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Abstract. We introduce the sequence of Stancu variant of a-Schurer-Kantorovich operators and systemat-
ically investigate some basic estimates. We also obtain the uniform convergence theorem and the order of
approximation in terms of suitable modulus of continuity for our newly defined operators. Moreover, we
investigate rate of convergence by means of Peetre’s K-functional and local direct estimate via Lipschitz-type
functions. Finally, A-statistical approximation is presented.

1. Introduction and preliminaries

Operators theory is a fascinating field of research for the last two decades due to the advent of computer.
It contributes important role in applied and pure mathematics, viz, fixed point theory, numerical analysis
etc. In computational aspects of mathematics and shape of geometric objects, CAGD (Computer-aided
Geometric design) plays an interesting role with the mathematical description. It focuses on mathematics
which is compatible with computers in shape designing. To investigate the behaviour of parametric surfaces
and curves, control nets and control points has a significant role respectively. CAGD is widely used as an
application in applied mathematics and industries. It has several applications in other branches of sciences,
e.g., approximation theory, computer graphics, data structures, numerical analysis, computer algebra etc.
In 1912, Bernstein [5] was the first who introduced a sequence of polynomials to present a smallest and
easiest proof of celebrated theorem named as Weierstrass approximation theorem with the aid of binomial
distribution as follows:

Bu(fx) = Zf(i)( ! )xi(l 9, xefo1] 1)
i=0

forany f € C[0, 1] (the set of continuous function on [0, 1]) and # € IN. The basis ( :l )xi(l —x)"~ of Bernstein

polynomials (1) has significant role in preserving the shape of the surfaces or curves (see [25]-[27]). Graphic
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design programs, viz, photoshop inkspaces and Adobe’s illustrator deals with Bernstein polynomials in
the form of Bezier curves. To preserve the shape of the parametric surface or curve, it depends on basis

( 7 )xi(l — x)"~" which is used to design the curves.

Let s be a non-negative integer. In 1962, Schurer [47] presented the following modification of Bernstein
operators (1) by introducing linear positive operators B, s : C[0,1 + s] — C[0, 1] which are defined by

n+s

Bus(fi 1) = Zf( )(”*S)xf(l—xy”s—",xe[o,u @

forany f € C[0,1+s]. Barbosu [2, 3] presented some interesting modifications and results of these operators.

In the recent past, Chen et al. [10] presented a family of modified Bernstein operators which is termed
as a-Bernstein operator based on parameter a € [0, 1] as

Tt = Y7 (2T, ©
i=0

where T,(z‘l.) (x) is the a-Bernstein polynomial of degree n and are given by T% (x)=1-x, Ti‘fl) (x) =xand

i

Til‘j‘i)(x) = [( n-2 )(1 a)x+( Tzl 22 )(] —a)(1-x)+ ( :l )ax(l—x)]xi‘l(l —x)”‘i‘l,

with n > 2 and x € [0,1]. Mohiuddine et al. [32] studied the Kantorovich modification of (3) and
further modified a-Bernstein-Kantorovich operator in Stancu sense by Mohiuddine and Ozger [37] while
for the classical Bernstein-Stancu operator (see [49]). Durrmeyer modification of a-Bernstein operators were
presented in [18-20, 36]. Cai et al. [7] introduced a generalization of classical Bernstein operators based on
Bézier bases with the shape parameter —1 < A < 1, and their Shape-preserving properties and Kantorovich
type A-Bernstein operators in [8] and [6], respectively.

Recently, Ozger et al. [46] constructed the a-Bernstein-Schurer operators T, .5 : C[0,1 +s] — C[0,1]
defined for any f € C[0,1 + s] by

n+s

Tosalfi) = Zf( )1 00, @
where the a-Bernstein-Schurer polynomials Tfs),i(x) are defined by Tﬂ)lo ¥)=1-x, T(D’ 5;(x) = xand

