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Abstract. Let D = {z € C : [z] < 1} be the open unit disk in the complex plane C. By H(DD), denote the space
of all holomorphic functions on ID. For an analytic self map ¢ on ID and u,v € H(ID), we have a product
type operator T, defined by

Tupef(2) = u@) f(p2) + v(@) f (¢(2)), fe€HD), z€D,

This operator is basically a combination of three other operators namely composition operator, multipli-

cation operator and differentiation operator. We study the boundedness and compactness of this operator
from Dirichlet-type spaces to Zygmund-type spaces.

1. Introduction and Preliminaries

Let D = {z € C : |z| < 1} be the open unit disk in the complex plane C. By H(ID) and S(ID), respectively, we
denote the class of all analytic functions on ID and the space of all analytic self-maps of ID. Let H* be the

space of all bounded holomorphic functions on ID. For > 0, the weighted Zygmund space Zg consists of all
f € H(D) such that

I1fllg = sup (1= 12P)P1f" (2)] < 0.

If B = 1, we get the Zygmund space which is denoted by Z. A continuous function @ : ID — (0, o) is termed
as a weight. Weight w is called to be a standard weight, if for z € ID, we have limy,1- w(z) = 0. Further, for

z € D, we call a weight w to be radial, if w(z) = w(|z|). For a weight w the Zygmund-type spaces Z,, is the class
of all f € H(ID) for which

sup w(z)|f"(z)| < co.

zeD
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The space Z,, forms a Banach space with the following norm

Iflliz, = £+ 1" O) + I fllo-

To know more about these spaces and operators acting on them one may refer [7, 11, 13-15, 17-21, 23, 30-32]
and the related references therein.

The Dirichlet space is the class of all those analytic functions on ID such that

f I @)PAAG) < oo,
D

where dA(z) is the normalized Lebesgue area measure defined on ID. The space forms a Hilbert space under
the following norm

IfI2 = [FO)R + f I @PIA).
D

Let K : [0,00) — [0, 00) be a function with the property that it is right continuous and increasing. These
functions have been studied in various papers, see, for example [5, 28, 29]. By treating function K as a
weight, we can obtain the space Dk termed as the Dirichlet-type space which consists of all those analytic
functions on D such that

fD If' @PK(1 - 12P)dA(2) < oo.

Further, we can check that the space Dk forms a Banach space under the norm || - ||, given as follows

2 =|fO)P "(2)PK(1 - |z1*)dA(z).
I, = IFOF + [ 1F@RK(1 - R)iA)

For K(t) = t7, where 0 < p < oo, the space Dk gives the usual Dirichlet type space D,. Further, by taking
p = 0, we obtain the classical Dirichlet space D and for p = 1, we gain the Hardy space H2. These spaces have
been studied widely in various papers. For details one can see [1-3, 5, 7, 16, 22, 25, 27] and the references
therein.

Let ¢ be an analytic self-map of D and ¢ € H(ID). Then, the composition, multiplication, and weighted
composition operator on H(ID) are respectively defined as

Cof(2) = (f o 9)(2) = f(p(2)),
My f(2) = P(2)f(2)
and Wy, f(z) = (MyCp)f(z) = V(2)f(p(z)), z€D, feH(D).

Wy, is a product-type operator as Wy, = M,C,. More results on weighted composition operators on
class of holomorphic functions can be found in [6, 8, 9, 11] and the references therein. Further, for f € H(ID),
the differentiation operator denoted by D is defined as Df = f’. The product-type operators Wy, ,D and
DWy,, were respectively, considered in [12] and [13]. For u, v € H(ID), the composition operator together
with multiplication operator and differentiation operator give rise to a new product-type operator denoted
by T4, and defined by

Tupef(2) = u@)f(p@) + v(@)f (¢(2)), fe€H(D), z€D.

This operator is basically a product of composition, multiplication and differentiation operators. Clearly,
by fixing u,v in T, 4, all possible products of above defined operators can be obtained. In particular, by
setting v(z) = 0 and u = 1, the operator T, ,, get reduced to weighted composition operator Wy, = ¢ f(¢).
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Similarly, for u(z) = 0 and v = v, the operator T, get reduced to weighted differentiation composition
operator Wy, ,D = ¢ - f(p). For more information about these operators (see [4, 10, 14, 19-21, 24, 26, 30])
and references therein. We call a linear operator to be bounded if the bounded sets map to bounded sets.
Further, a linear operator is called to be compact if the images of bounded sets are such sets whose closure
is compact. In [8], we studied the boundedness as well as compactness of operator ‘W, acting from Dk to
Bloch and Bers-type spaces, and compute their essential norm in [9]. Continuing our study, here we have
considered the operator T, acting between Dk and Zygmund-type spaces. This paper is represented in
a systematic manner. Introduction and literature part is kept in Section 1 and some auxiliary results which
are used to derive the main results are considered in Section 2. In Section 3, we investigate the boundedness
of operator T, from Dk to Z, and in Section 4, the compactness of operators T, from D to Z,, is
given. Throughout the paper, for any two positive quantities a and b, the notation a4 < b means thata < Cb,
for some constant C > 0 . The constant C may differ at each occurrence. Further, if botha > band b 2 a
hold, then we simply write a < b.

