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Quasi-Menger and Weakly Menger Frames
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Abstract. We study the quasi-Menger and weakly Menger properties in locales. Our definitions, which
are adapted from topological spaces by replacing subsets with sublocales, are conservative in the sense
that a topological space is quasi-Menger (resp. weakly Menger) if and only if the locale it determines is
quasi-Menger (resp. weakly Menger). We characterize each of these types of locales in a language that
does not involve sublocales. Regarding localic results that have no topological counterparts, we show that
an infinitely extremally disconnected locale (in the sense of Arietta [1]) is weakly Menger if and only if
its smallest dense sublocale is weakly Menger. We show that if the product of locales is quasi-Menger
(or weakly Menger) then so is each factor. Even though the localic product

∏
j∈JΩ(X j) is not necessarily

isomorphic to the locale Ω
(∏

j∈JX j

)
, we are able to deduce as a corollary of the localic result that if the

product of topological spaces is weakly Menger, then so is each factor.

1. Introduction and motivation

Recently there has been an interest in studying selection principles in a context that does not argue
using points. In [3], we studied the Menger and almost Menger properties in frames. The latter property
is a weaker form of the former introduced by Kočinac [14], and has since been studied by several authors
in topological spaces. In [17], Mezabarba reprises a theorem of Hurewicz and one of Pawlikowski, each
concerning topological games, within lattices that have “enough points” in the usual usage of this phrase
in point-free topology. Notwithstanding the sufficiency of points (in the localic sense) in the lattices he
considers, his arguments do not use points, in the topological sense.

There are several variations of the Menger property in spaces. For a thorough survey, we recommend
the reader consult [15]. In this paper we concentrate on the localic versions of the quasi-Menger and the
weakly Menger variations. Since non-spatial quasi-Menger and weakly Menger locales do exist, our study
covers a wider scope than locales induced by quasi-Menger or weakly Menger spaces.

When working with locales, some questions come up that do not arise in topological spaces. The
existence of the smallest dense sublocale in every locale frequently leads to questions that are not motivated
by topological considerations, and indeed that do not have topological counterparts. This is a case in this
paper too. For instance, we show that a locale that Arietta [1] calls infinitely extremally disconnected is
weakly Menger if and only if its smallest dense sublocale is weakly Menger.
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Here is a brief outline of the paper. In Section 2 we recall some pertinent definitions. Quasi-Menger
frames are defined and studied in Section 3. As in spaces, the definition requires that we start with a closed
sublocale and a sequence of families of open sublocales interacting with the closed sublocale in a certain
way. Starting with a regular-closed sublocale, instead, leads to a weaker variant, and we call the resulting
locales regularly quasi-Menger. The topological counterpart (replacing “closed subspace” with “regular-
closed subspace” in the definition of quasi-Menger spaces) has not been considered before in spaces defined
in the form just mentioned. However, a closer look shows that the ensuing spaces (we call them regularly
quasi-Menger spaces) actually do appear in a different guise as part of what Kočinac and Konca [16] call
set-Menger spaces.

In Section 5 we find a sufficient condition for the spectrum of a locale to be regularly quasi-Menger
if the locale is regularly quasi-Menger. The condition is that the points of the locale meet at the bottom
– a condition which does not force the locale to be spatial, we hasten to add. We first prove this result
topologically because the topological proof also brings to light some properties of the spectra of frames that
do not seem to be recorded anywhere, so far as we have been able to determine. We then show how the
same result appears as a corollary of a localic one proved completely differently.

In the last section we define and study weakly Menger locales. We show that a locale whose smallest
dense sublocale is weakly Menger is itself weakly Menger. We actually have a characterization of when the
smallest dense sublocale of any locale is weakly Menger.

2. Preliminaries

We assume familiarity with frames and locales. Our references are [13] and [20]. In this section we recall
just a few of the concepts that we shall need. Our notation is standard. The term “homomorphism” will
always mean a frame homomorphism. The asterisk will appear as a subscript to denote the right adjoint of
a homomorphism, and as a superscript to denote the pseudocomplement of an element.

2.1. Sublocales

Let L be a frame. The lattice of sublocales of L, ordered by inclusion, is a coframe denoted S(L). Meets
in S(L) are intersections, and joins are given by∨

i∈I

Si =
{∧

M |M ⊆
⋃
i∈I

Si

}
.

The smallest element of S(L) is the sublocale O = {1}, and is called the void sublocale. A sublocale is
complemented in case it has a complement in S(L). Complemented sublocales are precisely the linear ones,
meaning that a sublocale S is complemented if and only if

S ∩
∨
i∈I

Si =
∨
i∈I

(S ∩ Si)

for every family (Si | i ∈ I) of sublocales of L.
The open sublocale associated with a ∈ L is denoted by oL(a), and the closed one by cL(a). Recall that a

is called regular in case a = a∗∗, and complemented in case a ∨ a∗ = 1. A sublocale of L is called regular-closed
(resp. regular-open) in case it is of the form cL(a) (resp. oL(a)) with a regular. The clopen sublocales of L are
precisely the sublocales cL(a) for complemented elements a. For any family (ai | i ∈ I) of elements of L,

cL

(∨
i∈I

ai

)
=
⋂
i∈I

cL(ai) and oL

(∨
i∈I

ai

)
=
∨
i∈I

oL(ai).

For any a, b ∈ L,

cL(a) ⊆ oL(b) ⇐⇒ a ∨ b = 1.
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The closure of a sublocale S of L, denoted S or clL S, is the sublocale

S = cL
(∧

S
)
.

In particular, oL(a) = cL(a∗). If S and T are sublocales of L and S ⊆ T, then S is a sublocale of T. The closure
of S in T will be denoted by clT S, and S (unadorned) will be understood to be the closure in L. A sublocale
S of L is dense if S = L. We denote the smallest dense sublocale of L by BL, and recall that

BL = {a ∈ L | a = a∗∗} = {b∗ | b ∈ L},

with meets as in L and joins given by

BL∨
{bi | i ∈ I} =

(∨
{bi | i ∈ I}

)∗∗
,

for any family (bi | i ∈ I) of elements of BL.

2.2. Covers and coverings
By a cover of L we mean a set C ⊆ L such that

∨
C = 1. On the other hand, to avoid possible confusion,

we say a collection C of sublocales of L is a covering of L if
∨
{C | C ∈ C } = L, where the join is calculated in

S(L). This terminology is not standard. A cover consists of elements of L, whereas a covering consists of
sublocales of L. If every sublocale in a covering C of L is open, then C is an open covering of L. There is a
bijection between covers and open coverings given by

C 7→ C C def
= {oL(c) | c ∈ C} and C 7→ CC def

= {x ∈ L | oL(x) ∈ C }.

3. Quasi- and regularly quasi-Menger frames

Throughout, sequences will be indexed by the set N of positive integers. We recall from [5] that a
topological space X is called quasi-Menger if for every closed set F ⊆ X and every sequence (Vn) of covers
of F by sets open in X, there exists, for each n, a finite Un ⊆ Vn such that F ⊆

⋃
n∈N
⋃

Un.
We aim to adapt this definition to frames and, simultaneously, consider a natural variant of the quasi-

Menger property. Analogously to spaces, when we say a collection C of sublocales of a frame L covers a
sublocale S we mean that S ⊆

∨
{T | T ∈ C }. We shall at times abbreviate

∨
{T | T ∈ C } as

∨
C . The variant

in question appears in parenthesis in the following definition.