T () = {(” T8 2)(1 — o)+ (” :“_S N 2)(1 —a)(1-x)+ (” :“ S)ax(l - x)}xf—l(l _ il

1

for n > 2. The bivariate form of a-Bernstein-Schurer operators and their associated GBS operators were
presented by Mohiuddine [31]. Most recently, the Kantorovich form of (4) have been studied in [42], defined
as

n+s ﬂ

Kosalfi0) = 0+ D L 11,0 | s ©)

n+s

In the same paper, authors defined the bivariate form of (5) and studied several approximation properties
of both the operators. Some recent work on positive linear operators, we refer to [1, 9, 23, 33, 38—41, 45].
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2. Stancu-type a-Schurer-Kantorovich operators and auxiliary results
Let 6 and y be two non-negative integers such that 0 < 6 < y. Motivated by the discussion of previous
section, in this section, we construct the Stancu-type a-Schurer-Kantorovich operators by

n+s z+b+1

D=y s DT [ o, xepo ©

n+y+1

forany f € C[O,ll +s]and a € [0, 1].
Letej(x) = x/, j € {0,1,2}. The following lemma is given in [46].

Lemma 2.1. For the operators (4), we have
Thaseo(t);x) = 1,
s
Tn,a,s(el(t); x) = X+ Ex/

n+s+2(1-a)) s(s+2n) ,

Thasea(t);x) = x*+ x(1-x)+ Tx ,

n2

Lemma 2.2. Let ej(t) = v, j €1{0,1,2}. For the operators (6), we have

nsa(eo(t) x) = 1,

5y ) n+s 26+1
Dn,s,ut(el(t)/x) (n+7/+1)X+ 2(7’l+)/+1)’
2
5y n+s , [(n+s+2(1-a) 6+ 1D(m+s) (32 +356+1)
] O A S S .
Dinsae2(t);7) (n+)/+1) ( (n+y+1)»2 (-2 (n+y+1)72 X 3(n+y+1)?

Proof. We prove the Lemma 2.2 with the Lemma 2.1 and easy to obtain

) . _
" nty+1 et
)x1+y+l 1+ + 1 if f(t) =t
 flydr= (n+y+12  2m+y+1)2 =t, 7)
i 2 @o+Di @43+ p
(n+y+17°  (+y+1P  3m+y+1)° _
Thus,
‘ n+s i+6+11
Dilaleo®x) = (n+y+1)) 50 f .
i=0 ’ H-:-;i]
n+s
= Y 5%
i=0 '
= 1
n+s i+0+1
n+y+1
nsa(el(t)/x) = (n+)/+1)2 a)(x)f tdt

n+y+1

n+s n+s

_ e 20+1 (@)
B n+)/+1Z ()f() 2(n+7/+1),os"ri(x)

i=

s 26 +1

= — T ;%) + —————T,,.
n+)/+1 n,a,s(el( ),x) 2( + +1) n,a,s

(eo(£); %)
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s (x+ ix)+ _20+1
n+y+1 n 2m+y+1)
Ui =

(n+y+1) Z 59 (x) f 24t
i=0

n S, a(eZ(t) x)

i+0
n+y+1

n+s n+s

(n+)/+1)2

5754

n+s

3m+y+1)

- e e o) 2
i i=0

(n+y+1)? pm

n+s

(26 + 1)n (362 +36+1)

= (”'*‘7/—"‘1)2 Z T as(ea(t); x) + W—+1)2Tn,a,s(€1(t); x) + an,a,s(eo(t);x)

n 2 , (m+s+21-a)(x—x?)  s(s+2n)x?
n+y+1 v n? " n?
25+ 1)n s\ (B02+36+1)
+(n+y+1)2(x Ex)Jr 3n+y+1)

which completes the desired proof. [

Corollary 2.3. Let 7(t) = (t — x)/, = 0,1,2. Then, we get

DY (to(;0) = 1,
P _[s—y-1 20+1
Diza(mit);x) = (n+y+1) 2n+y+1)

(352 +35+1)

2
o s=ry-1\ , (n+s5s+2(1-a) B 0+ 1)(s-y-1)
”s“(Tz(t) 0 = (n+y+1) * +( (n+y+1)2 =0+ (n+y+1)7?
Proof. With the aid of Lemma 2.2 and linearity property
Dlam®;2) = DyLa(eat);x) = 26D Lo(er(8;2) + Dy oeo(t); ),

we can easily completes the desired proof. [

3n+y+1)2°

We first give the uniform convergence property of our Stancu variant of a-Schurer-Kantorovich operators

(6).

Theorem 2.4. Let f be any function in C[0,1 + s]. Then, for any 0 < a < 1, it follows that
lim D7, (f3%) = f(x)

uniformly on [0, 1].

