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A Complete Convergence Theorem of the Maximum of Partial Sums
Under the Sub-Linear Expectations

Fengxiang Feng?, Xiang Zeng®

*Guilin University of Technology, Guilin, Guangxi 541004, PR China

Abstract. Let {X, X,,;n > 0} be a sequence of independent and identically distributed random variables in
a sub-linear expectation space (Q, H,E). We establish a complete convergence theorem of the maximum

of partial sums maxi<j<, |Zf,:1 Xi| under optimal moment condition in a sub-linear expectation space. Our
result generalizes and improves the corresponding results.

1. Introduction

In the probability space, let 1 < a <2,y > 0 and let {X, X,;;n > 1} be a sequence of negatively associated
and identically distributed random variables with E(X) = 0. Sung [1] proved that if

EIX|” < o0 fory > a,
EIX|*log(IX| +2) <o fory =aq, (1.1)
E|IX|* < o0 fory <a,
then for any € > 0,
- k
nlp [{gi)y(l Z ani X > ent’® logl/V n] < oo, (1.2)
n=1 i=1
where {a,;;1 <i <n,n > 1} is an array of real numbers satisfying
z_ a,:|¢
Liza lail” < oo, (1.3)
n>1

Here and thereafter, log denotes the logarithm to the base 2. Chen and Sung [2] proved that E|X|" < oo is
optimal moment condition for (1.2) when y > a and obtained an almost optimal condition E|X]|* logl_“/ 7(1X]+

2) < oo for (1.2) when y < a. They put forward an open question of finding optimal moment condition for
(1.2) wheny < a.
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In this paper, we provide the necessary and sufficient conditions in a sub-linear expectation space for

(o)
Z n "W | max
1<k<n

n=1

k

Z i Xi

> enl/“i(nl/“)] < o, (1.4)

where L(.) is the de Bruijn conjugate of a slowly varying function L(.) defined on [A, o) for some A > 0. By
letting L(x) = log_l/ 7(x), x > 2, we can obtain optimal moment condition for (1.2) in a sub-linear expectation
space. Our result generalizes and improves the corresponding results of Sung [1], Chen and Sung [2].

In the classical probability space, the additivity of the probability and the expectation is assumed. But
in practice, such additivity assumption is not feasible in many areas of applications because the uncertain
phenomena can not be modeled by using additive probability or additive expectation. To model uncertain
phenomena in many areas, such as economics, finance and insurance, Peng [3-4] introduced the general
framework of the sub-linear expectation in a general function space. Kuczmaszewska [5], Xi et al. [6]
and Feng et al. [7] all studied the complete convergence theorems under the sub-linear expectations. But
there are few results about complete convergence theorems of the maximum of partial sums in sub-linear
expectation space. We will investigate this aspect.

The sub-linear expectation is a nonlinear expectation. We can not use the additivity of the probability
and the linear property of expectation in a sub-linear expectation space. Many powerful methods in the
probability space are no longer valid in sub-linear expectation space. For example, “the divergent part” of
Borel-Cantelli lemma is no longer valid. When proving the necessary moment condition of the complete
convergence, we can not use “the divergent part” of Borel-Cantelli lemma, but need to use a more skilled
method to prove it in sub-linear expectation space. There is no perfect Rosenthal inequality in the sub-linear
expectation space as that in the probability space. The Rosenthal inequality in the sublinear expectation
space contains the upper and lower expectation parts, which need to be handled skillfully when used, and
so on. The study of complete convergence theorems of the maximum of partial sums under sub-linear
expectations becomes much more complex and challenging.

Throughout this paper, C stands for positive constant which may differ from one place to another and
I(.) denotes an indicator function. Let L(.) be a slowly varying function. Then by Theorem 1.5.13 of Bingham
et al. [8], there exists a slowly varying function L(.), unique up to asymptotic equivalence, satisfying

%gg L(x)L(xL(x)) = 1 and J}Lrg L(x)L(xL(x)) = 1. (1.5)

The function L is called the de Bruijn conjugate of L, and (L, L) is called a (slowly varying) conjugate pair
(see, e.g., Bingham et al. [8] p. 29). We can chose L(x) = 1/L(x).

