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Problem of Kirchhoff Type
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Abstract. In this work, we investigate the existence of solution for some nonlinear singular problem
of Kirchhoff type involving Riemann-Liouville Fractional Derivative and the p-Laplacian operator. The
main tools are based on the variational method, precisely, we use the minimisation of the corresponding
functional in a suitable fractional spaces. Our main result significantly complement and improves the
previous ones due to [6] and [31] .

1. Introduction

In recent decades, fractional calculus have been investigated extensively. This is due to its importance
and applications in many fields such as physics, aerodynamics, chemistry, electro dynamics of complex
medium (see [17, 22, 27, 29]). Among all these subjects, there has been significant development boundary
value problems involving different fractional operators. For details and examples, one can see the papers
[12–14, 18, 19, 21, 24, 28] and references therein.
By using the mountain pass theorem, Torres [31] proved the existence of at least one nontrivial solution for
the following problem{

−tDα
1 0Dα

t u(t) = f (t,u(t)), t ∈ (0,T)
u(0) = u(T) = 0, (1)

where tDα
1 and 0Dα

t are the right and left Riemann Liouville fractional derivatives. Note that, using the
varitional aproach, the first paper studying such problem is the paper of Jiao and Zhou [23]. After this,
many authors studied several works by using different methods we refere the readers to [3, 4, 14, 16, 18–21].
In particular, César [16] investigated the following p-Laplacian Dirichlet problem with mixed derivatives{

−tDα
1 (φp

(
0Dα

t u(t))
)
= f (t,u(t)), t ∈ (0,T)

u(0) = u(T) = 0,
(2)

where 0 < 1
p < α < 1 and f : [0,T]×R→ R is a Carathéodory function. Under some suitable conditions on

the function f and by means of the direct variational method combined with the mountain pass theorem,
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the author has proves that problem (2) admits a nontrivial weak solution.
Kratou in [25] concidered the following problem

(
a + b

∫ T

0 |tD
α
Tu(t)|p dt

)p−1
tDα

T

(
Φp(0Dα

t u(t)) = λ 1(t)uγ(t) + f (t,u(t)), t ∈ (0,T),

u(0) = u(T) = 0,
(3)

where λ is a positive parameter, 1
p < α ≤ 1 ≤ a, γ ∈ (0, 1), and Φp : R → R, is the p−Laplacian defined as

follows:

Φp(s) =
{
|s|s−2s, if s , 0,
0, if s = 0.

Using the Nehari manifold method combined with the fibering maps analysis, the author proved that for
λ small enough, problem (3) possesses at least two nontrivial positive solutions. Problem (3) was studied
by Chen et al. [7], in the case when 1 ≡ 0.

Motivated by the above mentioned papers, in this work, we want to contribute with the development
of this new area on singular fractional differential equations involving both the Riemann Liouville and the
p-Laplacian operators . Precisely, we will study the existence of nontrivial weak solutions for the following
system:

S(u(t))
(

tDα
T

(
Φp(0Dα

t u(t))
)
+M(t)Φp(0Dα

t u(t))
)
=

f (t)
uβ(t) + λ1(t,u(t)), t ∈ (0,T),

u(0) = u(T) = 0,
(4)

where

S(u(t)) =
(
a + b

∫ T

0
|tDα

Tu(t)|p +M(t)|u(t)|p dt
)p−1

,

λ is a positive parameter, 0 < 1
p < α ≤ 1, 0 < β < 1, f ∈ C([0,T]), and 1 ∈ C ([0,T] ×R,R) is positively

homogeneous of degree r− 1, that is 1(x, tu) = tr−11(x,u) holds for all (x,u) ∈ [0,T]×R. Moreover, if we put
G(x, s) :=

∫ s

0 1(x, t)dt, then we assume the following:
(H1) G : [0,T] ×R −→ R is homogeneous of degree r that is

G(x, tu) = trG(x,u) (t > 0) for all x ∈ [0,T], u ∈ R.

