that the system {û0} ∪ {ûi,n}i=1,3,n∈N forms a basis in Gp),ρ(0, 1), where

û0(x) = (0; 1), ûi,n(x) =
(
ui,n(x); 0

)
, i = 1, 3, n ∈N.

Further, take an arbitrary vector f̂ = ( f ;α) ∈ Lp),ρ(0, 1)⊕C. By Lemma 3.1, there exists a number r ∈ (1, 2) such
that Lp),ρ(0, 1) is continuously embedded in Lr(0, 1). Then f ∈ Lr(0, 1) and, according to the Hausdorff-Young
inequality and the continuity of the embedding Lp),ρ(0, 1) ⊂ Lr(0, 1), we have 3∑

i=1

+∞∑
n=1

| < f , ei,n > |
r′


1
r′

≤M1

∥∥∥ f
∥∥∥

Lp),ρ(0,1)
, (27)

where M1 > 0 is some number, 1
r +

1
r′ = 1. It is easy to show that the system {vi,n}i=1,3,n∈N transforms through

the system {ei,n}i=1,3,n∈N in the form

vi,n(x) =
3∑

j=1

b(n)
i j e j,n(x), i = 1, 2, 3, n ∈N,

where the transformation matrix is Bn =
(
b(n)

i, j

)
=

(
A−1

n

)∗
. Then

| < f , vi,n > |
r′
≤

 3∑
j=1

|b(n)
i j |

r


r′
r 3∑

j=1

| < f , e j,n > |
r′ .
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Hence, taking into accou(27), we obtain 3∑
i=1

+∞∑
n=1

| < f , vi,n > |
r′


1
r′

≤ sup
n

 3∑
j=1

|b(n)
i j |

r


1
r
 3∑

i=1

+∞∑
n=1

| < f , ei,n > |
r′


1
r′

≤

≤M1 sup
n

 3∑
j=1

|b(n)
i j |

r


1
r ∥∥∥ f

∥∥∥
Lp),ρ(0,1)

=M2

∥∥∥ f
∥∥∥

Lp),ρ(0,1)
. (28)

Thus, taking into account (28) and that < f , v0 >= α, we obtain 3∑
i=1

+∞∑
n=1

| < f , vi,n > |
r′ + | < f , v0 > |

r′


1
r′

≤

 3∑
i=1

+∞∑
n=1

| < f , vi,n > |
r′


1
r′

+ | < f , v0 > |
r′
≤

≤M2

∥∥∥ f
∥∥∥

Lp),ρ(0,1)
+ |α| ≤M2

(∥∥∥ f
∥∥∥

Lp),ρ(0,1)
+ |α|

)
=M2

∥∥∥ f̂
∥∥∥

Lp),ρ(0,1)
.

This inequality implies that the system {û0} ∪ {ûi,n}i=1,3,n∈N is an r′−basis in Gp),ρ(0, 1) ⊕ C. We put

ŷ0(x) = (y0(x); 1) = (0; 1),

ŷ1,n(x) =
(
y1,n(x); my1,n

(1
3

))
,

ŷ2,n(x) =
(
y2,2n(x); my2,2n

(1
3

))
,

ŷ3,n(x) =
(
y2,2n−1(x); my2,2n−1

(1
3

))
.

It follows from (25) that for ∀r : r > 1 the condition

3∑
i=1

+∞∑
n=1

∥∥∥ŷi,n − ûi,n

∥∥∥r

Lp),ρ(0,1)⊕C
< +∞,

and hence the systems {ŷ0}∪{ŷi,n}i=1,3,n∈N and {û0}∪{ûi,n}i=1,3,n∈N are r−close. It follows from the results of [4]
that the system {ŷ0} ∪ {ŷi,n}i=1,3,n∈N is minimal in Lp(0, 1) ⊕ C and its biorthogonal system {v̂0} ∪ {v̂i,n}i=1,3,n∈N
has the form