2. Preliminaries

We use the framework and notations of Peng [3]. Let (Q, ¥) be a given measurable space and let H be a
linear space of real functions defined on (Q, ) such that if Xi, - - -, X,, € H then ¢(Xy,- - -, X,,) € H for each
¢ € Ci1ip(R"), where C;1;,(IR") denotes the linear space of (local Lipschitz) functions ¢ satisfying

lp(x) —p(y)l < CA + X" + |ly/")lx—yl, Yx,yeR",

for some C > 0,m € N depending on ¢. H is considered as a space of “random variables”. If X is an
element of set H, then we denote X € H.

Definition 2.1. (Peng [3]) A sub-linear expectation E on H is a function E:H - R satisfying the following
properties: for all X,Y € H, we have

(a) Monotonicity: If X > Y then ’@E\[X] > E[Y],’
(b) Constant preserving: E[c] = c;
(c) Sub-additivity: E[X + Y] < E[X] + E[Y] whenever E[X] + E[Y] is not of the form +oco — oo or —oco + oo;
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(d) Positive homogeneity: E[AX] = AE[X],A > 0.
Here R = [—co, +00]. The triple (Q, H, E) is called a sub-linear expectation space. Given a sub-linear expectation E,
let us denote the conjugate expectation & of E by

E[X] := -E[-X], VX € H.

From the deflrutlon, we can easily get that S[X] < ]E[X], IE[X +c] = [X] +c, E[X Y] > IE[X] - E[Y] and
IIE[X] ]E[Y]I < IE[IX Y|]. Further, if ]E[IXI] is finite, then S[X] and IE[X] are both finite.

Definition 2.2. (Peng [3])

(i) (Identical distribution) Let X1 and X, be two n-dimensional random vectors defined respectively in sub-linear
expectation spaces (Ql,ﬂl,ﬁl) and (Qp, WQ,EQ). They are called identically distributed, denoted by Xlin, if
El [p(X1)] = I’E\z[(p(Xz)], Vo € Ci1ip(IR"), whenever the sub-expectations are finite.

(ii) (Independence) In a sub-linear expectation space (Q, H, ]E) a random vector Y = (Y1, Yy, Y,), YieH

is said to be independent to another random vector X = (X4, Xa,- - -, Xw), Xi € H under E if for each test function
¢ € Cirip(R™ X R") we have E[¢p(X,Y)] = IE[IE[(p(x Ylly-x] whenever P(x) = ]E[l(p(x Y)|] < oo forall x and
E[lp(X)[] < co.

(iii) (IID random variables) A sequence of random wvariables {X,;n > 1} is said to be independent if Xi.1 is
independent to (X1, Xa, - - -, Xi) for each i > 1, and it is said to be identically distributed if X; 4 Xy, for eachi > 1.

Next, we introduce the capacities corresponding to the sub-linear expectations. Let G C ¥. A function
V:G — [0,1] is called a capacity if

V() =0, V(Q) =1, and V(A) < V(B) YACB,A,B€G.

It is called to be sub-additive if V(A U B) < V(A) + V(B) for allA,Be GwithAUBe G.

Let (Q, H, E) be a sub-linear expectation space, and & be the conjugate expectation of E. We denote a
pair (V, V) of capacities by

V(A) = inf{E[&] : [(A) < &, & € H), V(A):=1-V(A), VA F,
where A€ is the complement set of A. It is obvious that V is sub-additive and
V(A) = E[[(A)], V(A) := E[I(A)], if I(A) € H,

E[f] < V(A) < Elg], ELf] < V(A) < Elg), if f <I(A) < g, f,9 € H. @.1)
This implies Markov inequality: VX € H,
V(X| > x) < E[IXP]/x", Yx>0,p>0
from I(X]| > x) < |X|P/x? € H. By Lemma 4.1 in Zhang [9], we have Holder inequality: VX, Y € H, p,g > 1,
satisfyingp™l +¢q71 =1,
E[IXY]] < (E[IXPD (E[IY])7,

particularly, Jensen inequality:
ENXI)" < (E[XF]):, for0<r<s.

Definition 2.3. (Zhang [9]) (I) A function V : & — [0, 1] is called a continuous capacity if it satisfies
(I1) Continuity from below: V(A,) T V(A) if A, T A, where Ay, A € F;
(12) Continuity from above: V(A,) | V(A) if A, | A, where A,,A € F.
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We define the Choquet integrals/expecations (Cy, Cy) by
00 0

Cyv(X) := f V(X 2 x)dx + f (V(X = x)—1)dx
0 —0co

with V being replaced by V and V, respectively. If lim. E[(IXl —-0)*] =0, then E[IXI] < Cy(IX]) ( see
Lemma 4.5(iii) of Zhang [9]).