2. Auxiliary Results

To arrive at the main results we use certain lemmas. The first lemma can be easily obtained from [5].
Lemma 2.1. Let K be a weight function. Then for any w,z € D and p > 0, we have

(1= [wP)P”?

K = [wP)(1 - zm)1 2

is in Dg. Moreover,

fw(z) =

sup ||f‘w||$]( S 1/
welD

and f,, converges to zero uniformly on compact subsets of D as |[w| — 1~.

Lemma 2.2. Let K be a weight function. Then for every f € Dg we have

I fllog
VKA =ZP)(1 - zR)

and for a positive integer n, we have

F9G) < Al zeD

VKA =21 - 2y

The following criterion characterize the compactness. Its proof can be easily follows from Proposition 3.11
in [7].

lf@)I <

Lemma 2.3. Let w be the standard weight and the operator Ty, : Dk — Z,, is bounded. Then T, : Dk — Lo is
compact if and only if for any bounded sequence (fy)nen in D which converges to zero uniformly on compact subsets
of D, we have

35?0 ”Tu,v,(pfn”Zm =0.
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3. Boundedness of the operator T, from Dk spaces to Zygmund type spaces

Theorem 3.1. Let w and K be two weight functions, u,v € H(ID) and ¢ be an analytic self-map on ID. Then, operator
Tupp 2 Dx — Lo is bounded if and only if the functions u, v and ¢ satisfy the following conditions :

| ()
(i) P = - <o,

Y KA @A - o)

)P = sup “ORYORE) 1" @ + @

b VKO lg@P - [pE)P)?

w@)uE)('(2)* + 20 (@)@’ (2) + v(2)¢” (2)| -

(iii) P3 = oo and
T KA e@P - lp@Py "
(1) Py = sup —_LORENPP____
2D K1 = lp@)P)1 - lp)P)*
Further,
P14+ Py +P3+ Py S ”TM,U,(P”'DK—’Zm S P+ Py +Py+P3+ Py, (31)
ohere P = [u(0)| + [’ (0)| N [0(0)] + [u(0)¢p’(0) + ©"(0)|
VK@ = lp@)P) (1 = lpO)P) VK1 = lp0)P)(1 - lp(0)12)?

[0(0)ll” (0)]

+ :
VK = lpO)P)(1 - lpO)7)

Proof. First suppose that conditions (i), (ii), (iif) and (iv) hold. Since

(Tuopf)@ = @2 f(@(2) + v(2)f (9(2)),
this implies

(Tusef) @) = W @f@@) + (1@ @) + /(@) f (9R) + 0@’ @) f (p(2))
and

(Tuef) @) = " @F(p@) + (1@)g" (@) + 20 @) @) + 0" (@) f (¢(2))

+ (1@’ @) +20' @' (D) + 029" D)) f" (9(2))
+ 0@ QP (92)-

Thus, for z = 0, we have

(T f)(0) = u(O)f(p(0)) + 0(0)f'((0))

and

(Tusinf) (©) = (O F(p(0) + (1O’ (0) + ' (0))f ((0) + 0(0)' O)f " ((0)):
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Now for f € Dk, an arbitrary z € ID and by Lemma 2.1, we get

||Tu,v,(pf||©1<—>Zm

From (3.2), we conclude that the operator T, : Dk — Z,, is bounded and

= (Tu0p N)ON + (T, f) (O] + sUp @(2)(Tu0,0 )" (2)]

2D
((|u(0>| + 1w O)]) (@O + (lo(O)] + [1(0)p" () + ¥/ (O))| f ((O))
- (Iv(O)I|<p'(0)|)lf”(<p(0))|) +sup @ @I f(p()

If" (@)

If" (@)l

+ sup w(z)|2u’ ()¢’ (2) + u@)p” () + V" (2)
zeD

+ sup a)(z)|u(z)(q0’(z))2 +20'(2)@’ (z) + v(z)@” (z)

zeD

+ sup w(@)v@)llp’ @PIf" (P(2))|

zeD

|u(0)] + [ (0)] L O+ [1u©)p’(0) + O)

VKA = lpO)P)(1 - lp@)F) VK1 = 1p0)P)1 - lp(0)P)*

[(O)lle’(0) +su w(@)u”(2)|

+
VKO- 00D - 9P} b VKA @B - lp@P)

s SR + 2Ny () + ")
b VKO- p@P - p@PF
+ sup CENOC O + 2 ') + )
b K~ p@P( ~ [p@)F)
ey el |
: Il
B KT pen - wep) "

(P +Py+Py+DP5+ P4)||f||®,<-

ITu0pllooz, S P+P1+Py+Ps+ Py

6055

(3.2)

(3.3)