Proof. We can see from Lemma 2.2 that

. 0,y i .
1}1_130 D/ (e]-(t);x) =x (j=0,1,2).

Therefore, by the well-known Bohman-Korovkin-Popoviciu theorem, we obtain that the sequence of oper-

ators Z)Z’, ! 2 (f;x) are converge to f uniformly on [0,1]. [
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3. Order of convergence

In this section, we study the order of convergence of the sequence of operators Z)Z’?S/,a by means suitable
the modulus of continuity. For any 6" > 0, let w(f; 0*) (the modulus of continuity of f of order one) be define
to measure the maximum oscillation of f such that lims 0+ w(f; 0%) = 0. Then, for f € C[0, 1], one has

w(f;0) = sup | f(t)—f(t) ; t,t2€[0,1] (8)

lt—ta]<5"

and

£ = 1 (1 = a5, ©)

Theorem 3.1. [48] Let [u,v] C [x, y]. Then, for the sequences of positive linear operators {L}s»1 which acting from
Clx, y] to Clu, v], we immediately see

1. if f € Clx1, y1] and x € [u, v], then we have

IL(f;2) = FOI < IF@IL(1x) = 1]+ {Lo(1;2) + éx/Ls«t —2)%2) YLs(L;0)jw(f; ),
2. forany f’ € Clx1, y1] and x € [u,v], we have
ILs(f;2) = fOI < IfF@IL(Lx) = 1+ |f QIILs(E = x; %))
L (= 0P| VET) + 3 VLo f'9),

Theorem 3.2. Forall f € C[0,1 + s], the operators Z)n s,a Satisfying the inequality

DU (0 - Fl < Zw(f; yi',ﬁ,aoc)),

where 0, = \/y,,sa(x) \/Z)nsa(u(t) x) and Dn L o(T2(t); x) is given in Corollary 2.3

Proof. 1f we consider the Condition 1 of Theorem 3.1 and Lemma 2.2, then we can write

Dalfin) = FOI < @D, a(eo(ti ) = 1+ { D ufenlt) )

5 VDU (e20 0y Dot 0 ot )

If we choose 6" = 0,,, = \/y,,sa(x) \/Dnsa(u(t) x), then we get

1D (fir) - f] < 2w (f; Hnsa(x))
O
Theorem 3.3. If f € C[0, 1 + 5] then, for every x € [0, 1], we have

s—y-1 20+ 1
X+
n+y+1 2(

|D070(f%) — £)

+ 200 (W) (f \/ui'z,am),

where 0,,,, = \/ yi’/};a(x) = \/ Z)i'f;,a(’cz(t); X) and Z)%a(fz(t);x) is given in Corollary 2.3.
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Proof. We consider Condition 2 of Theorem 3.1 and Lemma 2.2. Then, we get

DY) = FOI < IFENIDYL aleo(t); %) = 11+ | f ()DL o (71 (8); %)]

+ D% o (r2(8); ) DL aleo(t); %) + 91 VO () 0w (f;5°).

ny
If we put6* = 0,, = \/ynsa(x) \/Z)nsa (T2(t); x) then we can get our result. [J

Theorem 3.4. For f € C[0,1 + s] and w(f; 0,,,) denotes the modulus of smoothness. Then

DY o(f%) - f)] < {1 + \/Tf’y(X)}w( fiOny),

where 0, = (n+y + 1)‘% and

(s—y—l)zxz+(n+s+2(1—a))x(l—x)+(26+1)(s—y—1)x+<52+6+3‘1)

0, —
I () = n+y+1)

Proof. For any f € C[0,1 + 5], x € [0,1] and in view of monotonicity and linearity of the operators (6), we
can easily find

D0 - )

1+ 9;,1)/ V nsa (TZ(t) x)} w (f’ 9”r7’)

{1+ \/(S—V—1)2x2+(n+s+2(1—a))x(1 —x)+(26+1)(5—7—1>X+(52+5+3_1)}w(f;9ny),

IA

n+y+1)

where 0,,, >0and 0,,, = (n+y + 1)~ 3 Thus, we arrive to the assertion. [J

Now, we give the order of convergence for the sequence of operators defined by (6) using modulus of
smoothness which has first order continuous derivatives , i.e., w ( f; Gn,y) = w ( f Gn,y).