3. Main Results

Theorem 3.1. Let 1 < a < 2, {X,X,;n > 1} be a sequence of independent and identically distributed random
variables in a sub-linear expectation space (QQ, H,E). V is continuous and L(.) is a slowly varying function defined

on [A, o) for some A > 0. When o = 1, we assume further that L(x) > 1 and is increasing on [A, o). Let
b, = nY/*L(n'*),n > A% If
E[X] = [X] =0, E[XI"L*(X|+A)] < Cy[IXI"LY(IX] + A)] < o0 3.1)

and for every array of constants {a,;,n > 1,1 < i < n} satisfying

=

a2, <Cn,nx1, (3.2)

then for any € > 0

i
y n—w[max Y x| > b] oo 6
1<j<n |4
n>A%* i=1
j
Z n v [max ZXi > ebn] < o0 (3.4)
1<j<n |4
n>A® i=1
and
j
maxi<j<y | X Xi’
lim - =0 as. V. (35
n—o0 b,

Conwversely, if (3.5) holds, then Cy[|X|*L*(1X| + A)] < oo.

Remark 3.2 Our Theorem 3.1 is a very general and good result. If we take L(x) = log™/7(x),x > 2 in
Theorem 3.1, we can obtain optimal moment condition for (1.2) under the sub-linear expectations. Hence
our result generalizes and improves the corresponding results of Sung [1] and Chen and Sung][2].

4. Proof of main result

In order to prove our results, we need the following lemmas. Lemma 4.1 is obvious.

L

Lemma 4.1. Let o, B > 0 and and L(.) be a slowly varying function. Let f(x) = x*FL*(xP) and h(x) = x ﬁ(xi).

Then
i F000)_ MU0 wn

X—00 X X—00
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Lemma 4.2. Under the conditions of Theorem 3.1, suppose X € H and b, = n*/*L(n'/*). Then for any ¢ > 0,

Cy[IXIPLY(X] + A)] < 00 & Z V(X| > cby,) < o 42)
n>A«
and
CylIXIPLY(IX] + A)] < 00 = Y 2°V(X| > by) < o0, (43)
k>ko

where kg is some positive integer.
Proof Let f(x) = x*L*(x) and h(x) = x%i(x%). Since L(.) is positive and bounded on finite closed intervals,
CylIXI*L*(1X] + A)] < 00 & Cy[f(IX] + A)] < co.

By the defination of the Choquet expecations, we have Cy[|X]|] = fow V(X| > x)dx. Then Cy[|X]] < 0 &
Y1 V(IX| > ¢n) < oo. Then Cy[f(IX] + A)] < o is equivalent to

Z V(f(IX| + A) > cn) < oo, (4.4)

n=1

By using Lemma 4.1 with § = 1, we have f(h(x)) ~ h(f(x)) ~ x as x = co. Then by the fact that f(x) and h(x)
are increasing on [A, c0), we get (4.4) is equivalent to

Z V(X| > ¢by) < oo. (4.5)
n>A%
When Cy[|X|*L*(1X]| + A)] < oo, there is some positive integer ko such that
00> Z V(X| > cby)

n>A

zi 2 V(X > by)

k=ko 2k-1<n<2k

=C Z KV(IX] > by).

k=ko
The proof of Lemma 4.2 is completed.
Lemma 4.3. Zhang [9] Let {X,,; n > 1} bea sequence of independent random variables in (1, H, E) and S, = Y.\, X;.

Suppose p > 2. Then
p/2

E [max |sk|r’] <G Z E[|X¢l] + [Z E[X?]
k=1 k=1

1<k<n

p

+C, [Z[(E[Xkl)- + (BIX)']

k=1

Proof of Theorem 3.1 For simplicity, we assume that A® is an integer number. For 0 < p < 1, let
g(x) € C1jp(R),0 < g(x) < 1forall x, g(x) = 1if x <y, g(x) = 0if x > 1 and g(x) | if x > 0. Then

1% < ) < g(l) < I(xl < 1), 1(x] > 1) < 1— g(xl) < (x| > ). (4.6)
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Forl<i<n,n>A%letY;= Xig(%). We can easily get

> sbn]