Conversely, assume that T, ,, : Dk — Z,, is bounded. At first we shall prove that P; < co. For this take a

function py(z) = 1 € Dk. Since the operator T, : Dx — Z,, is bounded, we get

sup @@ @) < [Tuwolls, .
zeD @

For w € D, set

fo@ =m (1 —lp(@)P)" v (-lp@P)E
VKA = lp@)P)(1 - zp@):* YK = Ip@)P)(1 - zp(w))=*
(4 lp)P)*2 +d 1 - lp(w)R)7+3

c ; T
VKA - p@P) (1 - zp@)i ™ KA = lp@P(1 - zp(@) s+

(3.4)
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Using Lemma 2.1, it can be seen that for every w € D, f,, € D and sup, ., I follo, < 1. Further, we can
check that

(1 - lp@)P)? (p(w))
VKT = Tp@)P)(1 - zg(w))?*2
VKT = Tp@)P)(1 - zp(w)):*3
3) (1 - lp@)P) **(p(w))
VKT = Tp@)P)(1 - zg(w)) s+
O
2 KA - lp@)P)(1 - zg(w))

ful2) = al(g + 1)

. p p 1 - lp@)P)? (p(w))?
w( ) = st+1)|5+2 o
fuz a1(2 )(2 ) \/K(l _ I(p(w)lz)(l _ Zqo(w))i+3
p p (1~ lp@)P) s (p(w))?
bil=+2)=+3
(3 (2 ’ )JK(l “T@P(1 - zgp(w)) s+
(5 +4) (1~ lp()P)**(p(w))*
2 VKA = Tp@)P) - zp(w)) s+
p p 1 - lp@)P) 23 (p(w))?
dil=+4)=+5 ,
R(EA ER )\/K(l “To@P)(1 - zp@)

and

f'(2) = al(g + 1)(2 + 2)(8 " 3) \/K(il—_ﬁ'o(fz(;()}l)li()lz (—(Pizzi))‘z’”

) (1 - lp@)P) ' (p(w))?
VKA = Tp@)P)(1 - zp(w)) >+
(2 +4)(2 +5) == lp@)P)* 2(p(w))’
2 N2 KA = Tp@)P)(1 - zep(w)) s+
PP L\ P (1 - lp@)P) 53 (p(w))?
dil=+4|)l=+5)l=+6 .
" 1(2 " )(2 " )(2 " ) VKA - lp@)P)(1 _Z(P(w))gw

Hence,

folp@)) = fi(pw)) = f"(p(w)) =0 and (3.5)

1
w(p(w)) =6 . (3.6)
Sl = o B — o))
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Since the operator T, : Dx — Z,, is bounded, thus we get

ITunpllogaz, 2 ITung fullz,
W' (@) fulp(@))
+ (u(w)g” (w) + 2u' (W)’ (w) + 0" (W) fo(p(w))
+ (@)@’ @) + 20’ (w)g' (w) + v(w)p” () £/ (p(w))
+ o) @) (p(w))|

w(w)[u” (w)|

VKT = Tp@)P)(1 - lp)P)’

Thus, inequalities (3.4) and (3.7) implies that

2 w(w)

w(w)|u” (w)|
sup 5 , < ”Tu,v,(p”DK—)Zm‘
weD K(1 = lp@@)P)( - lp(w)?)
This implies that (i) holds and

Py 5 “Tu,v,(p“'DKHZm'

Next, for p1(z) = z € Dk, we obtain

sup w(z)|lu” (2)p(z) + 2u’ (2)@’" (z) + u(z)p" (z) + v (2)| < ”T”'v'(PHQK—J .
zelD @

Using (3.4) with the fact that |p(z)| < 1, from (3.9) we get

sup w(2)|2u' ()¢’ (z) + u(2)e" (2) + 0" ()| < ||T

wop oz,
2eD k—Zo

For w € D, define a family of functions

1 - lp)P)? o 1 - lp@)P)*!

Ju(2) = az

(1 - p(w)R)s+2 o 1~ lp@)P)s+3

VKA = Tp@P (1 - 2p@)s ™ YK{ - [p@P)(1 - zp(w):

C 7
VKA - lp@P/( - zp@)i? KA - lp@)P)(1 — zp())5

where

6057

(3.7)

(3.8)

(3.9)

(3.10)
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Using Lemma 2.1, it can be seen that for every w € D, g, € Dk and sup,_, ., |70llo, < 1. Further, we can
check that

1 - lp@)P)* (p(w))
VR = Tp@)P)(1 - zg(w))*2
+b@+# G_WWWﬁH@@b,

2 KA = Tp@)B)( - zpw)):+3
+ CQ(B + 3) (1 = lp@)P)2 *2(p(w))
2 KA - Tp@P)(1 - zp()) T+

(1 = lp@)P) 23 (p(w))
VKT = lp@)P)(1 - zg(w)) s+’

gu(2) = az(g + 1)

+ dz(g + 4)