(H2) The function M ∈ C([0,T],R) is such that

0 < min
t∈[0,T]

M(t) :=M0 ≤ max
t∈[0,T]

M(t) :=M∞.

Note that, from (H1), 1 leads to the so-called Euler identity

u1(t,u) = rG(t,u).

Moreover, there exists C0 > 0, such that

|G(t,u)| ≤ C0|u|r. (5)

In this paper, we want to use the mountain pass geometry combined with the variational method, in
order to prove the following result.

Theorem 1.1. Assume that 0 < 1 − β < 1 < r < p and 1
p < α < 1. If the hypotheses (H1)-(H2) are satisfied. Then

there exists λ0 > 0, such that for all λ ∈ (0, λ0), problem (4) admits a nontrivial weak solution.

The rest of this paper is organized as follows. In Section 2, we present some preliminaries and results on
the fractional calculus. In Section 3, the variational setting of the problem (4) is given. Moreover, in this
section, we prove the main result of this work (Theorem 1.1).
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2. Preliminaries

This section is devoted to present some background theory and results on the concept of fractional
Riemann operators. In the following definitions, we introduce the definition of the Riemann-Liouville
fractional integral respectively the Riemann-Liouville fractional derivative.

Definition 2.1. Let σ > 0 and letφ be a real function defined a.e. on (0,T). The Left ( resp. right ) Riemann-Liouville
fractional integral with inferior limit 0 (resp. superior limit T) of order σ of φ is given by

0Iσt φ(t) =
1
Γ(σ)

∫ t

0
(t − s)σ−1φ(s)ds, t ∈ (0,T],

respectively

tIσTφ(t) =
1
Γ(σ)

∫ T

t
(t − s)σ−1φ(s)ds, t ∈ [0,T),

provided that the right sides are pointwise defined on [0,T], where Γ denotes Euler’s Gamma function.
We note that If φ ∈ L1(0,T), then, 0Iσt φ and tIσTφ are defined a.e. on (0,T).

Definition 2.2. Let 0 < σ < 1. Then, the Left ( resp. right ) Riemann-Liouville fractional derivative of order σ of φ
is defined as follows:

0Dσ
tφ(t) =

d
dt

(
0I1−σ

t φ
)

(t), ∀ t ∈ (0,T],

respectively

tDσ
Tφ(t) =

d
dt

(
tI1−σ

T φ
)

(t), ∀ t ∈ [0,T],

provided that the right sides are pointwise defined on [0,T].

Remark 2.3. From [24], if φ is an absolutely continuous function in [0,T]. Then 0Dσ
tφ and tDσ

Tφ are defined a.e. on
(0,T). Moreover, we have

0Dσ
tφ(t) = 0I1−σ

t φ′(t) +
φ(0)

tσΓ(1 − σ)
, (6)

and

tDσ
Tφ(t) = −tI1−σ

T φ′(t) +
φ(T)

(T − t)σΓ(1 − σ)
. (7)

Moreover, if φ(0) = φ(T) = 0, then

0Dσ
tφ(t) =0 I1−σ

t φ′(t) and tDσ
Tφ(t) = −tI1−σ

T φ′(t).

We notes that from the above equations, we have the equality of Riemann-Liouville fractional derivative and Caputo
derivative.

In the following, we collect from [5], some properties concerning the left Riemann-Liouville fractional
operators. One can easily derive the analogous version for the right one.

Proposition 2.4. If σ1, σ2 > 0, then for any φ ∈ L1(0,T), we have

0Iσ1
t ◦ 0Iσ2

t φ = 0Iσ1+σ2
t φ.
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From Proposition 2.4, Equations (6) and (7), it is not difficult to deduce the following results concerning the
composition between fractional integral and fractional derivative. That is, if 0 < σ < 1, and φ ∈ L1(0,T),
then we have

0Dσ
t ◦ 0Iσt φ = φ,

and if φ is absolutely continuous with φ(0) = 0. Then, we get

0Iσt ◦ 0Dσ
tφ = φ.