Definition 3.1. A frame L is quasi-Menger (resp. regularly quasi-Menger) if for every closed (resp. regular-
closed) sublocale F of L and each sequence (Vn) with Vn consisting of open sublocales of L which cover F,
there exists, for each n, a finite Un ⊆ Vn such that F ⊆

∨
n∈N
∨

Un. For spaces we define the weaker variant
analogously, replacing sublocales with subsets, and joins of open sublocales with unions of open subsets.

As in [5], we abbreviate “quasi-Menger” as qM and “regularly quasi-Menger” as rqM. Before we plough
ahead, let us show that although the rqM property (in spaces) does not appear in the literature as we have
defined it, it actually does exist in a different guise.

In [16], Kočinac and Konca define, for a topological space X, Menger-type properties associated with
collections of nonempty subsets of X. The relevant one for the present discussion is defined as follows. Let
P be a collection of nonempty subsets of X. Then X is said to be weakly P-Menger if for every A ∈ P and
every sequence (Vn), where each Vn consists of sets open in X, such that A ⊆

⋃
n∈NVn, there exists, for each

n, a finite Un ⊆ Vn such that A ⊆
⋃

n∈N
⋃

Un.
Now, since a subset of X is regular-closed if and only if it is the closure of some open set, reasoning

exactly as in the proofs of [16, Theorem 4.8] and [21, Theorem 2.10], we see that if we let O be the collection
of nonempty open subsets of X, then we have the following:
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X is rqM if and only if it is weakly O-Menger.

It will be convenient to have characterizations of qM frames and rqM frames that are couched solely in
terms of elements and do not mention sublocales. Among other things, such characterizations will enable
us to show more easily that a space X is qM (resp. rqM) if and only if the frame Ω(X) is qM (resp. rqM).

Theorem 3.2. A frame L is qM (resp. rqM) if and only if for every a ∈ L (resp. regular a ∈ L) and every sequence
(Vn) of subsets of L with a∨

∨
Vn = 1 for each n, there is a finite Un ⊆ Vn such that

(∨
n∈Nun

)∗
≤ a, where un =

∨
Un.

Proof. (⇒) Suppose that L is qM and let a ∈ L. Let (Vn) be a sequence of subsets of L such that a ∨
∨

Vn = 1
for every n. Then, for each n,

cL(a) ⊆ oL

(∨
Vn

)
=
∨
{oL(x) | x ∈ Vn}.

Thus, the family

Vn = {oL(x) | x ∈ Vn}

covers the closed sublocale cL(a), and, of course, consists of open sublocales of L. Since L is qM, for each n,
there is a finite set Un ⊆ Vn such that for the collection

Un = {oL(u) | u ∈ Un}

we have cL(a) ⊆
∨

n∈N
∨

Un. Putting un =
∨

Un, we have∨
Un =

∨
{oL(u) | u ∈ Un} = oL

(∨
Un

)
= oL(un),

so that

cL(a) ⊆
∨
n∈N

oL(un) = oL

(∨
n∈N

un

)
= cL
((∨

n∈N

un

)∗)
,

which implies
(∨

n∈Nun

)∗
≤ a, as required.

(⇐) Suppose that the condition in the statement of the theorem holds, and let F be a closed sublocale of
L. Pick a ∈ L with F = cL(a). Suppose that (Vn) is a sequence where each Vn consists of open sublocales of L
and Vn covers F. So, for each n, there exists a set Vn ⊆ L such that Vn = {oL(v) | v ∈ Vn}. The containment
cL(a) ⊆

∨
Vn implies

cL(a) ⊆
∨
{oL(v) | v ∈ Vn} = oL

(∨
Vn

)
,

which, in turn, implies a ∨
∨

Vn = 1. By hypothesis, for each n, there is a finite Un ⊆ Vn such that(∨
n∈Nun

)∗
≤ a, where un =

∨
Un. For each n, put

Un = {oL(x) | x ∈ Un}.

Then Un is a finite subset of Vn and

cL(a) ⊆ cL
((∨

n∈N

un

)∗)
= oL

(∨
n∈N

un

)
=
∨
n∈N

oL(un)

=
∨
n∈N

oL

(∨
Un

)
=
∨
n∈N

∨
{oL(x) | x ∈ Un} =

∨
n∈N

∨
Un.

Therefore L is qM.
The parenthetical claim follows similarly because a sublocale of L is regular-closed if and only if it is of

the form cL(a) for some regular a ∈ L.
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It is clear that qM implies rqM. Recall that a frame L is normal if whenever a ∨ b = 1 in L, there exist
elements c and d in L such that

c ∧ d = 0 and a ∨ c = 1 = b ∨ d.

Note that if L is normal and a ∨ b = 1, there exists a c ∈ L such that c ≺ a and c ∨ b = 1, where ≺ denotes the
familiar “rather below” relation. Also, if c ≺ a, then c∗∗ ≤ a. We show that for normal frames qM and rqM
coincide.

Proposition 3.3. A normal frame is qM if and only if it is rqM.

Proof. Only one implication needs to be proved. So suppose that L is a normal rqM frame. Let a ∈ L and
(Vn) be sequence of subsets of L such that a ∨

∨
Vn = 1 for every n. Since L is normal, we can find a c ∈ L

such that c ≺ a and c ∨
∨

Vn = 1 for each n. Then c∗∗ ∨
∨

Vn = 1 for each n. Since c∗∗ is regular and L is rqM,
there exists, for each n, a finite Un ⊆ Vn such that

(∨
n∈Nun

)∗
≤ c∗∗, where un =

∨
Un. It therefore follows

from Theorem 3.2 that L is qM because c∗∗ ≤ a.

When we were writing [3] we came to realize that working with directed collections can at times be
more convenient in selection principles. By a directed subset of a poset we mean an up-directed one. A
proof similar to that of [3, Proposition 2.7] yields the following characterizations.

Corollary 3.4. A frame L is qM (resp. rqM) if and only if for every a ∈ L (resp. regular a ∈ L) and every sequence
(Vn) of directed subsets of L with a ∨

∨
Vn = 1 for each n, there exists an element vn ∈ Vn such that (

∨
n∈Nvn)∗ ≤ a.

We recall from [3] that a frame L is called Menger if for every sequence (Cn) of open coverings of L, there
exists, for each n, a finite Dn ⊆ Cn such that

⋃
n∈NDn is a covering of L. It is easiest to see from the foregoing

corollary and the characterization of Menger frames in terms of directed covers presented in [3, Proposition
2.7] that the Menger property is stronger than the qM property.

Corollary 3.5. Every Menger frame is qM.

Proof. Let L be a Menger frame. Let a ∈ L, and suppose that (Vn) is a sequence of directed subsets of L such
that a ∨

∨
Vn = 1 for each n. For each n, the set

V(a)
n = {a ∨ x | x ∈ Vn}

is a directed cover of L, and so, by [3, Proposition 2.2], for each n, there exists an element vn ∈ Vn such that

1 =
∨
n∈N

(a ∨ vn) = a ∨
∨
n∈N

vn.

This implies (
∨

n∈Nvn)∗ ≤ a, whence we deduce that L is qM.

We now use Theorem 3.2 to show that the qM property has been conservatively extended to frames.

Theorem 3.6. A space X is qM if and only if Ω(X) is qM.