Theorem 3.5. For the operators defined in (6) and 0 < 0,,,, < 1, we have

DYLu(Fi0) - f)] < i ((n+9)7) YD (ol x>{1+\/<n+y YN DL (120 x)}

Proof. For any a < x1,x, < b, we know that

fx) = f(x2) (1 —x2) f'(E)

= (01 —x2) f (x1) + (x1 =) [f1(E) = f (x1)], (10)
where & € (x1, x2). Further, we have
|G = x2) [F/(E) = £/ eD]| < It = 22l (A + Dwn(Ony), A = A(x1,%2; 00). (11)
Next, we obtain

ey Y s [ (0 - reol

i=0 n+y+1

D0 - f)| = (12)
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In view of (10), (11) and (12), we obtain

n+s i+0+1
1+y+1
D0 S0 < fins a0 Y30 [ a-nrwa
n+y+1
n+s ’:‘;*11
~a)
< —
< w (0 ny)(n+y+1(/\+1)z (x)f”l It — x| dt
H+}+
s o
< (Gn,),){(n+)/+1)Z§S?(x)f et
i=0 n+yt+1
o
+Y 4y + DA (vt en),)2~(“>(x)f |t—x|dt}
Azn i=0 n-:-;i—l
s e
~a)
< —
< an( n7/){(71+')/+1)z (x)f " |t — x| dt
n+y+
n+s i+0+1

n), n+y+1) Z ("‘)(x) f}: B (t — x)? dt}

n+y+1

< @1(Ony) VDILa (12(t); ) {1+6,;3V Dy (Ta(t); x)}

Choosing 0,,, = (n+y + 1), we get

DL - f0] < @ (n+y+ D7) YD (w0 x>{1+\/<n+y+1 DY, (eal); x)}

which completes the proof of Theorem 3.5. [

4. Direct approximation
For and g € C[0, 1] and any 0" > 0, the Peetre’s K-functional is defined as
Ka(g;6") = inf{5°llf"llctoss1 + 119 — fllcorss : f € C20,1+51},
where
C’[0,1+s] ={f eC[0,1+5s]: f, f” € C[0,1 +5]}.
The second-order modulus of smoothness w,(g; V&) is given by

w2(g; Vo) = sup sup |g(x +2h) = 2g9(x + h) + g(x)|.
0<h< o Xx+2hel0,1]

From [12], for any g € C[0, 1 + 5], there is an absolute constant C > 0, we have
Ka(g;8") < Caa(g; Vo).
Note that the usual modulus of continuity is

W@ = sup  sup lgx +h) - ().

0<h<6* x,x+he[0,1]
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Theorem 4.1. Let g € C[0,1 + s]. Then, the inequality
oy 1/ 5, oy
(D)@ = g00] = 4K (g (e + 20) )+ @ (g; W <x>)

holds for any x € [0, 1], where /,inzla(x) = Z)Z'Z,a(”cz(t); X),

VZ’,Z(X)=(( n+s 1) 26+ 1 ))2

n+y+1 A 2m+y+1
and Z)f,’g,a(fz(t);x) is given in Corollary 2.3.

Proof. For any g € C[0,1 + s] and x € [0, 1], we define the auxiliary operators by

T2g<x(g; x) = D%,a(!]} X)+g(x)—g (( n+s ) 20+1 )

n+y+1 x+2(n+y+1)
We can easily see that

Tolaleo(t); ) = 1
and

Toda(er (%) = D)% o(er (1); %) +x = DY (er ;%) = x.

Let © € C2[0,1 + s]. We know by Taylor series expression that
t
O(t) = B(x) + (t - 0O’ (x) + f (t = X)0"(x)dx.
By applying 7,7, e get

T2V (O3 %) - Ox)

t
O WL 50+ T [ 400" (i)
X

t
T [ = mertodna)

Df{,z,a( j; t(t - 0" (dx; X) + fx x(x—x)@)”(x)dx;x

(s ot et n+s 20+1 0" (v)d
f— + -
fx nry+1) 2y KOO

which yields

t
7@ -0 < [0l [ €-0e"wda)