Proposition 2.5. For each σ > 0 and for any p ≥ 1, the operator 0Iσt : Lp(0,T)→ Lp(0,T), is linear and continuous.
Moreover for all φ ∈ Lp(0,T), we have

∥0Iσt φ∥p ≤
Tσ

Γ(1 + σ)
∥φ∥p.

Now, we give another classical result on the boundness of the left fractional integral in the sens of the
supremum norm.

Proposition 2.6. Let 0 < 1
p < σ < 1 and q = p

p−1 . Then, for each φ ∈ Lp(0,T), 0Iσt φ is Hölder continuous on (0,T]
with exponent σ − 1

p > 0, moreover, 0Iσt φ can be continuously extended by 0 at t = 0. Also, 0Iσt φ ∈ C0(0,T), and

∥0Iσt φ∥∞ ≤
Tσ−

1
p

Γ(σ)
(
(σ − 1)q + 1

) 1
q

∥φ∥p. (8)

Finally, in order to introduce the variational setting associated to the main problem, we will need the
following formula for integration by parts:

Proposition 2.7. Let 0 < σ < 1 and p, q are such that

p ≥ 1, q ≥ 1 and
1
p
+

1
q
< 1 + σ or p , 1, q , 1 and

1
p
+

1
q
= 1 + σ.

Then, for all φ ∈ Lp(0,T) and all ψ ∈ Lq(0,T), we have∫ T

0
ψ(t) 0Iσt φ(t)dt =

∫ T

0
φ(t) 0Iσt ψ(t)dt, (9)

and ∫ T

0
φ(t) c

0Dσ
tψ(t)dt = ψ(t)tI1−σ

T φ(t)|
t=T

t=0 +

∫ T

0
ψ(t) 0Dσ

tφ(t)dt. (10)

Moreover, if ψ(0) = ψ(T) = 0, then, one we get∫ T

0
φ(t) 0Dσ

tψ(t)dt =
∫ T

0
ψ(t) 0Dσ

tφ(t)dt. (11)

Now, we are in a position to discuss the variational setting associated with the problem (4). We denote by
C∞0 ([0,T],R) the set of all functions v ∈ C∞([0,T],R) such that v(0) = v(T) = 0. For, σ > 0 and p > 1, we
denoted by Eσ0 the closure of C∞0 ([0,T],R) under the norm

∥u∥ =
(
∥u∥pp + ∥

c
0Dσ

t u∥pp
) 1

p . (12)

Remark 2.8. The following properties are useful for the rest of the paper:

(i) The fractional derivative space Eσ0 is the space of functions u ∈ Lp([0,T]) having an σ-order Caputo fractional
derivative c

0Dσ
t u ∈ Lp([0,T]) and u(0) = u(T) = 0.
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(ii) If v ∈ Eσ0 is such that u(0) = 0, then the left and right Riemann-Liouville fractional derivatives of order σ are
equivalent to the left and right Caputo fractional derivatives of order σ. That is

c
0Dσ

t u(t) = 0Dσ
t u(t), t ∈ [0,T].

(iii) The fractional space Eσ0 is a reflexive and a separable Banach space.

Lemma 2.9. For any v ∈ Eσ0 , we have

∥v∥p ≤
Tσ

Γ(σ + 1)
∥0Dσ

t v∥p. (13)

Moreover, if 1
p < σ < 1, then we get

∥u∥∞ ≤
Tσ−

1
p

Γ(σ)
(
(σ − 1)p̃ + 1

) 1
p̃

∥0Dσ
t u∥p, (14)

where p̃ = p
p−1 .

Remark 2.10. From Equation (13), we can consider Eσ0 with respect to the following equivalent norm

∥u∥σ,p = ∥0Dσ
t u∥p.

Also from hypothesis (H2), can be equipped with the following equivalent norm

∥u∥M =
(
∥

c
0Dσ

t u∥pp + ∥M
1
p u∥pp

) 1
p
.