Proof. Suppose that X is qM. Let A ∈ Ω(X) and (Vn) be a sequence of subsets ofΩ(X) such that A∨
∨

Vn = 1Ω(X)
for each n. In topological language this equality says A ∪

⋃
Vn = X, hence, for the closed set F = X ∖ A,

we have X ∖ A ⊆
⋃

Vn. Therefore (Vn) is a sequence of covers of F by open subsets of X, and so, since
X is qM, we can select, for each n, a finite Un ⊆ Vn such that F ⊆

⋃
n∈N
⋃

Un. Taking complements yields
X∖
⋃

n∈N
⋃

Un ⊆ A. In frame language this says
(∨

n∈N
∨

Un

)∗
≤ A, and so we deduce from Theorem 3.2 that

Ω(X) is qM.
Conversely, suppose that Ω(X) is qM, and let F be a closed subset of X. Let (Vn) be a sequence of covers

of F by open subsets of X. Put A = X∖ F. Then A ∈ Ω(X) and each Vn is a subset ofΩ(X) with A∪
⋃

Vn = X,
that is, in frame language, A ∨

∨
Vn = 1Ω(X). Since Ω(X) is qM, Theorem 3.2 furnishes, for each n, a finite

Un ⊆ Vn such that
(∨

n∈N
∨

Un

)∗
≤ A. Translated to topological language, this says X ∖

⋃
n∈N
⋃

Un ⊆ A,

which, upon taking complements, gives F ⊆
⋃

n∈N
⋃

Un. This proves that X is qM.
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Since a closed subset F of a topological space X is regular-closed if and only if the element X∖ F ofΩ(X)
is regular, an argument exactly as in the proof of Theorem 3.6 shows the following.

Theorem 3.7. A topological space is rqM if and only if the frame of its open sets is rqM.

Remark 3.8. Since a topological space and its sobrification have isomorphic frames of open sets, it follows
that a topological space is qM (resp. rqM) if and only if its sobrification has the same property.

From Theorem 3.2 (or Corollary 3.4) we obtain the following regarding localic images of qM frames.

Corollary 3.9. A subframe of a qM frame is qM. Hence, a localic image of a qM frame is qM.

Proof. This follows immediately from Theorem 3.2 because the pseudocomplement of an element of a
subframe taken in the subframe is below the pseudocomplement of that element taken in the mother
frame.

Note that we cannot use the same argument as in the foregoing proof to say a subframe of a rqM frame
is rqM because we are not guaranteed that an element that is regular in a subframe is regular in the ambient
frame. There is however a subframe which inherits (and “co-inherits”) the property under discussion. That
is the content of the next result.

Recall from [19] (see also [6]) that the semiregularization of a frame L is the subframe, denoted Ls, generated
by the regular elements of L. For x ∈ Ls, denote the pseudocomplement of x in Ls by x⊛. It is shown in [6,
p. 369] that, for any a ∈ Ls, a⊛ = a∗. A consequence of this is that a regular element in L is regular in Ls, and
vice versa.

Corollary 3.10. A frame is rqM if and only if its semiregularization is rqM.

Proof. Suppose, first, that Ls is rqM. Let a be a regular element in L, and let (Vn) be a sequence of directed
subsets of L such that a ∨

∨
Vn = 1 for every n. For each n, put

Ṽn = {x∗∗ | x ∈ Vn}.

Then (Ṽn) is a sequence of directed subsets of Ls such that, for each n, a ∨
∨

Ṽn = 1. Since a ∈ Ls and Ls is
rqM, we can select, for each n, an element vn ∈ Vn such that (

∨
n∈Nv∗∗n )⊛ ≤ a. Therefore(∨

n∈N

vn

)∗
=
∧
n∈N

v∗n =
∧
n∈N

v∗∗∗n =
(∨

n∈N

v∗∗n
)∗
=
(∨

n∈N

v∗∗n
)⊛
≤ a,

which shows that L is rqM.
Conversely, suppose that L is rqM. Let a ∈ Ls be regular in Ls and let (Vn) be a sequence of directed

subsets of Ls with a ∨
∨

Vn = 1 for each n. Then a is regular in L, and so there exists, for each n, an element
vn ∈ Vn such that (

∨
n∈Nvn)∗ ≤ a. Since (

∨
n∈Nvn)⊛ = (

∨
n∈Nvn)∗, it follows that Ls is rqM.

Remark 3.11. Now that we have presented a proof that brings up the identity(∨
i∈I

xi

)∗
=
(∨

i∈I

x∗∗i
)∗
,

we point out that, in light of this identity, we can replace “open sublocales” with “regular-open sublocales”
in Definition 3.1 for both qM frames and rqM frames. Similarly, in Theorem 3.2 the phrase “subsets of L”
can be replaced with “subsets of L each consisting of regular elements”.

In [16, Proposition 3.1], it is stated that clopen subsets of qM spaces are qM. We show that this result
extends to frames. We shall thereafter show that regular-closed sublocales of a rqM frame are rqM. Thus, it
seems that the rqM property is more accommodating regarding which closed subsets inherit the property.
We say “seems” because we do not have an example of a regular-closed subset of a qM space which is not
qM.
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In the proofs of the results just mentioned we shall use the fact that, for any a and b in any frame,

(a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

Let us also recall from [8, Lemma 4.5] that if a is regular, and we denote pseudocomplements in cL(a) by
(−)#, then t# = (t ∧ a∗)∗ for every t ∈ cL(a).

Proposition 3.12. The following results hold.

(a) Every clopen sublocale of a qM frame is qM.
(b) Every regular-closed sublocale of a rqM frame is rqM.

Proof. (a) Let a be a complemented element of a qM frame L. We use Corollary 3.4 to show that cL(a) is qM.
So, let b ∈ cL(a), and suppose that (Vn) is a sequence of directed subsets of cL(a) with b ∨

∨
Vn = 1 for every

n. For each n, set

Un = {a∗ ∧ x | x ∈ Vn}.

Then (Un) is a sequence of directed subsets of L. Since b ≥ a, b ∨ a∗ = 1 because a is complemented, and so,
for each n,

b ∨
∨

Un = b ∨
∨
{a∗ ∧ x | x ∈ Vn} = b ∨

(
a∗ ∧
∨
{x | x ∈ Vn}

)
=
(
b ∨ a∗

)
∧

(
b ∨
∨

Vn

)
= 1.

Since L is qM, we can find, for each n, a un ∈ Un such that (
∨

n∈Nun)∗ ≤ b. Pick vn ∈ Vn such that un = a∗ ∧ vn.
Now, taking into account how pseudocomplements in cL(a) are calculated, for the element

∨
n∈Nvn of cL(a)

we have(∨
n∈N

vn

)#
=
(
a∗ ∧
∨
n∈N

vn

)∗
=
(∨

n∈N

(a∗ ∧ vn)
)∗
=
(∨

n∈N

un

)∗
≤ b,

which shows that cL(a) is qM.
(b) Let a be a regular element of a rqM frame L. Again, we use Corollary 3.4 to show that cL(a) is rqM. Let

b be a regular element of cL(a), and let (Vn) be a sequence of directed subsets of cL(a) such that b ∨
∨

Vn = 1
for each n. We show that b is also regular as an element of L. Indeed,

b = b## =
(
(b ∧ a∗)∗

)#
=
(
(b ∧ a∗)∗ ∧ a∗

)∗
=
((

(b ∧ a∗) ∨ a
)∗)∗

=
(
(b ∨ a) ∧ (a∗ ∨ a)

)∗∗
= (b ∨ a)∗∗ ∧ (a ∨ a∗)∗∗ = b∗∗;

the last part because b ≥ a and (a ∨ a∗)∗∗ = 1. Since L is rqM, we can select, for each n, an element vn ∈ Vn
such that (

∨
n∈Nvn)∗ ≤ b. For brevity, write v =

∨
n∈Nvn, and note that b∗ ≤ v∗∗. Now,

v# = (v ∧ a∗)∗ = (v ∧ a∗)∗∗∗ = (v∗∗ ∧ a∗)∗ ≤ (b∗ ∧ a∗)∗ = (b ∨ a)∗∗ = b∗∗ = b,

which then shows that cL(a) is rqM.