0 =2 +1)(£  2) LD G
VK= lp@)P)(1 - zp(@)*

p p (1 - lp@)P) 5 (p(w))?
+b|z+2)z+3
34259 VKA - p@P)/(1 - 2p() 5™
_ 25420 (77))2
+c2(§+ 3)(§+ 4) (1~ lp)P) s *2(p(w))

VKA = Ip@)P)(1 - zp(w)) s+
p p 1 = lp()P) s+ (p(w))?

do| = +4) = +5 ,

* 2(2 * )(2 * ) \/K(l _ |(P(w)|2)(1 —zqo(w))g%

and

PP )P 1 - lp@)P) 2 (pw))?
I () = a2(2 * 1)(5 * 2)(_ * 3) \/K(l “lp@)P)(1 - Z(p(w))g“‘
(£ +4) (1 —lp@P) o)’
VKT = lp@)P)(1 - zp(w))5*5
£+s) (1 - lp@)P)* 2 (p(w))®
2 KA = Tp@)P)(1 - zp(w)) s+
PP L L\P 1 - lp@)P) 3 (p(w))?
* dZ(E * 4)(5 * 5)(5 * 6) \/K(l _ I(p(w)lz)(l _ Z(p(w))%”

+bz(g +2) 2
)

Hence,

Fo(pw)) = g (p(w)) = g (p(w)) = 0

st =2(5-+1)§ + 2§ +3) D
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Since the operator T, : Dx — Z,, is bounded, thus we get

||Tu,v,(p ||®K—>Zm
2 “Tu,v,(pgw“Zm

2 w(w)|u” (W) go(p(w))

+ (u(@)p” (w) + 26 (W)’ (w) + 0" () )ty ()

+ (@)@’ @) + 20" (w)g' (w) + v(w)p” (w))g/s((w))

+ o) (@) g (p(w))

(P p p \w@)|uw)e” @) + 2u' W)’ (W) + v (w)|lp@w)|
= 2(— + 1)(5 + 2)(5 + 3) .

2 VK = lp@)P) (1 — lp@)[2)?

For fixed n € (0, 1), inequalities (3.10) and (3.11) implies that

(3.11)

w(w)|u(w)p” (w) + 21 ()¢’ (w) + 0" (w)|

wb VKA Tp@P — [p@)P)’
< sup w(w)|u(w)e” (w) + 2u’(w)e' (w) + v" (w)|

lp()l<n VK = lp@)P)(1 = lp@w)?)?
+ sup w(W)u(w)e” (w) + 2u’ (W)’ (w) + v”" (w)|

Ipw)l>n VK1 = lp@)P)(1 = lp(w)?)?

1 sup w(w)|u(w)e” (w) + 2u’ (w)e’ (w) + 0"’ (w)|

A =177 jpi<n VK1 -m)
L1 sup w(W)lu(w)e” (w) + 2u’ (W)’ (w) + v" (w)llp(w)|

M lp(@)l>n VK = lp@)P)(1 = |p(w)I?)
1 1
< (m + ﬁ)HTu,v,q)HDK—»zm-
This implies that (i) holds and
PZ < ”Tu,v,q7”®1<—>Zm~ (3-12)

<

Taking po(z) = ‘3—2, € Dk, we get

sup w(2)| 31 ()(p(2) + 20 ()’ (2) + u2) ! ()

zeD
+ uE@)P(R)P"(2) + 0" (@)p(2) + 20" (2)p' (2) + v(2)¢" (2)|

<1 (3.13)

) —

which together with (3.4), (3.10) and the fact that |p(z)| < 1 implies that
sup w(2)|u(w)(@’ (@))* + 20’ (W)¢' (2) + o(W)¢" @)| < | Tuoply, 7 - (3.14)
zeD i

For w € D, set

(1 - lp@)P)* (1= lp(w)P)z*!
3 T hs 0
VKA = Tp@)P)(1 - zp@)):*' KT = [p@)P)(1 - zp(w))?*2
e 1 - lpw)P)2+2 - 1 - lp@)P)5+ .
VKA = Tp@)P)(1 - zp@)):*? VK~ lp@)P)(1 - zp(w)) 5 +*

hy(z) =a
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where

and ds = —(g + 1)(5 + 2)(% + 3)(% + 3).

6060

Using Lemma 2.1, it can be seen that for every w € D, h,, € Dk and sup, ., llhollp, < 1. Further, we can

check that

1 - lp@)P)% (pw))
VKA = Tp@)P)(1 - zp(w)):*2
bn(§ o) LU0 T00)
2 KA Tp@)B)(1 ~ zpw)) 7+

I(2) = a3(§ + 1)

el +a) OB
2 K= lp@P)(1 - zp(w):
v ) lp@)P)?(p(w)

VKA = Tp@)P)(1 - zpw)): >’

. 1 - lp@)P) 2 (p(w))?
= a3(§ i 1)(§ i 2) \/K(i - |q:()z(u>|)2><)1 (-@i@iiu»w
(£+3) (1= lp@P) " (pw)”