Moreover, we have

min(1,M0)∥u∥σ,p ≤ ∥u∥M ≤ max(1,M∞)∥u∥σ,p. (15)

Lemma 2.11. If 1
p < σ < 1, and the sequence {un}⇀ u weakly in Eσ0 . Then {un} → u strongly in C([0,T]), that is

∥un − u∥∞ → 0 as n→∞.

3. Proof of the main result

In this section we will prove the main result of this paper (Theorem 1.1). So we begin by introduce the
variational setting for problem (4). Associated to the problem (4), we define the functional Φλ : Eσ0 → R, as
follows:

Φλ(φ) =
1

bp2

(
a + b∥φ∥pM

)p
−
λ
r

∫ T

0
G(t, φ(t))dt −

1
1 − β

∫ T

0
f (t)|φ(t)|1−βdt −

ap

bp2 .

Note that, a function φ ∈ Eσ0 is said to be a weak solution of problem (4), if for any ψ ∈ Eσ0 we have:

S(φ(t))
∫ T

0
| 0Dσ

tφ(t)|p−2
0Dσ

tφ(t) 0Dσ
tψ(t) + |φ(t)|p−2φ(t)ψ(t) dt =

∫ T

0
f (t)φ(t)−γψ(t)dt

+ λ

∫ T

0
1(t, φ(t))ψ(t)dt.

Now, in order to prove Theorem 1.1, we need to prove two lemmas.

Lemma 3.1. Under assumptions (H1)-(H2). If 0 < 1 − β < 1 < r < p2 and 1
p < α < 1, then the functional Φλ is

coercive in Eσ0 .
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Proof. let φ ∈ Eσ0 with ∥φ∥σ,p > 1, then from Equations (5), (13), (14), and Remark 2.10, we have∫ T

0
G(t, φ(t))dt ≤ C0

∫ T

0
|φ(t)|r dt

≤ C0T∥φ∥r∞

≤
C0T1+r(α− 1

p )(
Γ(α)

(
(α − 1)p̃ + 1

) 1
p̃

)r ∥φ∥
r
α,p. (16)

On the other hand, from Equations (13), (14), and Remark 2.10, we get∫ T

0
f (t)|φ(t)|1−βdt ≤ ∥ f ∥∞

∫ T

0
|φ(t)|1−β dt

≤ ∥ f ∥∞T∥φ∥1−β∞

≤
∥ f ∥∞T1+(1−β)(α− 1

p )(
Γ(α)

(
(α − 1)p̃ + 1

) 1
p̃

)1−β ∥φ∥
1−β
α,p . (17)

Finally, by combining (16) with (17), and using Equation (15), we obtain

Φλ(φ) =
1

bp2

(
a + b∥φ∥pM

)p
−
λ
r

∫ T

0
G(t, φ(t))dt −

1
1 − β

∫ T

0
f (t)|φ(t)|1−βdt −

ap

bp2

≥
bp−1

p2 ∥φ∥
p2

M −
λ
r

∫ T

0
G(t, φ(t))dt −

1
1 − β

∫ T

0
f (t)|φ(t)|1−βdt

≥
bp−1

p2 min(1,M0)∥φ∥p
2

α,p −
C0λT1+r(α− 1

p )

r
(
Γ(α)

(
(α − 1)p̃ + 1

) 1
p̃

)r ∥φ∥
r
α,p

−
∥ f ∥∞T1+(1−β)(α− 1

p )

(1 − β)
(
Γ(α)

(
(α − 1)p̃ + 1

) 1
p̃

)1−β ∥φ∥
1−β
α,p .

Since 0 < 1 − β < 1 < r < p2, then we infer that lim
∥φ∥α,p→∞

Φλ(φ) = ∞. That is Φλ is coercive and bounded

bellow on Eσ0 .

Lemma 3.2. Assume that assumptions (H1)-(H2) hold. If 0 < 1 − β < 1 < r < p and 1
p < α < 1, then there exist

λ0 > 0 and ψ ∈ Eα0 with ψ ≥ 0, ψ , 0, such that for each λ ∈ (0, λ0) we have

Φλ(tψ) < 0, for t > 0, small enough.