Corollary 3.13. Every regular-closed subspace of a rqM space is rqM.

We end this section by saying a few words about coproducts. We do not recall the construction of
coproducts as it is adequately treated in [20]. We however recite some pertinent properties that we shall
need. If L and M are frames, then:

– the elements a ⊕ b generate L ⊕M.

– a ⊕ b = 0L⊕M if and only if a = 0 or b = 0.
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– (a ⊕ b)∗ = (a∗ ⊕ 1) ∨ (1 ⊕ b∗) and (a ⊕ b)∗∗ = a∗∗ ⊕ b∗∗ (see, for instance, [2]).

– for any family {ai | i ∈ I} of elements of L and any b ∈M,
∨

i∈I(ai ⊕ b) =
(∨

i∈Iai

)
⊕ b.

Theorem 3.14. If L ⊕M is qM (resp. rqM), then both L and M are qM (resp. rqM).

Proof. We show that L is qM. Let a ∈ L, and suppose that (Vn) is a sequence of directed subsets of L such
that a ∨

∨
Vn = 1 for each n. Without loss of generality, we may assume that none of the sets Vn contains 0.

For each n, let V̂n be the subset of L ⊕M given by

V̂n = {x ⊕ 1 | x ∈ Vn}.

Then (V̂n) is a sequence of directed subsets of L ⊕M such that, for each n,

(a ⊕ 1) ∨
∨

V̂n = (a ⊕ 1) ∨
∨
x∈Vn

(x ⊕ 1) =
(
a ∨
∨

Vn

)
⊕ 1 = 1L⊕M.

Since L ⊕M is qM, for each n we can select some xn ∈ Vn such that
(∨

n∈N(xn ⊕ 1)
)∗
≤ (a ⊕ 1). Now, note that(∨

n∈N

(xn ⊕ 1)
)∗
=
((∨

n∈N

xn

)
⊕ 1
)∗
=
((∨

n∈N

xn

)∗
⊕ 1
)
∨

((∨
n∈N

xn

)
⊕ 0
)
=
(∨

n∈N

xn

)∗
⊕ 1,

as a consequence of which the inequality in the previous sentence says(∨
n∈N

xn

)∗
⊕ 1 ≤ a ⊕ 1. (‡)

If (
∨

n∈Nxn)∗ = 0, then, of course (
∨

n∈Nxn)∗ ≤ a. If (
∨

n∈Nxn)∗ , 0, we deduce from (‡) that (
∨

n∈Nxn)∗ ≤ a. It
follows therefore that L is qM. That M is also qM is shown similarly.

The proof of the rqM case is similar because if a is regular in L, then a ⊕ 1 is regular in L ⊕M since
(a ⊕ 1)∗∗ = a∗∗ ⊕ 1 = a ⊕ 1.

4. Concerning spectra

Recall that an element p ∈ L is called a point (or a prime) if it satisfies the property that

p < 1 and (∀x, y ∈ L)(x ∧ y ≤ p =⇒ x ≤ p or y ≤ p).

We write Pt(L) for the set of points of L. A frame is spatial if it is isomorphic toΩ(X) for some space X. This
is the case precisely when every element is a meet of primes.

We view the spectrum of L as the topological space(
Pt(L), {Σa | a ∈ L}

)
where, for each a ∈ L,

Σa = {p ∈ Pt(L) | a ≰ p}.

The map ηL : L→ Ω(ΣL) given by ηL(a) = Σa is an onto homomorphism, and is the reflection map from L to
spatial frames.

The contravariant functors Ω : Top → Frm and Σ : Frm → Top do not, in general, behave similarly
with regard to preserving or reflecting properties. We saw in the previous section that Ω preserves and
reflects both the qM and the rqM properties. We shall show that, subject to some condition on the meet of
primes, Σ reflects the rqM property. As mentioned in the Introduction, we propose to do this directly, using
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topological arguments because in the course of the proof some properties of the spectral topology come to
the fore. We will then show how the result can also be achieved via frame-theoretic arguments.

We start by describing the closure of an open set in the spectral topology. For any a ∈ L, let us write Σ′a
for the closed set ΣL ∖ Σa, so that

Σ′a = {p ∈ Pt(L) | a ≤ p}.

Note that, in any frame L, if u ≤ v, then Σ′v ⊆ Σ′u. Let us write mL for the meet of all points of L. The
understanding is, of course, that mL = 1 if L has no points. We remark, in passing, that if L is spatial then
mL = 0, but not conversely, as shown in [7, Example 3.2]. The following lemma characterizes when the
reflection map L→ Ω(ΣL) is dense in terms of mL.

Lemma 4.1. For any L, mL = 0 if and only if the homomorphism ηL : L→ Ω(ΣL) is dense.

Proof. To see the left-to-right implication, note first that if mL = 0, then the spectrum of L is nonempty. Now
consider any a ∈ L with ηL(a) = 0Ω(ΣL). Then Σa = ∅, so that a is below every point of L, hence a = 0.

Conversely, suppose that ηL : L → Ω(ΣL) is dense. Then L has at least one point, else every element
of L would be mapped to the bottom of Ω(ΣL). Since mL is below every point of L, ΣmL = ∅, which says
ηL(mL) = 0Ω(ΣL), which then implies mL = 0.

Recall the Heyting implication→ in any frame, given by

a→ b =
∨
{x ∈ L | x ∧ a ≤ b}.

Lemma 4.2. Let L be a frame with nonempty spectrum. For any a ∈ L, Σa = Σ
′
a→mL

.

Proof. Let p ∈ Σa. Then a ≰ p. Since

a ∧ (a→ mL) = a ∧mL ≤ mL ≤ p,

and since p is a point with a ≰ p, it follows that a → mL ≤ p, so that p ∈ Σ′a→mL
. Therefore Σa ⊆ Σ

′
a→mL

, and
since Σ′a→mL

is a closed set, it follows that Σa ⊆ Σ
′
a→mL

. Now consider any closed set, say Σ′b, with Σa ⊆ Σ
′

b.
Then Σa ∩ Σb = ∅, that is Σa∧b = ∅, which implies that a ∧ b is below every point of L, and hence a ∧ b ≤ mL,
whence b ≤ a → mL, thence Σ′a→mL

⊆ Σ′b. Therefore Σ′a→mL
is the smallest closed set containing Σa, which is

exactly what we are to prove.

Corollary 4.3. If the meet of all points of L is 0, then Σa = Σ
′

a∗ for every a ∈ L.