VKT =Tp@)P)(1 - zg(w)) s+
) o)l B
VEI = lp@)P)(1 - zp(w))*5

p p (1~ lp@@)P) 23 (p(w))?
d - 4 g 5 7
" 3(2+ )(2 ’ )\/K(l—I@(w)lz)(l—w(W))5+6

and

' (z) = as(— + 1)(8 * 2)(3 " 3) \/K(il__l(lji:;;)!;); (—(PEZZZ))QH

A
ol g )l

VKA = Tp@)P)(1 - zp(w)) >+

PP )P (1~ lp)P) 3 (p(w))?
* dS(E * 4)(5 * 5)(5 * 6) \/K(l _ |(P(w)|2)(1 _ Z(P(w))gw'
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Hence,
ha(p(w)) = hy (W) = hy (p(w)) = 0

2
o iptn =25 + 15+ 2§+ o) OO

Since the operator T, : Dx — Z,, is bounded. Thus, we get

||Tu,v,qJ ”DK—>Zm
2 1 Tupphollz,

W (@)heo(p(a0))
+ (u(w)g” (w) + 2u' (W)@’ (w) + 0" (W) i, (P (w))

+ (@)@’ @) + 20" (w)g' (w) + v(w)p” (w) ) ((w))
+0(@)(g (@)H (p(w))

> w(w)

e 3)w<w>|u<w>(<p'<w»2 + 20 @)/ @) + vy @)]|(p@)?]

2 2

VK@ = lp@)P) (A = lp@w)P)?

For fixed n € (0, 1), inequalities (3.14) and (3.15) implies that
w (1) u(w)(p’ (w))* + 20" (W)’ (w) + v(w)e” (w)]

b VKA~ Ip@P)(1 - [p(@)P)?
¢ up CEOME @) 20 @)y @) + o))
e K - lp@P)(L - lp@)P)?
s MNP + 2l @) + o)y ()
lp(@)l>n VK@ = lp@)P)(1 - lpw)[?)3
o1 wE)u(@)(g @) + 20" @) (@) + v(w)g” W)
< ——— sup
=1 pyi<n VK@ =17
1“4 20 @) + oy @lpe)

+ — su
7 oo 1 - lp@)P)

1 1
< (m + F)”Tu,v,(p”EK—)Zm-
This implies that (iii) holds and

P3 < ||Tu,v,(p”®;<—>zm~

Taking p3(z) = é—S, € Dk, we get

sup w(2) %M"(Z)(@(Z))3 +1/(2)(@(2))°¢' (2) + u@P(2) (@' (2))°

+ SUEPERI ") + 20" PR + 20 E)p' @)

+0(2)(@'(2))* + @) (2)

S”Tu,v,(p ”3;<—>Zm ’

6061

(3.15)

(3.16)

(3.17)
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which along with (3.4), (3.10), (3.14) and the fact that |p(z)| < 1 implies that
sup w20’ @F S [Tuopllg, 7. (3.18)
zeD !

For w € D, set

_ 2y4 _ 2y6+1
Ko@) = a4 (1 -lpw)l) i, (1 - lp)l) :
VK = lp@)P)(1 ~ zp(w))=*! VK1 = lp(@)P)(1 - zp(w))=*2
+cy (4~ ko)) — +dy (- I Toa’
VK1 = lp@)P)(1 - zp(w)) 2+ VK1 = lp@)P)(1 = zp(w)) 2+
where

e

e ook} n il

cy = 3(E n 1)(% + 2)(% + ) and dy = —(g + 1)(% 12 (g i 3).

N

Using Lemma 2.1, it can be seen that for every w € ID, k;, € Dk and sup, ., llkullo, < 1. Further, we can
check that

1 - lp@)P)% (p(w))
VKT = lp@)P)(1 - zp(w)):+2
. 2) 1 - lp@)P) 2 (p(w)) p
VKA = Ip@)P)(1 — zp(w)) s *3

K () = a4(g + 1)

+ b4(

NI

+3) (- lp@)P) ()
VKA = lp@)P)(1 - zp(w)) s+
+d4(8+4) <1—|<p<w>|2>f+3((p<w>)p ,
2 KA = Tp@)P)(1 - zp(w))*5

NI

+ C4(

. p 1 - lp@)P)% (p(w))?
k = —+1=
=0z 1)z 2 g - v
p p 1 - lp@)P) s (p(w))?
byl = +2)=+3
* 4(2 * )(2 * ) \/K(l _ |(P(w)|2)(1 _ zgo(w))§+4

(1 = lp@)P) 22 (p(w))?
VK@ = Tp@)P)(1 - zp(w))?*5
PP (1 - lp@)P) 23 (p(w))?
do(= + 4|5 +5 ,
* 4(2 * )(2 * )\/K(l _ I(p(w)lz)(l _Z(p(w))gw
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and

(5 +2)(%+3) <1—@wm%H¥@%3p4

VR = Tp@)P)( - zp(w)) £ *

(£44) (1 - lp@)P)** (p@))’
VK = Tp@)P)(1 - zp(w))5+°

(£+9) (1=~ lp@@)P)* 2(p(w))’