+

It follows from the inequalities

t
f (t - 00" (0dA] < (¢ =m0

(s min (1 s 26+1
fx ((n+y+1)x+2(n+y+1)_x)® (X)d)('-

5758

(13)
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and
(FHakemsm ([ nats 25 +1
fx ((n+y+1)x+2(n+y+1)_x)® (0dx
2
< n+s ot 26+1 —) 1@
n+y+1 2n+y+1)
that
2
5y L < 5,y ) n+s 20+1 3 "

|Tn,s,a(®/x) ®(x)| = (Z)n,s,a (TZ(t)/ x) + ((11 +y+ 1 X+ 2(1’1 - 1) X ”® ” (14)
On the other hand, we conclude that

1D (g )11 < lgl, (15)
and

1T te(:2)| < 3lgll. (16)

Using the inequalities (13)-(16), we obtain

T2 (g - ;%) — (g - ©)(x)

n+s 20+1
g0 -9 n+y+1 x+2(n+y+1)

D7 ot + {25 —1)es =21 V] jer
msa A28 n+y+1 2n+y+1)

+|727(©; %) - ©(x)

DYa(g:0) - 90| <

+

IN

4lg - e+

+w . 1’1—+S — 1 X+ &
g’n+y+1 2m+y+1))°
Taking infimum over all © € C?[0,1 + 5], we get

Dita (%) 1 (( n+s ) 25+1 )Z]
4

4 n+)/+1_ x+2(n+y+1)
+ Tl—+S_1 x+26—+1
wg’n+y+1 2n+y+1)

which completes the proof O

Di’,’s/,a(g;X)—g(x)| < 4K, (g;

Corollary 4.2. Let g € C[0,1 + s]. Then, the inequality

' 1 y
DYLag:0) - 9| < Can (g,- \/ 7 (Hnke@ + )] (x))) +o (g; \/v?;,Z(x))

holds for any x € [0, 1], where C > 0 is a constant, and yf,’,z,a(x) and vZ’Z(x) are same as in Theorem 4.1.

Proof. The result follows from the previous Theorem 4.1 and using the inequality K>(g;0*) < Cwa(g; Vo)
dueto[12]. O
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Now we give the local direct estimate for the operators Z)n s, Via the well-known Lipschitz-type maximal
function involving the parameters f1, p» > 0 and number o € (0,1]. Thus, from [43], we recall that

|t — x|
(ﬁ1x2 + ﬁzx + t)%

Lipt™ (o) := {f € C[0,1+5] 1 If(t) - f()| < K ;x, te0,1]),

where K is a positive constant .

Theorem 4.3. Forany f € sz(ﬁl ) (0) and o € (0, 1], there exits constant K > 0 such that

DU (f3%) = F < KB + o) 2 (1),
where Hi:z,a(x) = n s a (TZ(t) )

Proof. For any f € sz(ﬁ "#)(5) and o € (0,1], first we will check that the statement holds for ¢ = 1. We can
write

1D (f5%) = FEOI < DL () — FQLx)]+ F(x) 1D (eo(t); x) — 1]
< D% (|f () - %)

t_
<KD, _=d
(B1X2 + Pax + 1)2

For any f1, B2 > 0, we obtain by using the inequality (81x% + fox + t)™V/2 < (8112 + B2x) /2 and applying the
well-known Cauchy-Schwarz inequality that
Dk (f30) = F0 < K(Bae® o+ o)™ 2D L (1 = 0
= K(ﬁlx + ﬁzx) 1/2|Dnsa(t - x;x)|

_ ,y 1/2
< K(B12® + ox) 2| D0 (= %)% )|

which proves that it is true for 0 = 1. Now, we want to show the statement is valid for o € (0,1). Applying

the monotonicity property to operators DZ',Z,a and using the Holder’s inequality two times with c = 2/0 and
d =2/(2 — 0), we can write here

DL (fin) - f@| = D ([0 - fe)ix)
< (2 ([0 -50))) (B2 )
s M)
< K + | DI (a0 )
< KB + 0[O}, (0]