Let us note that, for a dense homomorphism h, if h(a) ≤ h(b) with b regular, then a ≤ b. This is so because

h(a ∧ b∗) = h(a) ∧ h(b∗) ≤ h(b) ∧ h(b∗) = 0,

implying a ∧ b∗ = 0 as h is dense, and hence a ≤ b∗∗ = b. Let us also note that, in any frame, if a ∨ b = 1, then
Σ′a ⊆ Σb.

We shall use the notation that, for any A ⊆ L,

ΣA = {Σa | a ∈ A}.

Theorem 4.4. If the points of L meet at the bottom and ΣL is rqM, then L is rqM.

Proof. Let a be a regular element in L, and suppose that (Vn) is a sequence of subsets of L such that a∨
∨

Vn = 1
for every n. Then, for each n, Σ′a ⊆ Σ∨Vn =

⋃
ΣVn . Therefore (ΣVn ) is a sequence of covers of the closed

set Σ′a by sets open in ΣL. Since mL = 0, we know from Corollary 4.3 that Σ′a = Σ′(a∗)∗ = Σa∗ , and so Σ′a is a
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regular-closed subset of ΣL. Since ΣL is rqM, there therefore exists, for each n, a finite Un ⊆ Vn such that
Σ′a ⊆

⋃
n∈N
⋃
ΣUn . Putting un =

∨
Un, this containment says

Σ′a ⊆
⋃
n∈N

⋃
ΣUn =

⋃
n∈N

Σun = Σ
∨

n∈Nun = Σ
′

(
∨

n∈Nun)∗ ;

the last equality in view of Corollary 4.3. Taking complements in ΣL, we have Σ(
∨

n∈Nun)∗ ⊆ Σa, which, in
terms of the homomorphism ηL, says ηL((

∨
n∈Nun)∗) ≤ ηL(a). Since ηL is dense, by Lemma 4.1, and a is a

regular element, we therefore have (
∨

n∈Nun)∗ ≤ a, and it follows that L is rqM.

Remark 4.5. The crucial part played by hypothesizing a to be regular should be noted. In consequence,
this same proof cannot be used to come to a similar conclusion for qM frames.

As mentioned above, the result in Theorem 4.4 can also be obtained differently by first establishing the
following proposition. Recall from [2] that a homomorphism h is called nearly open if h(a∗) = h(a)∗ for every
a in the domain of h. It is known that h is nearly open if and only if h(a∗∗) = h(a)∗∗ for every a. Therefore
nearly open homomorphisms send regular elements to regular elements. Honor to whom honor is due:
nearly open homomorphisms were first considered by Johnstone [12] under the appellation “weakly open”
homomorphisms.

Proposition 4.6. If h : L→M is a dense nearly open homomorphism and M is rqM, then L is rqM.

Proof. Let a be a regular element in L, and suppose that (Vn) is a sequence of directed subsets of L such that
a ∨
∨

Vn = 1. Then h(a) is a regular element in M and (h[Vn]) is a sequence of directed subsets of M such
that h(a) ∨

∨
h[Vn] = 1 for each n. Since M is rqM, for each n, there exists an element vn ∈ Vn such that(∨

n∈Nh(vn)
)∗
≤ h(a). Using the fact that h is nearly open, we therefore have

h
((∨

n∈N

vn

)∗)
= h
(∨

n∈N

vn

)∗
=
(∨

n∈N

h(vn)
)∗
≤ h(a),

which implies (
∨

n∈Nvn)∗ ≤ a because a is regular and h is dense. It follows therefore that L is rqM.

Now, by Corollary 4.1, ηL : L → Ω(ΣL) is dense if and only if the points of L meet at the bottom. Also,
by Theorem 3.6, ΣL is rqM if and only if Ω(ΣL) is rqM. Since dense onto homomorphisms are nearly open,
it therefore follows from Proposition 4.6 that if the points of L meet at the bottom and ΣL is rqM, then L is
rqM.

Having observed that a nearly open homomorphism reflects the rqM property when it is dense, we
show that it preserves the rqM property when its right adjoint takes covers to covers. In fact, as the reader
will notice, the proof we give can easily be mimicked to show that it also preserves the qM property. Of
course the proof of Proposition 4.6 cannot be mimicked to establish the qM analogue of the result in that
proposition because the regularity of the element a (as in the case of Theorem 4.4) is used to conclude the
argument.

Proposition 4.7. Let h : L → M be a nearly open homomorphism whose right adjoint takes covers to covers. If L is
rqM (resp. qM), then M is also rqM (resp. qM).

Proof. We prove the rqM case. Let b be a regular element in M, and suppose that (Wn) is a sequence of
directed subsets of M such that b ∨

∨
Wn = 1 for each n. Then (h∗[Wn]) is a sequence of directed subsets of

L, and, for each n, h∗(b)∨
∨

h∗[Wn] = 1 because h∗ takes covers to covers. Hence h∗(b)∗∗ ∨
∨

h∗[Wn] = 1. Since
h∗(b)∗∗ is regular and L is rqM, for each n we can select an element wn in Wn such that

(∨
n∈Nh∗(wn)

)∗
≤ h∗(b)∗∗.
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Now, in light of the fact that each h(h∗(wn)) ≤ wn, we have(∨
n∈N

wn

)∗
≤

(∨
n∈N

h(h∗(wn))
)∗
=
(
h
(∨

n∈N

h∗(wn)
)∗

= h
((∨

n∈N

h∗(wn)
)∗)

since h is nearly open

≤ h
(
h∗(b)∗∗

)
=
(
h(h∗(b)

)∗∗
since h is nearly open

≤ b∗∗

= b.

It follows therefore that M is qM.

5. Weakly Menger frames

We start by recalling the concept in spaces that we wish to import to frames. A topological space X
is called weakly Menger if for every sequence (Vn) of open covers of X, there exists, for each n, a finite
Un ⊆ Vn such that

⋃
n∈N
⋃

Un is dense in X. These spaces are called “weakly Hurewicz” in [4]. Importing
this definition almost verbatim to frames, we formulate the following. Recall that an element a of a frame
L is dense if a∗ = 0. This is equivalent to saying the open sublocale oL(a) is dense in L.

Definition 5.1. A frame L is weakly Menger (abbreviated wM) if for every sequence (Cn) of open coverings
of L, there exists, for each n, a finite Dn ⊆ Cn such that

∨
{T | T ∈

⋃
n∈NDn} is a dense sublocale of L. We shall

say the sequence (Dn) is a weakly Menger witness (abbreviated wM-witness) for the sequence (Cn).

It is immediate from the definition that every Menger frame is wM. Also, by taking F to be the whole
frame in the definition of qM frames, we see that every qM frame is wM. Using the bijections C 7→ CC and
C 7→ C C, and passing to sequences of directed coverings or covers, arguments similar to those of the proof
of [3, Proposition 2.7] yield the following characterizations.

Proposition 5.2. The following are equivalent for a frame L.

1. L is wM.
2. For every sequence (Cn) of directed open coverings of L, there exists, for each n, some Cn ∈ Cn such that

∨
n∈NCn

is a dense sublocale of L.
3. For every sequence (Cn) of covers of L, there exists, for each n, a finite Dn ⊆ Cn such that

∨
D is a dense element

in L, where D =
⋃

n∈NDn.
4. For every sequence (Cn) of directed covers of L, there exists, for each n, some cn ∈ Cn such that

∨
n∈Ncn is a

dense element in L.