2 KA =Tp@)P)(1 - zp(w)) 7+

p pL\(P (1 = lp@)P) 23 (p(w))?
dal = +4)=+5){=+6 .
* 4(2 * )(2 * )(2 * ) \/K(l _ |(p(w)|2)(1 _Z(P(w))gw

Hence,
ko (p(w)) = ki, (p(w)) = kyy(p(w)) =0
and K@) = 65 +1)(2 +2)(2 +3) (P@))’

2 VKT = lp@)P)(1 - lp@)R)*

Since the operator T, : Dx — L, is bounded. Thus, we get

||Tu,v,(p ||1’K—>Zm
2 “Tu,v,(pkw”Zw

> w(w

W @)k (p(@))
+ (u(@)p” () + 20/ (w)g’ (w) + 0" () K, (P (a0)

+ (@)@’ @) + 20" (w)g' (w) + v(w)p” (w) Jkis (p(w))
+ o) @)k ()

(P NP NP @@)|p)@ @) (p@))|
B 6(2 * 1)(2 * 2)(2 * 3) V/K(l —lp@)P)(1 - Iqo(w)|2)4'

For fixed n € (0, 1), inequalities (3.18) and (3.19) implies that

(3.19)

sup N @)
asb VKL~ p@P)(1 - lp(@)P)*
w(@)o(w)(g’ @) w(@)o)(g’ @)
< sup + sup
ok YKL =Tp G P i YK~ oGP g
1 @)@ WP w(@)o()(g’ @) )’

<

S TP e KA n|wmm¢m1—WWW(l|meﬂ

1 1
< (= * hToelncez.

which implies that (iv) holds and

Py S ITupplloc—z,- (3.20)
Combining (3.8), (3.12), (3.16) and (3.20), we get that

P1+ Py +P3 + Py S | Tupplloi-z, - (3.21)
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Thus, from (3.3) and (3.21), it follows that
P14+ Py, +P3+ Py < ||TM,U,([)||©1<—>ZM <P+ Py+Py+P3+ Py (322)

Hence the theorem. [J

In Theorem 3.1, if we take u(z) = ¥(z) and v(z) = 0, then the operator get reduced to the weighted
composition operator Wy, : Dx — Z,. Thus, we get the following corollary for the boundedness of
Wy, Dk — Zy as:

Corollary 3.2. Let w and K be two weight functions, i € H(ID) and ¢ be an analytic self-map on ID. Then, operator
Wy, : Dk — Ly, is bounded if and only if the functions { and ¢ satisfy the following conditions :

| e
() Q1 =

Y RO p@P - @R

) 0 — sup LIV OPE) + ¥" G

2D K1 = pE)P)1 - p@)2)?
N w(2)Y(2) (@' (2))*] -
(iii) Qs = SZIEJHI;’ KO = le@D (A - lp@)P) <

Further,

Qi+ +Q S| Wypllogsz, SQ+Q1+Q2+Qs,

Q= PO + [y’ (O)] N 1P (0)g" (0)l _
VKA = lpO)P)(1 - lp@)F) VK1 = Ip0))(1 - lp(0)P)*

Again by taking v(z) = ¥(z) and u(z) = 0 in Theorem 3.1, we can obtain the boundedness of the weighted
differentiation composition operator W, ,D : Dx — Z, which can be given by the following corollary:

where

Corollary 3.3. Let w and K be two weight functions, 1p € H(ID) and ¢ be an analytic self~map on ID. Then, operator
Wy,oD : Dx — Z,, is bounded if and only if the functions y and ¢ satisfy the following conditions :

(i) Ry = sup @) (2)]

b VKA 0@ — lp@RE
i Ro = sup CORYERC) + YOI EN
b VKO @R — IR
W@ @)
K1 = lp@P) 1 - lp)?)*

(iii) R3 = su

Further,

Ry + Ry + R3 5 | WyoDllog-z, S R+ Ri + Ry +R3,

PO + [’ (O) N [¥(0)¢’(0)l _
VKA = lpOP)(1 = lpO)P)? VK1 = 1p0)P)1 - lp(0)F)°

where R =
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4. Compactness of the operator T, ,,, from Dk spaces to Zygmund type spaces

Theorem 4.1. Let w and K be two weight functions, u,v € H(ID) and ¢ be a self analytic map on ID. Then, the
following conditions are equivalent:

(i) The operator T, : Dx — Z,, is compact.