< W(max |X;| > b,,) +V [max

V| max

1<j<n

j
A, X
i1

j

2 AniYi

> ebn]

1<i<n 1<j<n =
= . (4.7)
n ] . ] .
<) V(Xi| > by) + V [{n]ax Zl“ a(Y; = B[YiD)| > eby — max Zl“ a,E[Y;] ]
n f . n -
< L V(IXi| > by) + W[{g}g ;um(Yi - E[Yi])| > eb, - ; ﬂm‘]E[Yi]|]-
We first prove
n —_—
bt Z a,,,']E[Y,«]‘ — 0 asn — co. (4.8)

i=1
V1 <y <2,by (3.2) and Hélder inequality, we have

Y ol < ()l () D < Cn. 49)
i=1 i=1 i=1

For n > A%, by(3.1), (4.6) and (4.9), we have
b Z
i=1
= b;! ) Il ELX;] — B[V
i=1
» Y e (1o
<b ; il [le (1 g( -

< Cnb;]E[IXl (1 - g('bﬁ))]

For 1 large enough and for w € (|X| > uby), by (1.5) and the monotonicity of x*"1L*(x), we have

an Y|

(4.10)

n n(a—l)/aia—l(nl/a)

by La(nil)
~ (nl/al(nl/a))a—lLa(nl/wl(nl/a)) (4.11)
- La(nl/@)La(nt/aL(nl/«))
< Ch*1LY(b,) < CIX(w)|* LY (X(w)).

Combining (4.10), (4.11) and (3.1), we have

b Zn:
i=1

o, ELY,]| < CE|xIL(x) (1 - 9 (?))]

S )

— 0 asn — oo.
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Hence

n>A% i=1
j (4.13)
Z ‘1ZW(|X| > by) + Z -y [{13a<x Zam Y; - E[Yi])| > —ebn
n=>Aa n=>Aa J=h i=1
=1 +]1I.
By (4.2) and (4.6), we have
_ -1
I= Z ZV(|X| > by)
n>Ax
Z Z]E[l_ (IXI
vt (4.14)
_ Z —1Z]E[1_ (|X|
n>A%
< Y ntnV(X| > ub,) = Y V(X| > ub,) < oo.
n>A¢ n>A«

In order to prove (3.3), it remains to show that II < co. By Lemma 4.3, we have

max
1<j<n

<C Y nlp? Z‘Iaml2l‘E[IY|2 (4.15)

n>Aa

2
j

ZamY ~E[Y)])

i=1

<Y n'b’E

n>Aa

2
+C _117 ]E[ﬂmy ]E[amY ]]) + (S[me ]E[amy 1

n>Aa

=: 11 + II,.

For 0 < 1t < 1, let g;(x) € C1;,(R), j > 1 such that 0 < g;(x) < 1 for all x and g]-(}’ij_) — 1if by < x| < by,
2

g ( g2 ) 0if [x| < pbyi1 or x| > (1 + p)by;. Then for any m > 0

gi (%) < I(ubyr < |X| < (1L + wby), 1XI"g ( ) <1+ Z IX|"g ( ) (4.16)



F.X. Feng, X. Zeng / Filomat 36:17 (2022), 5725-5735

By (3.2)and (4.16), there exists some positive integer jy such that

1L

<c Y n'p? Z|am|2 [X2 (' ')]

n>Aa

<C) b7 [ng(%)]

n>A*

<c). Y n ZIE[ng(lb}j)]

k>ko 2k-1<n<2k

egs R i

k>ko j=Jjo

R

Jj=jo

< CZZJb ZIE[XZ ('é')]

J=jo

< CZ 2765202 V(IX| > pby)
Jj=Jo

=C Y 2V(X| > iby) < oo,
j=jo

5732

(4.17)

Before considering II,, we estimate 1 — g (hl) By the definitions of g(x) and g;(x), there exists some positive

integer k; such that

{2

I/\

(b£ ) <IHXI> b )

SZI(b2/1<|X|<b2J)<Zg]( )
=k, =%

Now we consider II,. By the fact E[X +C] =

(4.12), we have nb;lﬁ [IXl (1 -g ('b—)i‘))] — 0,1 — co. Hence, we have

. 2
=CY w2 Y |@laYi- E[am-y,-n)]]

n>Aa

i=1

2
<C 2 n*lb,;2 | E[-a,Y; +1E[amY]]|]

n>A%

=C Z n'b,?