Since a cover of a subframe is a cover of the ambient frame, and since an element of the ambient frame
that also belongs to a subframe is dense in the subframe if it is dense in the frame, we have the following
corollary.

Corollary 5.3. A subframe of a wM frame is wM. Hence, a localic image of a wM frame is wM.

Recall that a frame is called almost compact if each of its covers has a finite subset the join of which is
a dense element. As another corollary of Proposition 5.2, one checks routinely that every almost compact
frame is wM.

The wM property for frames, as we have defined it, is conservative. To see this, observe that, as in
frames, a space X is wM if and only if for every sequence (Vn) of directed open covers of X, there exists, for
each n, a set Vn ∈ Vn such that

⋃
n∈NVn is dense in X.
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Proposition 5.4. A space X is wM if and only if Ω(X) is wM.

Proof. Suppose that X is wM and let (Cn) be a sequence of directed covers of Ω(X). Viewed topologically,
each Cn is an open cover of X. So we can find, for each n, some Cn ∈ Cn such that

⋃
n∈NCn is dense in X.

Frame-theoretically, this says
∨

n∈NCn is a dense element in Ω(X). Therefore Ω(X) is wM.
Conversely, suppose that Ω(X) is wM, and let (Vn) be a sequence of directed open covers of X. Viewed

frame-theoretically, each Vn is a directed cover of the frameΩ(X), so we can select, for each n, some Vn ∈ Vn
such that

∨
n∈NVn is a dense element inΩ(X). Topologically, this says

⋃
n∈NVn is dense in X. Therefore X is

wM.

For comparison, let us recall from [3] that a frame L is called almost Menger (abbreviated aM) if for
every sequence (Cn) of open coverings of L, there exists, for each n, a finite Dn ⊆ Cn such that

∨
{D | D ∈⋃

n∈NDn} = L. In this case, the sequence (Dn) is called an aM-witness for the sequence (Cn). It is perhaps
not so immediate that every aM frame is wM. To prove this, we draw the attention of the reader to the fact
that a sublocale of any frame is dense if and only if it has non-void intersection with every non-void open
sublocale (see [9, Lemma 9.2]).

Proposition 5.5. Every aM frame is wM.

Proof. Let (Cn) be a sequence of open coverings of an aM frame L, and let (Dn) be an aM-witness for (Cn),
so that

∨
{D | D ∈

⋃
n∈NDn} = L. We argue that (Dn) is a wM-witness for (Cn). Suppose, by way of

contradiction, that
∨
{D | D ∈

⋃
n∈NDn} is not a dense sublocale of L. Then there exists a non-void open

sublocale U of L such that

O = U ∩
∨{

D | D ∈
⋃
n∈N

Dn

}
=
∨{

U ∩D | D ∈
⋃
n∈N

Dn

}
;

which implies U ∩ D = O for every D ∈
⋃

n∈NDn. We know from [20, Lemma VIII. 4.2.1] that an open
sublocale misses a sublocale if and only if it misses the closure of that sublocale, so

U = U ∩ L = U ∩
∨{

D | D ∈
⋃
n∈N

Dn

}
=
∨{

U ∩D | D ∈
⋃
n∈N

Dn

}
= O;

yielding a contradiction. Therefore L is wM.

Remark 5.6. From the equivalence of statements (1) and (4) in Proposition 5.2, we have the following
“sublocale-free” reaffirmation of the fact that aM frames are wM. Let L be an aM frame, and let (Cn) be a
sequence of directed covers of L. By [3, Corollary 3.7], there exists, for each n, an element cn ∈ Cn such that
0 =
∧

n∈Ntn, for some elements tn with c∗n ≤ tn for each n. Therefore

0 ≤
(∨

n∈N

cn

)∗
=
∧
n∈N

c∗n ≤
∧
n∈N

tn = 0,

which implies that
∨

n∈Ncn is dense, and therefore L is wM.

Remark 5.7. Abbreviate by M the Menger property. We then have the non-reversible (already in spaces)
implications:

M =⇒ aM =⇒ wM and M =⇒ qM =⇒ wM.

In the case of Boolean frames all these implications are equivalences. To see this, observe that if L is Boolean
and wM, then it is Menger because the only dense element in a Boolean frame is the top.

We now present some characterizations of wM frames, which include localic versions of [18, Theorem
7]. To that end, let us introduce some terminology which is lifted verbatim from spaces.
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Definition 5.8. We say an open covering U of a frame L is a κ-covering if L < U and for every compact
sublocale K of L, there exists some U ∈ U such that K ⊆ U.

Extending earlier usage, let us say a sequence (Dn) of covers of L is a wM-witness for a sequence (Cn) of
covers of L if each Dn is a finite subset of Cn and

∨
{d | d ∈

⋃
n∈NDn∈N} is a dense element of L.

Note that dense homomorphisms reflect density of elements. That is, if h : L→M is a dense homomor-
phism and a ∈ L is such that h(a) is dense, then a is dense. For, if x∧ a = 0, for any x ∈ L, then h(x)∧ h(a) = 0,
which implies h(x) = 0, whence x = 0, showing that a is dense.

Theorem 5.9. The following are equivalent for a frame L.

1. L is wM.
2. Ls is wM.
3. Every sequence of κ-coverings of L has wM-witness.
4. Whenever h : M→ L is a dense homomorphism, then M is wM.

Proof. (1) ⇔ (2): If L is wM, then, being a subframe of L, Ls is wM. Conversely, suppose that Ls is wM, and
let (Cn) be a sequence of directed covers of L. For each n, let Dn = {x∗∗ | x ∈ Cn}. Then (Dn) is a sequence of
directed covers of Ls, so for each n there exists some cn ∈ Cn such that

∨
n∈Nc∗∗n is dense in Ls. Therefore(∨

n∈N

cn

)∗
=
(∨

n∈N

c∗∗n
)∗
=
(∨

n∈N

c∗∗n
)⊛
= 0,

so that
∨

ncn is a dense element in L. Therefore L is wM.
(1) ⇔ (3): It is immediate that (1) implies (3). Conversely, suppose that (3) holds, and let (Cn) be a

sequence of directed open coverings of L. If L ∈ Cn0 for some index n0, then, choosing Cn0 = L and Cn to
be any member of Cn for n , n0, we see that the sequence (Cn) has a wM-witness. So we may assume that
L does not belong to any of the coverings Cn. Let K be a compact sublocale of L. Since in the lattice S(L)
binary meets distribute over joins consisting of open sublocales, for any n we have

K = K ∩
∨
{C | C ∈ Cn} =

∨
{K ∩ C | C ∈ Cn},

and so, since K is compact, there is a positive integer kn and sublocales C1, . . . ,Ckn in Cn such that

K = (K ∩ C1) ∨ · · · ∨ (K ∩ Ckn ) = K ∩ (C1 ∨ · · · ∨ Ckn ),

so that K ⊆ C1 ∨ · · · ∨ Ckn and hence K is contained in some member of Cn because the collection Cn is
directed. Therefore (Cn) is a sequence of κ-coverings of L, and hence has a wM-witness by hypothesis. In
all then, L is wM.