(ii) Functions u, v and ¢ are such that

p1 = sup w(z)|u”(z)| < oo,
zelD

P2 = su]]})) w(2)2u' (2)¢" (2) + u(z)e” (z) + v’ (2)| < oo,
ps = Su]]}; w@u@) (@' (2))* + 20" (@)@’ (2) + v(2)p” (2)| < oo,

pa = sup w(2)|o(2)(¢’ (2))?] < o,
zelD
T w(z)|u” ()| _
m - 0/
lP@I=1 VK1 = lp@)P)(1 - lp)P?)
L OEREYE) iR @) + @l _
lp@I—1 K1 = lp@)A)(1 - lp(2)1?)?
lim w(@)u(2)(@' (2))* + 20 (2)¢’ (2) + v(2)” (2)| 0
lp(@)—=1 VK1 = lp@)P)A = lp@)P)?
im w@)o@)le’ (2)I? _
lp@I=1 (K1 = |p(2)P)(1 = lp(z)?)*
Proof. First, suppose that the condition (i) holds, that is, operator Ty : Dx — L, is compact. This implies
that Ty : Dx — Z, is bounded. Thus, from Theorem 3.1, we obtain that p;, p2, p3 and py are finite.

Consider a sequence (i)men € ID such that |p(u,)] = 1 as m — co. Conditions (if) hold obviously if such a
sequence does not exists. By making use of (u,,)men, define

@) = (1~ lp(un)P)? b (L~ lpQun)?) ™!
VKA = Tpn)P)(1 = zpn)) " VKA = @(tm)P)(1 = 2 (h)) 52
' (1 = lpun)P) 5+ o (1 = lpun)?) 2+

VRO = p P = 29t RO~ pGam)PI(1L — 2p(a))

Im(z) = a2 (= lpn)P)? + by (A = p(un)?) s+
VKA = lp(unP)(1 = 2p(n)) = VKA = lp(ua)P)(1 = 2p(t)) 22
(- lptunfy"? +d (1 = lp(un)P) =+

+c ’
VKA = o)1 - 200 VKA — [plumP)(L - 2g(un) F ™

I (2) = a5 (1 = lp(un)P)? i, (1 = lp@un)P)=*" :
VK = loun)P)(1 = 2 () 2! VK = lpun)P)(1 = 2 () 2+
_ 2y5+2 _ 2)5+3
e (1 = lp@um)l*) o d (1 = lp(um)l)

’ VKA = 1p(tn)P)(1 = zg(u)) t ’ VKA = 1p(n)P)(A = zp(itn)) 4
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k() = a4 A-lptw)P)t (- lpnP)
VK = lp@un)P)(1 = zpum)=* VKA = lpua)P)(1 = 2p(1m) 2
0 o™ d (1 = lp(u, )P+

+ ,
KA oD —2p)i? KA Pl — zp()

where a1, a,, a3, as, by, b, bz, by, c1, €2, €3, €4, d1, do, d3 and d4 are defined in Theorem 3.1. From Theorem 3.1,
it can be seen that the sequences (fu), (9m), (hn) and (k,,) are norm bounded in Dx and on compact subsets
of D uniformly converge to zero as m — co. Thus, by Lemma 2.3, we get

M s fullz, =0 Jim WTunpgnliz, = O,
7}111)130 ”Tu,v,(phm”Zw =0 and nlzlirc}o ||Tu,v,(pkm||zw =0. (41)
From (3.7), (3.11), (3.15) and (3.19), it follows that

@ttt (1)

VK@ = lpum)P)(A = o))

(1)) (1) + 200 (1)@ () + 0 (1) || (1)

VK@ = lp(um)P) (A = o (um)?)?

(1) |1 )P’ ()2 + 20" ()" (1) + O(1t)” (1) ||( 0 (14:))?]

VKA = lpum)P)A = loum)?)?

< ”Tu,v,(phm | |Zm (44)

< ”Tu,v,qofm”Zmr (42)

S “Tu,v,(pgm“Zm/ (4.3)

and
@ (1t0)[00420) (@ (120))* (@ (10))°|
K= pGnP)(1 - p(n)P)*
By taking m — oo in (4.2), (4.3), (4.4), (4.5) and using (4.1), we obtain that conditions (i) hold.

S ||’1—'u,v,(pk111”Zm . (45)

Conversely, suppose that condition (ii) holds. To prove the compactness of T, we first show that T, 5, is
bounded. Using condition (i), we see that for every ¢ > 0, there is an 1 € (0, 1) such that

w@)|u" )|

(4.6)
KT - Tp@P) - lp@)P)

. :w(z)|u(z)(p”(2) +2u' (@)’ (2) + 0" (2)| e (4.7)

’ VK = lp@)P)A - lp@)?)? |
L @R @) + 20 @' @) +v@e @) (4.8)

YT KA @R Ip@PF |

and
’ 2

Lo v@PeeE@r] 49)

VK - 1p@P)A - lpE)P)*
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foranyze€ A={zeDD:|p(z)| > n}. Now, by (4.6) and condition p; < oo, we get

Py =supLi(z) £ sup Li(z) +sup Li(z) <

P1
+ €.
zeD zeD\A z€A VK(l - 772)(1 - '72)

This implies that P; < co. Now by (4.7) and p, < oo, we get

Py =sup Ly(z) < sup Ly(z) +sup Lo(z) <

p2
+ &,
zeD zeD\A zeA VK@ = n?) (1 —n?)?

which implies that P, < co. Again, from (4.8) and p3 < oo, we get

P3 =sup L3(z) < sup Ls(z) +supLs(z) <

%]
+ €.
zeD zeD\A zeA VK1 = 0?1 —n?)3

Thus, P3 < c0. Again, from (4.9) and ps < oo, we get

Py =sup Ly(z) < sup Ly(z) + sup La(z) <

P4
+¢,
zeD zeD\A zeA VK1 - )1 - n?)*

which implies that P4 < co. From the above we obtain that Py, P,, P3 and Py are finite. Therefore, by
Theorem 3.1, we have that the operator T, : Dx — Z,, is bounded.