Proof. Let ψ ∈ C∞0 ([0,T],R) such that supp(ψ) ⊂ [0,T] with ψ = 1 in a sub-interval of [0,T] and 0 ≤ ψ ≤ 1 in
[0,T]. Let 0 < t < 1, then we have

Φλ(tψ) =
1

bp2

(
a + btp

∥ψ∥pM
)p
−
λtr

r

∫ T

0
G(t, ψ(t))dt −

t1−β

1 − β

∫ T

0
f (t)|ψ(t)|1−βdt −

ap

bp2

≤
1

bp2

(
a + btp

∥ψ∥pM
)p
−
λtr

r

∫ T

0
G(t, ψ(t))dt −

t1−β

1 − β

∫ T

0
f (t)|ψ(t)|1−βdt −

ap

bp2

≤ h(t) −
λtr

r

∫ T

0
G(t, ψ(t))dt −

t1−β

1 − β

∫ T

0
f (t)|ψ(t)|1−βdt, (18)
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where h(t) = 1
bp2

(
a + btp

∥ψ∥pM
)p
−

ap

bp2 .
Using the convexity of the function h, it is not difficult to prove that

h(t) ≤ th′(t).

So from (18), we obtain

Φλ(tψ) ≤ h(t) −
λtr

r

∫ T

0
G(t, ψ(t))dt −

t1−β

1 − β

∫ T

0
f (t)|ψ(t)|1−βdt

≤ tp−1
∥ψ∥pM

(
a + btp

∥ψ∥pM
)p
−
λtr

r

∫ T

0
G(t, ψ(t))dt −

t1−β

1 − β

∫ T

0
f (t)|ψ(t)|1−βdt

≤ tr
(
∥ψ∥pM

(
a + b∥ψ∥pM

)p
−
λ
r

∫ T

0
G(t, ψ(t))dt

)
−

t1−β

1 − β

∫ T

0
f (t)|ψ(t)|1−βdt. (19)

Put

λ0 =
r∥ψ∥pM

(
a + b∥ψ∥pM

)p∫ T

0 G(t, ψ(t))dt
,

and

δ =


∫ T

0 f (t)|ψ(t)|1−βdt

(1 − β)
(
∥ψ∥pM

(
a + b∥ψ∥pM

)p
−

λ
r

∫ T

0 G(t, ψ(t))dt
)


1
r+β−1

.

From (19), we see that if 0 < λ < λ0 and 0 < t < δ, then Φλ(tψ) < 0. This ends the proof of Lemma 3.2.

From Lemmas 3.1, 3.2, we can define mλ < 0 as follows:

mλ = inf
v∈Eα0
Φλ(v).

Proposition 3.3. Under assertions (H1)-(H2). If 0 < 1 − β < 1 < r < p and 1
p < α < 1. Then the function Φλ

reaches its global minimizer in Eα0 , which means that there there exists ψ∗ ∈ Eα0 , such that, Φλ(ψ∗) = mλ < 0.

Proof. Let {ψn} be a minimising sequence, so Φλ(ψn)→ mλ < 0.
First, we clame that {ψn} is bounded in Eα0 . If not, up to a subsequence, we can assume that ∥ψn∥ → ∞ as
n tends to infinity. From Lemma 3.1, we get Φλ(ψn) → ∞ which is a contradiction. Since {ψn} is bounded
then, from Remark 2.8, there exist a subsequence still denoted by {ψn}, and ψ∗ ∈ Eα0 such that

ψn ⇀ ψ∗, weakly in Eα0 ,
ψn → ψ∗, strongly in Lr([0,T],R),
ψn → ψ∗, a.e. in [0,T].