(1)⇔ (4): Assume that L is wM, and let h : M→ L be a dense homomorphism. Let (Cn) be a sequence of
directed covers of M. Then (h[Cn]) is a sequence of directed covers of L, and so, for each n, we can select an
element cn ∈ Cn such that

∨
n∈Nh(cn) is a dense element in L. This says h(

∨
n∈Ncn) is dense, which therefore

makes
∨

n∈Ncn dense because h is dense. It follows there fore that M is wM.
Conversely, assume that the condition in (4) holds. Since the identical map idL : L → L is dense, L is

wM.

Remark 5.10. Without the density condition, the implication (1)⇒ (4) fails. Indeed, let X be any nonempty
topological space which is not wM, and consider any p ∈ X. For the homomorphism ξp : Ω(X)→ 2, induced
by the point X ∖ {p} of Ω(X), the codomain of ξp is wM whereas its domain is not.

Since any sublocale is a dense sublocale of its closure, the implication (1)⇒ (4) in Theorem 5.9 gives us
the following result.

Corollary 5.11. Let L be a frame.
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(a) The closure of any wM sublocale of L is wM.
(b) If the smallest dense sublocale of L is wM, then L is wM.

There are frames which are wM precisely when their smallest dense sublocales are wM. In [1], Arietta
calls a frame infinitely extremally disconnected if (

∨
i∈Iai)∗∗ =

∨
i∈Ia∗∗i for all families {ai | i ∈ I} of elements of the

frame.

Proposition 5.12. An infinitely extremally disconnected frame is wM if and only if its smallest dense sublocale is
wM.

Proof. Only one implication needs to be proved. Suppose L is an infinitely extremally disconnected frame
which is wM. Denote the join inBL by

⊔
. Let (Cn) be a sequence of directed covers ofBL. Then, for each n,⊔

Cn =
(∨

Cn

)∗∗
=
∨
{x∗∗ | x ∈ Cn} =

∨
{x | x ∈ Cn} =

∨
Cn,

so that (Cn) is a sequence of directed covers of L. Since L is wM, we can select, for each n, an element cn ∈ Cn
such that

∨
n∈Ncn is a dense in L. This implies

1 =
(∨

n∈N

cn

)∗∗
=
⊔
n∈N

cn,

showing that the latter is a dense element in BL. Therefore BL is wM.

In general, we are able to characterize when the smallest dense sublocale is wM. Recall that a subset of
a frame is called a quasi-cover if its join is a dense element in the frame.

Theorem 5.13. The following are equivalent for a frame L.

1. BL is wM.
2. For every sequence (Cn) of directed quasi-covers of L, we can select, for each n, an element cn ∈ Cn such that
{cn | n ∈N} is a quasi-cover of L.

Proof. Assume, first, thatBL is wM, and let (Cn) be a sequence of directed quasi-covers of L. For each n, put
Dn = {x∗∗ | x ∈ Cn}. As before, denote the join in BL by

⊔
. Then, since

∨
Cn is a dense element in L,⊔

Dn =
(∨
{x∗∗ | x ∈ Cn}

)∗∗
≥

(∨
{x | x ∈ Cn}

)∗∗
= 1.

Thus, (Dn) is a sequence of directed covers of BL, so, by hypothesis, we can select, for each n, some cn ∈ Cn
such that

⊔
n∈Nc∗∗n = 1 because the only dense element in a Boolean frame is the top. Thus,

1 =
(∨

n∈N

c∗∗n
)∗∗
=
(∧

n∈N

c∗∗∗n

)∗
=
(∧

n∈N

c∗n
)∗
=
(∨

n∈N

cn

)∗∗
,

which says
∨

n∈Ncn is a dense element in L. Therefore L is wM.
Conversely, suppose that L is wM, and let (Cn) be a sequence of directed covers of BL. Then (Cn) is a

sequence of directed quasi-covers of L, so, by the present hypothesis, we can select, for each n, some cn ∈ Cn
such that

∨
n∈Ncn is a dense element in L. This certainly makes

⊔
n∈Ncn the top element (hence a dense

element) in BL. Therefore BL is wM.

Another corollary of the implication (1)⇒ (4) in Theorem 5.9 is with regard to coproducts. It also gives
us a result in topological spaces.

Corollary 5.14. Let (Li | i ∈ I) be a family of frames, and (X j | j ∈ J) a family of topological spaces.

(a) If the coproduct
⊕

i∈I Li is wM, then each Li is wM.
(b) If the product

∏
j∈JX j is wM, then each X j is wM.
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Proof. (a) This follows from the fact that each coproduct injection is dense because it is one-one.

(b) If
∏

j∈JX j is wM, then Ω
(∏

j∈JX j

)
is wM by Proposition 5.4. As shown in [20, Chapter IV, Section 5.4],

there is a dense (actually, dense onto) homomorphism⊕
j∈J

Ω(X j)→ Ω
(∏

j∈J

X j

)
.

Therefore
⊕

j∈JΩ(X j) is wM. So, by the first part, each Ω(X j) is wM, which implies that each X j is wM, by
Proposition 5.4 again.

We have seen that a dense homomorphism reflects the wM property. We now identify some homo-
morphisms that preserve it. A homomorphism is called weakly perfect if its right adjoint preserves directed
covers. This is strictly weaker than requiring the homomorphism to be perfect, which is defined by requiring
that the right adjoint preserve all directed joins. Recall that a homomorphism is called skeletal if it maps
dense elements to dense elements. This term is borrowed from topology. Indeed, a continuous map is
skeletal precisely when f−1[−] sends dense open sets to dense (open) sets.

Proposition 5.15. If h : L→M is a weakly perfect skeletal homomorphism and L is wM, then M is wM.

Proof. Let (Cn) be a sequence of directed covers of M. Since h is weakly perfect, (h∗[Cn]) is a sequence of
directed covers of L. Since L is weakly Menger, we can select, for each n, some cn ∈ Cn such that

∨
n∈Nh∗(cn)

is a dense element in L. Since h is skeletal, h(
∨

n∈Nh∗(cn)) is dense, that is,
∨

n∈Nh(h∗(cn)) is dense, and so∨
n∈Ncn is dense because each cn is above h(h∗(cn)). Therefore M is wM.

As a corollary, we have the following result about binary coproducts. Recall that if L and M are frames,
then the coproduct injections

L
iL // L ⊕M M

iMoo

are open maps, which is to say they preserve meets and the Heyting implication. Furthermore, as shown
in [10, Lemma 2], if L is compact then (iM)∗, the right adjoint of iM, preserves directed joins. Note that a
nearly open map is skeletal.

Corollary 5.16. If L is compact and M is wM, then L ⊕M is wM.

Proof. This follows from Proposition 5.15 because the injection iM : M→ L⊕M is nearly open (being open),
hence skeletal, and its right adjoint preserves directed joins, hence it is weakly perfect.

Let us apply Proposition 5.15 to topological spaces. As usual, by a filtered subset of a poset we mean a
down-directed one. Call a collection C of closed subsets of a topological space a co-cover if

⋂
C = ∅.

Corollary 5.17. Let f : X→ Y be a skeletal closed continuous map whose induced direct-image map f [−] preserves
filtered co-covers. If Y is wM, then so is X. In particular, a skeletal perfect continuous map reflects the wM property.