Now, we prove that T, : Dx — Z, is compact. Consider a sequence (g,)men € Dk such that g, — 0
uniformly on compact subsets of ID and ||gullo, < 1. Then, g,,, g, and g, uniformly converges to zero on
compact subsets of ID as m — oo.

Thus, using Lemma 2.2, (3.1), condition (i), for every ¢ > 0 and 7, we obtain

||Tu,v,gu.’7 mllz,

= |(Tu,v,(pgm)(0)| + |(Tu,v,q7gm),(0)| + suﬂf)-) (‘)(Z)|(Tu,v,<pgm)”(z)|

<P+ SLI]]}D) w(Z)|M"(Z)!7m((P(Z))|

+ sung) a)(z)|(2u’(z)<p’(z) +u(z)e” (z) + v”(z))g;,((p(z))(
+sup 0@|(u@(P' @) +20' @9’ (2) + 0P (2))gm(9(2))|

+sup w(2)o@)(@’(2))*g,, (9(2))]

zelD
< P+ sup 0@’ @)llgn(@@)| + sup @)’ @)llgn(p())|
z€EA zeD\A
+ suf a)(z)|2u'(z)(p'(z) + u(2)e” (z) + v’ (2)||9,,(¢(2))]
+ sggAaxz)}zu/(z)@’(z) +u@)e" (2) + 0" @)||7, (@)
+sup w@|uE)(@ @) + 20 @)@’ (@) + (@) 2| 7m(P))]
+ sggAwu)}u(z)((p'(z))z + 20 (2)¢' (2) + 0(2)@" (@)||71n(@(2))|
+sup @)@l 2)Plgy (@) + sup w@)o@)e’ @)Plgy (@)

<P+ A, +CsupLi(z) + Csup Lo(z) + Csup L3(z) + Csup Ls(z)
z€A z€A z€A z€A

<SP+ A, +4e, (4.10)
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where

Ay =p1 sup |gu(2)|+p2 sup |g,,(2)|+p3 sup |g,(2)|+ps sup g,/ ).

{z:|zI<n} {z:)zI<n} {z:|zI<n} {z:|zI<n}

We know that if (g,u)men converges to zero uniformly on any compact subset of ID then (g;,)men, (Fr)meN

117

and (g, )men do the same as m — oo. Thus, A, — 0as m — oo. Also, {¢(0)} and {z : |z| < n} are compact
subsets of D, so by taking m — oo in (4.10), we obtain

Lim ITu0pgmlloc -z, = 0.

Hence the operator T, : Dx — Z is compact. [J

Taking u(z) = 1(z) and v(z) = 0 in Theorem 4.1, we can obtain the compactness of the W, : Dx — Z,
given by the following corollary:

Corollary 4.2. Let w and K be two weight functions, Y € H(ID) and ¢ be an analytic self-map on ID. Then, following
conditions are equivalent:

(i) The operator Wy, : Dx — Z,, is compact.

(ii) Functions  and @ are such that

g = suﬂg w(@)YP” ()] < oo,
0 = suﬂg w(2)2¢' (2)¢"(2) + P(2)p” (2)| < o0,

93 = sup @)@’ (2))*] < o0,

. @Y (2)| o
ee=1 VKA - lp@P(1 - lp@P)
i YOV @@+ v@e @) _
PO VK- lp@P(1 - lp2)P)?
. @)@ @)
P@=1 KA = [p@P(1 - lp)R)?

Again by taking v(z) = ¢(z) and u(z) = 0 in Theorem 4.1, we can obtain the compactness of the operator
Wy,,D : Dx — Z, which can be given by the following corollary:

Corollary 4.3. Let w and K be two weight functions, Y € H(ID) and ¢ be an analytic self-map on ID. Then, following
conditions are equivalent:

(i) The operator Wy, ,D : Dx — Z,, is compact.
(ii) Functions  and @ are such that

1 =sup w(@)lY”(2)| < o,
zeD

2 = sup ()2 ()¢’ (2) + P(2)¢” (2)] < o0,

s = sup @)@’ (2))*] < oo,
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. @Y @) :
PO VKT~ lp@P(1 - pE)PY

e CERYEPE) + PR @I
o1 YK = lp@P(1 - Ip@)P)

L 0@
=1 VK- lp@P(1 - p@)P)!
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