Now, let us prove that

lim
n→∞

∫ T

0
f (t)|ψn|

1−βdt =
∫ T

0
f (t)|ψ∗|1−βdt. (20)
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From Lemma 2.11, as n large enough we have∫ T

0
f (t)|ψn|

1−βdt ≤

∫ T

0
f (t)|ψ∗|1−βdt +

∫ T

0
f (t)|ψn − ψ∗|

1−βdt

≤

∫ T

0
f (t)|ψ∗|1−βdt + T∥ f ∥∞∥ψn − ψ∗∥

1−β
∞ dt

≤

∫ T

0
f (t)|ψ∗|1−βdt + ◦(1).

where ◦(1) satisfies lim
n→∞
◦(1) = 0.

On the other hand, as in the above inequality, we get∫ T

0
f (t)|ψ∗|1−βdt ≤

∫ T

0
f (t)|ψn|

1−βdt +
∫ T

0
f (t)|ψn − ψ∗|

1−βdt

≤

∫ T

0
f (t)|ψn|

1−βdt + T∥ f ∥∞∥ψn − ψ∗∥
1−β
∞ dt

≤

∫ T

0
f (t)|ψn|

1−βdt +
∫ T

0
f (t)|ψn − ψ∗|

1−βdt

≤

∫ T

0
f (t)|ψn|

1−βdt + ◦(1).

Consequently, we obtain ∫ T

0
f (t)|ψn|

1−βdt =
∫ T

0
f (t)|ψ∗|1−βdt + ◦(1).

Hence, (20) is valid.
On the other hand, from [15], there exists h ∈ Lr([0,T],R) such that for n large enough |ψn(t)| ≤ h(t).
Therefore, the Dominated convergence Theorem implies that

lim
n→∞

∫ T

0
1(t, ψn(t)) dt =

∫ T

0
1(t, ψ∗(t)) dt. (21)

Now, by combining Equations (20), (21) with the weakly lower semi-continuity of the norm, we deduce
that Φλ is weakly lower semi-continuous. Hence, we get

Φλ(ψ∗) ≤ lim
n→∞
Φλ(ψn) = mλ.

Also from the definition of mλ, we haveΦλ(ψ∗) ≥ mλ.Finally, the above informations imply thatΦλ(ψ∗) = mλ,
which ends the proof of Lemma 3.3.

Now, we are ready to present and prove the main result of this paper.
Proof of Theorem 1.1
From Proposition 3.3, there exists ψ∗, such that Φλ(ψ∗) = mλ. Since ψ∗ is a global minimizer for Φλ in Eα0 ,
then for any t > 0 and any φ ∈ Eα0 we have

Φλ(ψ∗ + tφ) −Φλ(ψ∗)
t

≥ 0.

So by letting t tends to zero, we obtain

S(ψ∗(t))
∫ T

0
| 0Dα

t ψ∗(t)|
p−2

0Dα
t ψ∗(t) 0Dα

t φ(t) dt + S(ψ∗(t))
∫ T

0
|ψ∗(t)|p−2ψ∗(t)φ(t) dt

−

∫ T

0
f (t)ψ∗(t)−γφ(t)dt − λ

∫ T

0
1(t, ψ∗(t))φ(t)dt ≥ 0.
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Since the function φ is arbitrary in Eα0 . Then we can replace φ by −φ in the least inequality. That is we can
replace the inequality by the equality and deduce that ψ∗ is a weak solution of problem (4). Finally, the fact
that Φλ(ψ∗) = mλ < 0, implies that ψ∗ is nontrivial. This concludes the proof.

Remark 3.4. The result in Theorem 1.1 can be extended to more general problems involving the fractional Riemann
Liouville operator with respect to another function. That is, under suitable conditions, we can give the existence result
for the following problem

S(u(t)) tD
α,ψ
T

(
Φp(0Dα,ψ

t u(t))
)
+M(t)Φp(0Dα,ψ

t u(t)) = f (t)
uβ(t) + λ1(t,u(t)), t ∈ (0,T);

u(0) = u(T) = 0,

where 0Dα,ψ
t and tD

α,ψ
T are respectively the left and the right fractional derivative with respect to a function ψ. The

interested readers can see [24, 30] for more details about these operators.
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