Proof. In light of the fact that a topological space is wM if and only if its frame of open sets is wM, we need
only show that the homomorphism Ω( f ) : Ω(Y) → Ω(X) is weakly perfect and skeletal. The latter holds
because f is skeletal. Let {Uα | α ∈ A} be a directed cover ofΩ(X). Then {X∖Uα | α ∈ A} is a filtered co-cover
of X. Since f [−] preserves filtered co-covers,

⋂
α∈A f [X ∖ Uα] = ∅. Recall that the right adjoint of Ω( f ) is

given by

Ω( f )∗(V) = Y ∖ f [X ∖ V].
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Now, in light of the fact that f is a closed map,

1Ω(Y) = Y = Y ∖ ∅ = Y ∖
⋂
α∈A

f [X ∖Uα]

= Y ∖
⋂
α∈A

f [X ∖Uα] =
⋃
α∈A

(
Y ∖ f [X ∖Uα]

)
=
∨
α∈A

Ω( f )∗(Uα),

showing that Ω( f ) preserves directed covers. The rest follows from Proposition 5.15.

Remark 5.18. Note that in the proof we have actually shown that, for a closed map f : X → Y, if f [−]
preserves filtered co-covers, then Ω( f )∗ preserves directed covers. The converse also holds, as can be seen
from the last displayed string of equalities in the proof.

We now give a criterion for a sublocale of a frame L to be wM in terms of collections of open sublocales
of L. Recall that if S is a sublocale of L, then joins in S(S) are exactly joins in S(L). We use the notation that
if S is a sublocale of L and C is a collection of sublocales of L, then

S ∩ C = {S ∩ C | C ∈ C }.

Recall that collections of open sublocales are distributive, meaning that if U is a collection of open
sublocales of L, then for any sublocale T of L,

T ∩
∨
{U | U ∈ U } =

∨
{T ∩U | U ∈ U }.

This is due to Isbell [11].

Theorem 5.19. The following are equivalent for a sublocale S of a frame L.

1. S is wM.
2. For every sequence (Un) of directed collections of open sublocales of L with S ⊆

∨
Un for every n, there exists,

for each n, some Un ∈ Un such that S ⊆ S ∩
∨

n∈NUn.

Proof. (1) ⇒ (2): We shall reserve the overline for the closure in L. Suppose that S is wM and (Un) is a
sequence with each Un directed and consisting of open sublocales of L such that S ⊆

∨
Un for each n. Since

Un consists entirely of open sublocales of L,

S = S ∩
∨

Un =
∨
{S ∩U | U ∈ Un},

which then implies that (S ∩ Un) is a sequence of directed open coverings of S. Since S is wM, we deduce
from Proposition 5.2 that there exists, for each n, some Un ∈ Un such that

∨
n∈N(S∩Un) is a dense sublocale

of S. Therefore

S = clS

(∨
n∈N

(S ∩Un)
)
= S ∩

∨
n∈N

(S ∩Un) = S ∩ S ∩
∨
n∈N

Un,

showing that S ⊆ S ∩
∨

n∈NUn.
(2)⇒ (1): Let (Cn) be a sequence of directed open coverings of S. Then, for each n, Cn = S∩Un for some

collection Un consisting of open sublocales of L with S ⊆
∨

Un. (Caution: Un is not necessarily directed).
For each n, put

Vn =
{∨

F | F is a finite subset of Un

}
,

and observe that (Vn) is a sequence of directed collections of open sublocales of L with S ⊆
∨

Vn for each
n. Therefore, by the present hypothesis, there exists, for each n, some Vn ∈ Vn such that S ⊆ S ∩

∨
n∈NVn.

Now, for each n, there exists some kn ∈N and elements F(1)
n , . . . ,F

(kn)
n of Un such that

Vn = F(1)
n ∨ · · · ∨ F(kn)

n .
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Since Cn = S ∩Un,{
S ∩ F(1)

n , . . . ,S ∩ F(kn)
n

}
⊆ Cn,

and since Cn is directed, there exists an element of Cn which contains each of the sublocales S ∩ F(i)
n for

i = 1, . . . , kn. Thus, there exists some Un ∈ Un such that

S ∩ Vn = S ∩
(
F(1)

n ∨ · · · ∨ F(kn)
n

)
=
(
S ∩ F(1)

n

)
∨ · · · ∨

(
S ∩ F(kn)

n

)
⊆ S ∩Un.

Thus, putting Cn = S ∩Un, we have that Cn is a sublocale of S belonging to Cn such that

S ⊆ S ∩ S ∩
∨
n∈N

Vn = S ∩
∨
n∈N

(S ∩ Vn) ⊆ S ∩
∨
n∈N

(S ∩Un) = S ∩
∨
n∈N

Cn = clS

(∨
n∈N

Cn

)
⊆ S,

showing that
∨

n∈NCn is a dense sublocale of S. Therefore S is wM.

This theorem gives us a sublocale-based verification of the assertion that the closure of a wM sublocale is
wM. Indeed, let S be a wM sublocale of a frame L, and suppose that (Un) is a sequence of directed collections
of open sublocales of L such that S ⊆

∨
Un for each n. Then S ⊆

∨
Un, and so, by the theorem, there exists,

for each n some Un ∈ Un such that S ⊆ S ∩
∨

n∈NUn. Then, upon taking closures,

S ⊆ S ∩
∨
n∈N

Un ⊆ S ∩
∨
n∈N

Un,

which then shows that S is wM.

Corollary 5.20. The join of finitely many wM sublocales is wM.

Proof. Let S1, . . . ,Sk be finitely many wM sublocales of a frame L, and put S = S1 ∨ · · · ∨ Sk. Let (Un) be a
sequence of directed collections of open sublocales of L with S ⊆

∨
Un for every n. For each i ∈ {1, . . . , k},

Si ⊆
∨

Un, and so, for each n, we can select U(i)
n ∈ Un such that Si ⊆ Si ∩

∨
n∈NU(i)

n . Since Un is directed, there
exists some Un ∈ Un such that U(1)

n ∨ · · · ∨U(k)
n ⊆ Un, which then implies

Si ⊆ Si ∩
∨
n∈N

Un ⊆ S ∩
∨
n∈N

Un.

Taking joins over all i yields the containment S ⊆ S ∩
∨

n∈NUn, whence we deduce that S is wM.

The sublocales of a wM frame that inherit the property include the regular-closed ones, as we now
show. In the proof of Proposition 3.12 we observed that if a is a regular element of L, and we denote
pseudocomplements in cL(a) by (−)#, then, for any x ∈ cL(a), x## = x∗∗. A consequence of this is that if x is
dense as an element of L, then x is also dense as an element of cL(a).

Proposition 5.21. A regular-closed sublocale of a wM frame is wM.

Proof. Let a be a regular element of a wM frame L. Let (Cn) be a sequence of directed covers of cL(a). Then
(Cn) is also a sequence of directed covers of L, and so, for each n, we can select cn ∈ Cn such that

∨
n∈Ncn is

dense in L. By what we observed above,
∨

n∈Ncn is dense as an element of cL(a), and so it follows that cL(a)
is wM.



T. Bayih et al. / Filomat 36:18 (2022), 6375–6392 6392

References

[1] I. Arietta, On infinite variants of De Morgan law in locale theory, J. Pure Appl. Algebra 225 (2021) Art. ID 106460.
[2] B. Banaschewski, A. Pultr, Booleanization Cah. Topol. Géom. Differ. Catég. 37 (1996) 41–60.
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[14] Lj.D.R. Kočinac, Star-Menger and related spaces II, Filomat 13 (1999) 129–140.
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