n>A«

<C Y nl?

n>A«

<C Z n'b,?

n>A%

i=

i |E[_aniyi] + E[aniyilu
i=1

2
Y (El-a.Yill + |ﬁ[aniyi]|)]

i=1

=

i=1 n>A«

E[X] + C, then we have E[a,;Y; — E[a, Y]]

2
Y laullE-Y] ] +C Y nlp? [menﬁﬁmn]

= 0. By (4.10), (4.11),
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=C ) n'b;? }immuﬂﬁ[— E[- Y]I]2+C Y [): 0.l E[Xi] - E [Y1|J2

n>A¢ i n>Ax
<C Z n_lb; Z |am|IE[| -Xi— (- Y)H] +C Z _117 [Z |am|IE 1Xi =i ”]

n>Ax n=A*

2
g 1X]
<c (B e o f1-o 3
. 2

< CnZZ‘Aan (b1 (1 - (?))])
<c Y n'nb, 1JE[|X| (1 g(?))]

n>Ax

)

X
=cy, Y. b [|X|(1 g(b—'))] (4.18)
k=ko 2k-1 <n<2k

< CZZ"bzk Z [|X|g, ('Xl)]

k=ko =k
] ]() k= k()

gl

j=jo
< cZ 26516, V(X| > pibyir)
j=io
= CZ 2IV(IX] > cby) < co.
J=jo
We complete the proof of (3.3). The implication [(3.3)= (3.4)] is immediate by letting a,, = 1. Now, we
assume that (3.4) holds. Since
> ebn]

oo > Z 1\/[{1};33}(1
ZX

n>A%
OND)

ZX
> 6b2k+1 .

Y
=1

max
1<]<n

>éb]

> éb2k+1]

k=ko 2k<p<2k+1

(4.19)

o)

oY ¥

k—ko 2k<n<2k+1

—CZV[Eﬁ;‘k

k=k

1<]<2k

ixf

i=1

By Borel-Cantelli Lemma, we have

j
Z Xi > szkﬂ, io.|= 0,
1<j<2k =

V[max
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which implies

j
maxlsjgzkﬂ Zi:1 Xl‘

lim =0a.s. V. (4.20)
k—o0 b2k+l

For any n > A%, there is k such that 2* < n < 21 then
y

maxi<j<p ):f:l Xi' max ¢jcok ):1].:1 X,-|
<

bn - bzk

—0as. 'V, k— . (4.21)

We complete the proof of (3.5).

For the "converse’ part, we assume Cy[|X|*L*(|X| + A)] = oo. Let g.(x) € Ci1;»(R),0 < ge(x) < 1 for all x,
ge(x)=1ifx > 1, g.(x) =0if x <1 —-¢, where 0 < ¢ < 1. Then I(x > 1) < g.(x) < I(x > 1 —¢). So for any
M > 0, by (4.2) we have

C =l (XK v =] (X

- ]E[g; (Mbj)] - Z‘ IE[‘% (be

j=A% j=A%
N (4.22)

> Z V(X > Mb)) = o
j=As
For any ! > 1, we have
- IX|
(V[Z 73 (Mb]) l
j=A

By the elementary inequality e <1 - 1x < e, V0 < x < 1, we have

It follows that

< exp(é)exp {—31 ﬁ[g; (25121)}} —0asn— oo
j=A

by (4.22). That is

Vv

igl Xl >[|—>1lasn— oo.
2 Mb]' -

j=Ae
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By continuity of V, for any M > 0, we have

X:
V |lim sup l}b("l > %) = V(}'\/I—él > %,i.o.)
n—o0 n j

- 1 Xl
j=Aa ]

. . X1
= fimv ;Aﬁ;(M—bj)”

n
. Xl
= llirghmsupv Z g1 (M_b] >1=1

n—oo j:AL'
On the other hand, we have
. |Xn| . (|Sn| |Sn—1|) . |Sn|
< =)< i
fimsup T, <Hmsup( "+ =, )= 2limsup o
It follows that
V |lim sup @ >m|=1,Ym >0,
n—oo bn
that is
(V(limsup linl < m) =0,Ym >0,

which contradicts (V<1im,1_)D<> % = 0) = 1. Therefore, the assumption Cy[|X|*L*(|X| + A)] = oo is incorrect,

and so Cy[|X|*L*(IX] + A)] < co. We complete the proof of the theorem.
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