This completes the proof. [

For any o € (0,1] and f € C[0,1 + 5], one can define the Lipschitz maximal function of order o [30] by

ws(f;x) = sup lf(él)_#/ &1 # &
E6e01) 161~ Sl



Md. Nasiruzzaman et al. / Filomat 36:17 (2022), 5751-5764 5761

Theorem 4.4. Forall f € C[0,1 + s], we obtain

|D70(F%) = £ < o) (ia)
Proof. From the well-known Holder inequality, it is easy to conclude that
[D0a(fi0) - f0)| < DL (170 - £G0)5%)
wo(f33) | Dy (=)
0o f; ) (D aleo(t); 1)) 7 (D)L oIt — 22 50))
0o (f;2) (D)L a(T2(t); )
This completes the proof of Theorem 4.4. [

IN

IA

c

IA
[STSY

5. Statistical approximation

Gadjiev and Orhan [15] studied the Koronkin approximation theorem by using the idea of statistical
convergence [13] while for the classical Korovkin theorem, we refer to [29]. Recently, Korovkin-type
theorems via some convergence methods have been studied in [4, 17, 34, 35, 44] and reference therein.

Let A = (a,) be an infinite matrix. For a given sequence x = (x;,), the A-transform of x, denoted by
Ax = ((Ax);) holds by Ax : (Ax),, is defined as

o0

(Ax); = Y apx,

k=1

provided that the series converges for each j € IN. An infinite matrix A = (a;,) is said to be regular [16] if

lim(Ax); =L whenever limx;=L.

j—oo j—oo

If A = (aj,) is a non-negative regular matrix, then x = (x,) is said to be A-statistically convergent to a
number L, provided that, for every € > 0,

liyn Z aj = 0.

n:lx,—L|>€e

In this case, we write st4 — limx = L [14] (see also [11, 28]).
We prove the following theorem.

Theorem 5.1. Let A = (a;,) be a non-negative regular matrix. Then, we have
sta — lim [ D2, (Fi) - £ =0 (17)
forany f € C[0,1 + s] and x € [0, 1].
Proof. Consider the sequence of function e;(x) = x/. To prove (17), it is sufficient to show that
sta — lim Hpi?;a(ej(t); x) - ej” =0
for j € {0,1,2}. From Lemma 2.2, it is obvious that

sta — lim ||Z)i’gﬂ(eo(t);x) - 60“ =0
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holds. Again, from Lemma 2.2, we can write

0,
|9 ater(t) e

s—y-1 t 26 +1
n+y+1

x€[0,1]
s—y-1 N 26+1
n+y+1 n+y+1

For given € > 0, let us define the following sets

J o= n | D@ -5z e,
_ 'S—)/—l €
L= {n'n+)/+122}'
PR T
2 - ‘n+y+17"2)

It follows from (18) that ] € J; U J». Then, for each j € IN, we have

IMIEDMIEDIE

nejJ nej; nejf,

We can see that

. os—y-1
sty —lim ——— =
n+y+1
and
. 20+1
sty —lim ——— =
n+y+1

Using these facts and taking the limit j — oo, we get

liinZajn =0

nej

which guarantees that

sta —lim HDZ;Z,a(el(t); X)— e1” - 0.
Similarly, one can show that

sty —lim ||Di;§/a(ez(t);x) - e2|| = 0.

This completes the proof. O

5762

(18)

(19)
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6. Conclusion and observation

We constructed the Stancu-type a-Schurer-Kantorovich operators Df,’fs/,a (6) and studied uniform con-
vergence theorem. We also studied order of approximation and rate of convergence by means of suitable
modulus of continuity and Peetre’s K-functional, respectively, including some approximation results in-
volving the idea of Lipschitz-type function. Finally, in this last section, we studied the approximation result
using the notion of A-statistical convergence, where A = (a;,) is a non-negative regular matrix.

If we choose 6 = y = 0, the operators -Z)Z,,}s/,a reduced to a-Schurer-Kantorovich operators K/ defined in
[42], in addition, if @ = 1 then Di’;a reduces to classical Schurer Kantorovich. Also, for the choice s = 0, the
operators Di’;a reduced to Stancu-type a-Bernstein-Kantorovich operators defined in [37], in addition, if

y = 0 = 0 then the operators Z)Z',Z,a reduced to a-Bernstein-Kantorovich operators defined in [32]. Moreover,
if we take @ = 1 and s = 6 = y = 0, then the operators Z)Z’,)s’,a reduced to Bernstein-Kantorovich operators
[24]. So, we conclude that (6) is a nontrivial generalization of some linear positive operators existing in the

literature and so our results as well.
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