v̂0(x) = (0; 1), v̂i,n(x) = (vi,n(x); 0), i = 1, 2, 3, n ∈N,

where

v1,n(x) =

 6
1−2(−1)n sin 3πnx, x ∈

[
0, 1

3

]
−

6(−1)n

1−2(−1)n sin 3πnx, x ∈
[

1
3 , 1

] ,

v2,n(x) =

 − 6
1−2(−1)n sin 3πnx, x ∈

[
0, 1

3

]
3

1−2(−1)n sin 3πnx, x ∈
[

1
3 , 1

] ,

v3,n(x) =

 0, x ∈
[
0, 1

3

]
−3 cos 3π

(
n − 1

2

)
x, x ∈

[
1
3 , 1

] .

Taking into account the embedding of Lp(0, 1) ⊂ Lp)(0, 1) ⊂ Lp−ε(0, 1), 0 < ε < p − 1, we see that the
system {v̂0} ∪ {v̂i,n}i=1,3,n∈N is a system of linear continuous functionals in Lp)(0, 1) ⊕ C, that is, the system
{ŷ0}∪{ŷi,n}i=1,3,n∈N is minimal in Lp)(0, 1)⊕C. Thus, since {û0}∪{ûi,n}i=1,3,n∈N is an r′− basis in Gp),ρ(0, 1)⊕C and
the system {ŷ0} ∪ {ŷi,n}i=1,3,n∈N is r−close to {û0} ∪ {ûi,n}i=1,3,n∈N, it follows from the minimality of the system
{ŷ0} ∪ {ŷi,n}i=1,3,n∈N by Theorem 2.6 that it forms a basis in Gp),ρ(0, 1) ⊕ C isomorphic to {û0} ∪ {ûi,n}i=1,3,n∈N.
The theorem is proved.
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In the next theorem, we study the basic properties of the system of eigenvectors and associated vectors
{y0} ∪ {yi,n}i=1,2,n∈N of problem (1), (2) in the space Gp),ρ(0, 1), 1 < p < +∞.

Theorem 4.3. Let the weight function ρ belong to the class Ap(0, 1). The following statements are true:

i) if from the system {y0} ∪ {yi,n}i=1,2,n∈N we discard an arbitrary function y2,n0 (x) corresponding to a simple
eigenvalue, then the resulting system forms a basis in the space Gp),ρ(0, 1), 1 < p < +∞;

ii) if from the system {y0} ∪ {yi,n}i=1,2,n∈N we discard an arbitrary function y1,n0 (x), then the resulting system is
not a basis in Gp),ρ(0, 1), 1 < p < +∞. Moreover, this system is incomplete and not minimal in Gp),ρ(0, 1), 1 <
p < +∞.

Proof. By Theorem 4.2, the system {ŷ0} ∪ {ŷi,n}i=1,2,n∈N,

ŷ0(x) = (0; 1),

ŷi,n(x) =
(
yi,n(x); myi,n

(1
3

))
, i = 1, 2,

forms a basis in Gp),ρ(0, 1) ⊕C and has a biorthogonal system {ẑ0} ∪ {ẑi,n}i=1,2,n∈N given by formulas (22) and
(23). Let y2,n0 (x) be an arbitrary eigenfunction of problem (1), (2) corresponding to a simple eigenvalue.
Since δ = mz2,n0

(
1
3

)
, 0 holds for the system {y0} ∪ {yi,n}i=1,2,n∈N without y2,n0 (x), by virtue of Theorem 2.3 it

forms a basis in Gp),ρ(0, 1), i.e., assertion i) holds.
Next, take an arbitrary function y1,n0 (x) and consider the question of the basis property of the system

{y0} ∪ {yi,n}i=1,2,n∈N with the discarded function y1,n0 (x). For this system, we have δ = mz1,n0

(
1
3

)
= 0. Then,

by Theorem 2.3, the resulting system is not complete and not minimal in Gp),ρ(0, 1).
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